

中华人民共和国国家生态环境标准

HJ 1269—2022

土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法

Soil and sediment—Determination of methyl mercury and ethyl mercury
—Purge and trap/gas chromatography - cold vapor atomic fluorescence
spectrometry

本电子版为正式标准文本,由生态环境部环境标准研究所审校排版。

2022-12-12 发布

2023-06-16 实施

生 态 环 境 部 发布

目 次

前	言	. ii
1	适用范围	. 1
2	规范性引用文件	. 1
	方法原理	
	干扰和消除	
5	试剂和材料	.2
7	样品	. 3
8	仪器和设备 样品 分析步骤	.4
9	结果计算与表示	. 5
10	准确度	.7
11	质量保证和质量控制	. 8
12	废物处置	. 8
13	注意事项	. 8
附表	录 A(规范性附录) 方法检出限和测定下限	. 9
附	录 B (资料性附录) 方法准确度	10

前 言

为贯彻《中华人民共和国环境保护法》《中华人民共和国土壤污染防治法》,防治生态环境污染,改善生态环境质量,规范土壤和沉积物中甲基汞和乙基汞的测定方法,制定本标准。

本标准规定了测定土壤和沉积物中甲基汞和乙基汞的吹扫捕集/气相色谱-冷原子荧光光谱法。

本标准的附录 A 为规范性附录, 附录 B 为资料性附录。

本标准为首次发布。

本标准由生态环境部生态环境监测司、法规与标准司组织制订。

本标准主要起草单位:中国环境监测总站、江苏省环境监测中心。

本标准验证单位:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境 监测总站、山东省济南生态环境监测中心、湖南省长沙生态环境监测中心、贵阳环境监测中心和安徽省 合肥生态环境监测中心。

本标准生态环境部 2022 年 12 月 12 日批准。

本标准自 2023 年 6 月 15 日起实施。

本标准由生态环境部解释。

土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法

警告:实验中使用的衍生化试剂和标准物质均有毒性,试剂配制和样品前处理应在通风橱中操作;操作时应按要求佩戴防护器具,避免接触皮肤和衣物。

1 适用范围

本标准规定了测定土壤和沉积物中甲基汞和乙基汞的吹扫捕集/气相色谱-冷原子荧光光谱法。 本标准适用于土壤和沉积物中甲基汞和乙基汞的测定。

取样量为 0.5~g,提取液体积为 30~ml 时,甲基汞和乙基汞的方法检出限均为 $0.2~\mu g/kg$,测定下限均为 $0.8~\mu g/kg$ 。详见附录 A。

2 规范性引用文件

本标准引用了下列文件或其中的条款。凡是注明日期的引用文件,仅注日期的版本适用于本标准。凡是未注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。

GB 17378.3 海洋监测规范 第 3 部分: 样品采集、贮存与运输

GB 17378.5 海洋监测规范 第 5 部分: 沉积物分析

HJ 25.2 建设用地土壤污染风险管控和修复监测技术导则

HJ/T 91 地表水和污水监测技术规范

HJ/T 166 土壤环境监测技术规范

HJ 442.4 近岸海域环境监测技术规范 第四部分 近岸海域沉积物监测

HJ 494 水质 采样技术指导

HJ 613 土壤 干物质和水分的测定 重量法

3 方法原理

土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。

4 干扰和消除

土壤或沉积物上机液中, Hg^{2+} 含量低于 1 ng 时,对甲基汞和乙基汞的测定无明显影响。 Hg^{2+} 含量超过 1 ng 时,对甲基汞的测定会产生正干扰,分析时可通过减少上机液中提取液所占比例以降低上机液中的 Hg^{2+} 含量。

