建设项目环境影响报告表

项	目	名	称:	海南昌江	核电厂1	、2.号机	1组长燃料循环换料

建设单位(盖章): 海南核电有限公司

编制日期: 2018 年 12 月 中华人民共和国生态环境部制

项目名称:海南昌江核电厂1、2号机组长燃料循环换料

文件类型:环境影响报告表

适用的评价范围:核与辐射项目

法定代表人:罗琦

主持编制机构:中国核动力

海南昌江核电厂 1、2 号机组长燃料循环换料项目环境影响报告表 编制人员名单表

编制主持人		姓名	职(执)业资格 证书编号	登记(注册证) 编号	专业类别	本人签名
		沈海波	00019459	A320202911	核工业	北西坡
	序号	姓名	职(执)业资格 证书编号	登记(注册证) 编号	编制内容	本人签名
主要	l	刘爱华	00019449	A320203011	工程分析、环境影响分析、辐射环境影响专项 评价	刘爱华
编制人	2	吕焕文	0007584	A320203911	主要污染物产生及排 放情况、事故环境影响 分析、辐射环境影响专 项评价	Zuri.
员情况	3	黄 丹	0010065	A320202703	项目所在地自然环境 社会环境简况、环境质 量状况、环境保护措施	艺.A
j. Se	4	沈海波	00019459	A320202911	项目基本情况、评价标 准、结论	城海份

《建设项目环境影响报告表》编制说明

《建设项目环境影响报告表》由具有从事环境影响评价资质的单位编制。

- 1. 项目名称——指项目立项批复时的名称,应不超过30个字(两个英文字段作一个汉字);
 - 2. 建设地点——指项目所在地详细地址,公路、铁路应填写起止地点;
 - 3. 行业类别——按国标填写;
 - 4. 总投资——指项目投资总额;
- 5. 主要环境保护目标——指项目周围一定范围内集中居民住宅区、学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能给出保护目标、性质、规模和距厂界距离等;
- 6. 结论与建议——给出本项目清洁生产、达标排放和总量控制的分析结构,确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议;
- 7. 预审意见——由行业主管部门填写答复意见,无主管部门项目,可不填:
 - 8. 审批意见——由负责审批该项目的环境保护行政主管部门批复。

目 录

建设	项目	目基本情况(表一)················ 1	Ĺ
建设	项目	目所在地自然环境社会环境简况(表二))
环境	质量	量状况(表三)····································	13
评价	适用	目标准(表四)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
建设	项目	目工程分析(表五)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
项目	主要	要污染物产生及预计排放情况 (表六)42	2
环境	影响	向分析(表七)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
建设	项目	目拟采取的防治措施及预期治理效果(表八)4	15
结论	(表	麦九)·······	16
辐射	环境	意影响专项评价4	9
1	工程	星分析····································	<u>1</u> 9
	1.1	燃料管理策略	19
	1.2	放射性废物管理系统和源项	54
2	正常	常运行的辐射环境影响1	46
	2.1	气载流出物的辐射环境影响	146
	2.2	液态流出物的辐射环境影响	147
	2.3	本工程所致公众年辐射剂量汇总	148
	2.4	本工程对水生生物的辐射影响	149
3	事故	女的辐射环境影响	173
	3.1	设计基准事故描述及源项	173
	3.2	事故后果	181
附录	A	运行状态下放射性气载流出物排放量计算模式及参数	207
附录	В	运行状态下放射性液态流出物排放量计算模式及参数	212
附录	C	大气年均扩散因子 、沉积因子的计算模式及参数	217
附录	D	运行状态下放射性气载流出物所致辐射剂量的计算模式及参数	222
附录	E	运行状态下放射性液态流出物所致辐射剂量的计算模式及参数	228
附录	F	事故工况下辐射剂量计算模式及参数	231
附件			235

建设项目基本情况

(表一)

项目名称	海南昌江核电厂1、2号机组长燃料循环换料								
建设单位	海南核电有限公司								
法人代表	魏国	魏国良 联系人 王永明							
通讯地址	海南省昌江县	Ļ 120	08 信箱						
联系电话	0898-269253	0898-26925370 传真 0898-26927001 邮政编码 57273							
建设地点	海南省昌江县	上海尾		村					
立项审批部门	/			批准文	/				
建设性质	新建□改扩建	とし技	改図	行业类别及	行业类别及代码 D441				
占地面积 (平方米)	无新增占	地面	. 积	绿化面积(平方米) 无新增绿 化面积					
总投资(万元)	/	保	中: 环 投资 5元)	/	环保投资 占总投资 比例	/			
评价经费 (万元)	/		期投 日期	/					

工程内容及规模:

一、项目由来

海南昌江核电厂(以下简称"昌江核电厂")一次规划 4 台 650MWe 压水堆核电机组,分期建设,参考电厂均为秦山第二核电厂。1 号机组于 2015 年 12 月投入商运,2 号机组于 2016 年 8 月投入商运。

昌江核电厂为贯彻落实国家"节能减排、增效降耗"政策,制定了群堆管理模式下的堆芯燃料管理策略改进规划,计划对1、2号机组实施18个月换料。对于拥有4台核电机组的昌江核电厂,实施长燃料循环,增加了运行灵活性,有利于合理安排各核电机组换料大修时间窗口,以增强适应电网用电需求能力,同时可减少换料大修次数,对于群堆管理是非常重要的。相对于年换料,实施长燃料循环换料预计可减少1/3大修次数、乏燃料数量下降10%、中低放废物处置成本下降25%。

根据中华人民共和国环境保护部令第 44 号《建设项目环境影响评价分类管理名录》

(修