HJ 1269—2022

5 试剂和材料

分析时均使用符合国家标准的优级纯试剂,实验用水为不含目标化合物的纯水。

- 5.1 甲醇(CH₃OH):色谱纯。
- 5. 2 乙酸 (CH₃COOH): $\rho = 1.05 \text{ g/ml}, w \ge 99.8\%$ 。
- 5.3 盐酸(HCl): ρ =1.18 g/ml,w∈[36.0%,38.0%]。
- 5.4 硝酸 (HNO₃): $\rho = 1.4$ g/ml, $w \in [65.0\%, 68.0\%]$ 。
- 5.5 氢氧化钾(KOH)。
- 5.6 四丙基硼化钠[NaB(C₃H₇)₄]: 纯度≥98%, 避光、密封保存。
- 5.7 四乙基硼化钠[NaB(C₂H₅)₄]: 纯度≥98%, 避光、密封保存。
- 5.8 乙酸钠(CH₃COONa)。
- 5.9 乙酸-乙酸钠缓冲溶液: c(CH₃COOH)=2 mol/L, c(CH₃COONa)=2 mol/L。

称取 16.4 g 乙酸钠 (5.8) 溶于水中,加入 12 ml 乙酸 (5.2) ,定容至 100 ml ,缓冲液 pH 值在 $4.5 \sim 4.8$ 之间。

5.10 氢氧化钾-甲醇溶液。 🤝

称取 50.0 g 氢氧化钾(5.5)至 200 ml 甲醇(5.1)中,超声溶解 20 min 至溶液为乳白色,贮存于具有螺口的塑料试剂瓶中,使用前混匀。

5. 11 四丙基硼化钠溶液: $\rho[\text{NaB}(\text{C}_3\text{H}_7)_4] = 10 \text{ g/L}$.

称取 2.0 g 氢氧化钾(5.5)至水中溶解,定容至 100 ml,混匀,转移到带盖塑料瓶中,放入冰箱冷却至出现冰晶后,迅速加入 1.0 g 四丙基硼化钠(5.6),摇匀,快速分装至多个 1.5 ml 带密封垫的螺口玻璃瓶中,上盖旋紧,于-18 $\mathbb{C}\pm2$ \mathbb{C} 冷冻,可保存 180 d。临用时,取出一小瓶试剂,待瓶内冰块融化约一半时使用。

- **注 1**: 四丙基硼化钠有毒,在空气中暴露易变质,溶液配制时移取四丙基硼化钠应快速并及时密封。冷冻后的四丙基硼化钠溶液随取随用,不可在常温下久置。融化后的四丙基硼化钠溶液不稳定,应一次性使用。
- **注 2**: 若只分析甲基汞,可使用四乙基硼化钠(5.7)代替四丙基硼化钠(5.6),四乙基硼化钠溶液的配制方法及保存方式与上述步骤相同。
- 5.12 乙酸-盐酸溶液。

分别量取乙酸(5.2)5 ml、盐酸(5.3)2 ml,加入适量水中,用水稀释至1 L。

5. 13 甲基汞标准贮备液: $\rho(CH_3Hg^+)=1.00 \text{ mg/L}$.

购买市售以甲醇、丙酮等为溶剂的有证标准溶液,开封后于4 ℃以下冷藏、避光、密封可保存240 d。

5. 14 乙基汞标准贮备液: $\rho(C_2H_5Hg^+)=1.00 \text{ mg/L}$.

购买市售以甲醇、丙酮等为溶剂的有证标准溶液,开封后于 4 $^{\circ}$ 以下冷藏、避光、密封可保存 240 d。 5. 15 混合标准中间液: $\rho=10.0~\mu g/L$ 。

分别移取 500 μ l 甲基汞标准贮备液(5.13)和乙基汞标准贮备液(5.14)于 50 ml 容量瓶中,用乙酸-盐酸溶液(5.12)定容至标线,于带内衬聚四氟乙烯垫螺盖的棕色试剂瓶或含氟聚合物瓶中 4 \mathbb{C} 以下冷藏、避光、密封可保存 240 d。

5. 16 混合标准使用液: ρ =1.00 μg/L。

移取适量混合标准中间液(5.15),用乙酸-盐酸溶液(5.12)配制成 1.00 μg/L 的标准使用液,于带内衬聚四氟乙烯垫螺盖的棕色试剂瓶或含氟聚合物瓶中 4 ℃以下冷藏、避光、密封可保存 240 d。

- 5.17 石英砂: 粒径 0.15 mm~0.83 mm (100 目~20 目)。
- 5.18 氩气:纯度≥99.999%。
- 5.19 氮气:纯度≥99.99%。

6 仪器和设备

- 6.1 棕色螺口玻璃瓶: 100 ml。
- 6.2 全自动烷基汞分析仪:包括吹扫捕集装置、气相色谱仪、色谱柱、裂解装置和冷原子荧光光谱仪。 吹扫捕集装置可以使用原位吹扫捕集或异位吹扫捕集。捕集管填装有聚 2,6-二苯基-对苯醚吸附剂 或其他等效吸附剂,粒径为 150 μm~180 μm,具备流量控制器。

色谱柱可以使用填充柱或毛细管柱。填充柱:填料固定液为苯基(10%)甲基聚硅氧烷,340 mm (柱长)×1.59 mm (内径),或其他等效色谱柱;毛细管柱:固定相为 100%二甲基聚硅氧烷,15 m (柱长)×0.53 mm (内径)×0.5 μ m (膜厚),或其他等效色谱柱。

- 6.3 真空冷冻干燥仪: 空载真空度达 13 Pa 以下。
- 6.4 离心机:转速可调。
- 6.5 恒温振荡器。
- 6.6 涡旋振荡器。
- 6.7 尼龙筛: 孔径 0.15 mm (100 目) 和 2.54 mm (10 目)。
- 6.8 离心管:聚丙烯材质,50 ml,带螺旋盖。
- 6.9 进样瓶: 带内衬聚四氟乙烯垫螺盖的棕色玻璃瓶, 40 ml 或 60 ml。
- 6.10 一般实验室常用仪器和设备。

7 样品

7.1 样品的采集和保存

土壤样品按照 HJ/T 166 和 HJ 25.2 的相关要求采集, 水体沉积物样品按照 HJ/T 91 和 HJ 494 的相关要求采集, 海洋沉积物样品按照 GB 17378.3 和 HJ 442.4 的相关要求采集。

样品采集后,应于棕色螺口玻璃瓶(6.1)中保存,4 ℃以下冷藏可保存 5 d,-15 ℃以下冷冻可保存 15 d。

7.2 水分的测定

土壤样品干物质含量测定接照 HJ 613 执行, 沉积物样品含水率测定按照 GB 17378.5 执行。

7.3 样品的制备

除去样品中的枝棒、叶片、石子等异物,按照 HJ/T 166 采用四分法粗分,取混匀后的样品,放入真空冷冻干燥仪(6.3)中干燥脱水,干燥后的样品研磨后通过 2.54 mm 尼龙筛(6.7)(除去 2.54 mm 以上的沙砾),混匀,再将上述样品研磨至全部通过 0.15 mm 尼龙筛(6.7),分装后冷藏保存。

7.4 试样的制备

准确称取 0.5 g 制备的样品(7.3)(精确至 0.1 mg),放入 50 ml 离心管(6.8)中,加入 15.0 ml 氢氧化钾-甲醇溶液(5.10)后,盖紧盖子,用涡旋振荡器(6.6)混匀。将样品倾斜置于恒温振荡器(6.5)中,若采用水浴振荡器应保证水浴液面没过管内溶液,待温度升至 60 °C后,采用 150 r/min~170 r/min 的频率恒温振荡提取 3 h,取出样品冷却至室温,加入 15.0 ml 实验用水,再次涡旋混匀。将样品放入离心机(6.4),于 4000 r/min 离心 2 min,将上清液从离心管中转移至洁净样品瓶中备用,24 h 之内测定,否则置于 4 °C以下避光、密封保存,3 d 内完成测定。

HJ 1269-2022

注:振荡提取时,待离心管温度升至 60 ℃后,为防止漏液应再次拧紧盖子。提取后应待其充分冷却后方可加水。 离心后立即转移上清液,避免土壤或沉积物重新吸附甲基汞和乙基汞。

7.5 空白试样的制备

采用石英砂(5.17)代替土壤或沉积物样品,按照与试样的制备(7.4)相同的步骤制备实验室空白试样。

8 分析步骤

8.1 仪器参考条件

8.1.1 吹扫捕集热脱附参考条件

吹扫气: 氩气 (5.18) 或氮气 (5.19); 吹扫捕集气流速: 400 ml/min (氩气)或 350 ml/min (氮气); 吹扫时间: 约 9 min; 载气: 氩气 (5.18); 热脱附温度: $130 \, \mathbb{C}$; 热脱附时间: $9.9 \, \mathrm{s}$.

8.1.2 色谱与裂解参考条件

色谱与裂解参考条件如下:

- a) 填充柱: 46 ℃; 载气流速: 25 ml/min;
- b) 毛细管柱: 初始温度为 93 ℃,以 5 ℃/min 升至 97 ℃,保持 105 s,以 4.5 ℃/min 升至 100 ℃,保持 105 s;载气流速: 15 ml/min;
- c) 裂解温度: 750 ℃。

8.1.3 冷原子荧光光谱仪参考条件

光电倍增管负高压:约 690 V;载气流速:25 ml/min(填充柱)或 15 ml/min(毛细管柱);其他按照仪器操作说明书设定。

8.2 校准曲线的建立

8. 2. 1 取 8 个 40 ml 进样瓶(6.9),分别加入实验用水约 35 ml,再分别加入适量的混合标准使用液(5.16),由低到高依次配制不同浓度的标准系列溶液,目标化合物含量分别为 0.00 pg、2.00 pg、5.00 pg、10.0 pg、50.0 pg、1000 pg(此为参考含量)。

注: 原位吹扫采用 60 ml 进样瓶 (6.9), 依次按照上述步骤加入 40 ml 水、混合标准使用液。

- 8.2.2 向标准系列溶液(8.2.1)中加入 300 μ l 乙酸-乙酸钠缓冲溶液(5.9)及 50 μ l 四丙基硼化钠溶液(5.11),迅速加入实验用水至瓶满,不留空隙,旋紧样品瓶盖,静置 20 μ l min。
- 8.2.3 按照仪器参考条件(8.1),由低含量到高含量依次测定标准系列溶液。以标准系列溶液中目标 化合物的含量为横坐标,以其对应的峰面积或峰高为纵坐标,建立甲基汞和乙基汞的校准曲线。
 - 注:在实际工作中,由于样品浓度未知且差异较大,需要配制的标准系列溶液浓度跨度较大,低浓度样品采用线性 回归法容易产生偏差,宜采用校准系数法。也可根据实际情况,分别建立低、高浓度的校准曲线,采用线性回 归法计算结果。

8.3 试样测定

于 40 ml 进样瓶(6.9)中加入实验用水约 35 ml,取试样(7.4) $150 \text{ }\mu\text{l}$ 至进样瓶(6.9)中,此后按照与 8.2.2 相同的操作步骤进行衍生化反应,pH 值控制在 $4\sim6$ 之间,按照 8.2.3 的条件和步骤测定。

注:原位吹扫采用 60 ml 进样瓶,依次按照上述步骤加入 40 ml 水、试样、乙酸-乙酸钠缓冲溶液(5.9)和四丙基硼化钠溶液(5.11)。

8.4 空白试验

按照与试样测定(8.3)相同的操作步骤和条件测定空白试样(7.5)。

9 结果计算与表示

9.1 定性分析

根据样品中目标化合物与标准系列中目标化合物的保留时间定性。在本标准规定的仪器参考条件(8.1)下,甲基汞和乙基汞衍生物的标准色谱图见图 1。

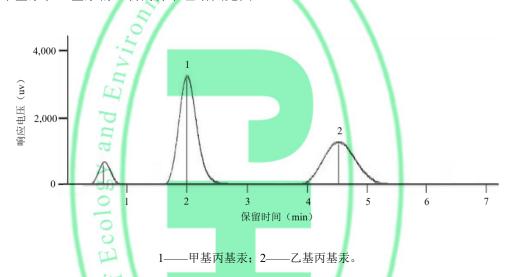


图 1 甲基汞和乙基汞的丙基化衍生物标准色谱图 (m=100 pg)

9.2 结果计算

9.2.1 线性回归法

土壤中甲基汞、乙基汞含量(质量分数)按公式(1)计算。

$$w_1 = \frac{m_1 \times V_1}{m \times w_{\rm dm} \times V_2 \times 1000} \tag{1}$$

式中: w1——土壤中甲基汞或乙基汞的含量, µg/kg;

 m_1 —由校准曲线计算样品中甲基汞或乙基汞的质量,pg:

 V_1 ——提取液体积, ml;

m——提取样品的质量, g;

Wdm ——土壤样品的干物质含量,%;

 V_2 ——提取液的取样体积, ml;

1000——质量单位间的换算系数。

沉积物中甲基汞、乙基汞含量(质量分数)按公式(2)计算。

$$w_2 = \frac{m_1 \times V_1}{m \times (1 - w_{H,O}) \times V_2 \times 1000}$$
 (2)

式中: w_2 ——沉积物中甲基汞或乙基汞的含量, $\mu g/kg$;

 m_1 —由校准曲线计算样品中甲基汞或乙基汞的质量,pg;

 V_1 ——提取液体积, ml:

m——提取样品的质量, g;

 W_{Ho} ——沉积物样品的含水率,%;

 V_2 ——提取液的取样体积, ml;

1000——质量单位间的换算系数。

9.2.2 校准系数法

校准系数按公式(3)计算。

$$CF_i = \frac{m_i}{A_i - A_0} \tag{3}$$

式中: CF_i 一第 i 个标准点的校准系数,即单位响应值所对应的目标物含量,pg/峰高或 pg/峰面积;

 m_i — 第 i 个标准点的甲基汞或乙基汞的质量,pg:

 A_i ——第i个标准点的甲基汞或乙基汞的峰高或峰面积;

A0——空白中甲基汞或乙基汞的峰高或峰面积。

平均校准系数按公式(4)计算。

$$\frac{\overline{CF}}{\overline{CF}} = \frac{\sum_{i=1}^{n} \overline{CF_i}}{n}$$
(4)

式中: CF ——标准点的平均校准系数,pg/峰高或pg/峰面积;

n——标准系列点数;

 CF_i 一第 i 个标准点的校准系数,即单位响应值所对应的目标物含量,pg/峰高或 pg/峰面积。土壤中甲基汞、乙基汞含量(质量分数) w_1 按公式(5)计算。

$$w_1 = \frac{(A_1 - A_0) \times \overline{CF} \times V_1}{m \times w_{dm} \times V_2 \times 1000}$$
(5)

式中: w_1 ——土壤中甲基汞或乙基汞的含量, $\mu g/kg$;

 A_1 ——样品中甲基汞或乙基汞的峰高或峰面积;

 A_0 ——空白中甲基汞或乙基汞的峰高或峰面积;

CF ——标准点的平均校准系数,pg/峰高或pg/峰面积;

 V_1 ——提取液体积, ml;

m——提取样品的质量, g;

*W*_{dm} ——土壤样品的干物质含量,%;

 V_2 ——提取液的取样体积, ml;

1000——质量单位间的换算系数。

沉积物中甲基汞、乙基汞含量(质量分数)w2按公式(6)计算。

$$w_2 = \frac{(A_1 - A_0) \times \overline{CF} \times V_1}{m \times (1 - w_{HO}) \times V_2 \times 1000}$$
 (6)

式中: w2——沉积物中甲基汞或乙基汞的含量, µg/kg;

 A_1 ——样品中甲基汞或乙基汞的峰高或峰面积;

 A_0 ——空白中甲基汞或乙基汞的峰高或峰面积;

CF——标准点的平均校准系数,pg/峰高或pg/峰面积;

 V_1 ——提取液体积, ml;

m——提取样品的质量, g;

 W_{Ho} ——沉积物样品的含水率,%;

 V_2 ——提取液的取样体积, ml;

1000——质量单位间的换算系数。

9.3 结果表示

测定结果小数点后位数的保留与方法检出限一致,最多保留3位有效数字。

10 准确度

10.1 精密度

7 家实验室对甲基汞含量为 $1.2 \,\mu g/kg$ 、 $1.1 \,\mu g/kg$ 、 $5.3 \,\mu g/kg$ 的 3 种土壤样品,和甲基汞含量为 $66.1 \,\mu g/kg$ 、 $1.9 \,\mu g/kg$ 、 $1.5 \,\mu g/kg$ 的 3 种沉积物样品重复测定 6 次:实验室内相对标准偏差范围分别为 $1.5\%\sim8.6\%$ 、 $1.0\%\sim11\%$ 、 $2.2\%\sim8.2\%$ 、 $0.82\%\sim7.8\%$ 、 $2.6\%\sim9.1\%$ 、 $1.0\%\sim3.4\%$;实验室间相对标准偏差分别为 34%、35%、9.6%、13%、22%、31%,重复性限分别为 $0.1 \,\mu g/kg$ 、 $0.2 \,\mu g/kg$ 、 $0.8 \,\mu g/kg$ 、 $8.7 \,\mu g/kg$ 、 $0.3 \,\mu g/kg$ 、 $0.1 \,\mu g/kg$,再现性限分别为 $1.1 \,\mu g/kg$ 、 $1.1 \,\mu g/kg$ 、 $1.6 \,\mu g/kg$ 、 $26 \,\mu g/kg$ 、 $1.2 \,\mu g/kg$ 、 $1.3 \,\mu g/kg$ 。

7 家实验室对乙基汞含量为 $1.1 \,\mu$ g/kg、 $1.1 \,\mu$ g/kg、 $4.8 \,\mu$ g/kg 的 3 种土壤样品,和乙基汞含量为 $9.2 \,\mu$ g/kg、 $4.5 \,\mu$ g/kg、 $1.0 \,\mu$ g/kg 的 3 种沉积物样品重复测定 $6 \,\chi$: 实验室内相对标准偏差范围分别为 $2.2\% \sim 11\%$ 、 $1.4\% \sim 11\%$ 、 $3.4\% \sim 10\%$ 、 $3.0\% \sim 11\%$ 、 $1.4\% \sim 16\%$ 、 $2.0\% \sim 9.1\%$; 实验室间相对标准偏差分别为 38%、17%、29%、37%、43%、19%,重复性限分别为 $0.2 \,\mu$ g/kg、 $0.2 \,\mu$ g/kg、 $1.0 \,\mu$ g/kg、 $1.5 \,\mu$ g/kg、 $0.5 \,\mu$ g/kg、 $0.1 \,\mu$ g/kg,再现性限分别为 $1.1 \,\mu$ g/kg、 $0.6 \,\mu$ g/kg、 $3.9 \,\mu$ g/kg、 $9.5 \,\mu$ g/kg、 $5.4 \,\mu$ g/kg、 $0.5 \,\mu$ g/kg。

10.2 正确度

7 家实验室对 3 种土壤加标样品重复测定 6 次,样品中甲基汞含量为 1.2 μg/kg、1.1 μg/kg、5.3 μg/kg,加标量分别为 1.00 μg/kg、1.00 μg/kg、15.0 μg/kg;对 3 种沉积物加标样品重复测定 6 次,样品中甲基汞含量为 66.1 μg/kg、1.9 μg/kg、1.5 μg/kg,加标量分别为 100 μg/kg、5.00 μg/kg、1.00 μg/kg。甲基汞的加标回收率分别为 86%~109%、84%~126%、89%~113%、83%~113%、81%~115%、76%~120%;加标回收率最终值分别为 100%±15%、102%±30%、100%±16%、96%±19%、93%±28%、98%±28%。

7 家实验室对 3 种土壤加标样品重复测定 6 次,样品中乙基汞含量为 1.1 μg/kg、1.1 μg/kg、4.8 μg/kg,加标量分别为 1.00 μg/kg、1.00 μg/kg、15.0 μg/kg;对 3 种沉积物加标样品重复测定 6 次,样品中乙基汞含量为 9.2 μg/kg、4.5 μg/kg、1.00 μg/kg,加标量分别为 100 μg/kg、5.00 μg/kg、1.00 μg/kg。乙基汞的加标回收率分别为 76%~114%、79%~118%、66%~86%、70%~87%、84%~108%、73%~113%;加标回收率最终值分别为 94%±24%、97%±26%、77%±14%、77%±11%、95%±18%、92%±26%。

精密度和正确度结果统计参见附录 B。

HJ 1269-2022

11 质量保证和质量控制

11.1 空白试验

每 20 个样品或每批次样品(少于 20 个)应至少做 1 个空白试样,空白试样的测定值应低于方法检出限。

11.2 校准

每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CF_i的相对标准偏差≤15%。每 20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线。

11.3 平行样

每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差 应在±30%以内。

11.4 基体加标

每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或 1 个有证标准物质。 甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间。

12 废物处置

实验中产生的废弃物应集中收集,分类保管,并做好相应标识,依法委托有资质的单位处理。

13 注意事项

- 13.1 实验所用的器皿(进样瓶、样品管等)应在10%硝酸溶液中浸泡至少24h,用水洗净。石英砂在使用前放入马弗炉400 ℃下灼烧4h,冷却后再用。
- 13.2 测定高浓度样品后,须用水多次清洗仪器系统。
- 13.3 失效的四丙基硼化钠溶液,应放入盛有盐酸(体积比为 1:1)的大烧杯中,于 80 ℃加热分解残留物,待烧杯中溶液体积减少 1/2 时,收集剩余的废酸液,统一处置。

附 录 A (规范性附录) 方法检出限和测定下限

取样量为 0.5 g, 提取液体积为 30 ml 时, 甲基汞和乙基汞的方法检出限和测定下限, 见表 A.1。

表 A. 1 方法检出限和测定下限

序号	化合物 中文名称	化合物 英文名称 CAS No.		检出限 (µg/kg)	测定下限 (μg/kg)
1	甲基汞	Methyl mercury	22967-92-6	0.2	0.8
2	乙基汞	Ethyl mercury	16056-37-4	0.2	0.8

附 录 B (资料性附录) 方法准确度

方法精密度和正确度汇总数据见表 B.1 及表 B.2。

表 B. 1 方法精密度汇总表

序号	化合物	样品	平均值 (µg/kg)	实验室内相对 标准偏差范围 (%)	实验室间相对 标准偏差 (%)	重复性限 (µg/kg)	再现性限 (μg/kg)
	甲基汞	土壤1	1.2	1.5~8.6	34	0.1	1.1
		土壤 2	1.1	1.0~11	35	0.2	1.1
1		土壤 3 🔼	5.3	2.2~8.2	9.6	0.8	1.6
1		沉积物1	66.1	0.82~7.8	13	8.7	26
		沉积物 2	1.9	2.6~9.1	22	0.3	1.2
		沉积物 3	1.5	1.0~3.4	31	0.1	1.3
	乙基汞	土壤1	1.1	2.2~11	38	0.2	1.1
		土壤 2	1.1	1.4~11	17	0.2	0.6
		土壤 3	4.8	3.4~10	29	1.0	3.9
2		沉积物1	9.2	3.0~11	37	1.5	9.5
		沉积物 2	4.5	1.4~16	43	0.5	5.4
		沉积物 3	1.0	2.0~9.1	19	0.1	0.5

表 B. 2 方法正确度汇总表

序号	化合物	样品	样品浓度 (μg/kg)	加标浓度 (μg/kg)	加标回收率 (%)	P (%)	$S_{\overline{P}}$ (%)	$\overline{P} \pm 2S_{\overline{P}}$ (%)
	甲基汞	土壤 1	1.2	1.00	86~109	100	7.7	100±15
		土壤 2	1.4	1.00	84~126	102	15	102 ± 30
1		土壤3	5.3	15.0	89~113	100	7.8	100 ± 16
1		沉积物1	66.1	100	83~113	96	9.6	96±19
		沉积物 2	1.9	5.00	81~115	93	14	93±28
		沉积物3	1.5	1.00	76~120	98	14	98±28
	乙基汞	土壤 1	1.1	1.00	76~114	94	12	94±24
		土壤 2	1.1	1.00	79~118	97	13	97±26
2		土壤 3	4.8	15.0	66~86	77	7.1	77±14
2		沉积物 1	9.2	100	70~87	77	5.3	77±11
		沉积物 2	4.5	5.00	84~108	95	9.1	95±18
		沉积物 3	1.0	1.00	73~113	92	13	92±26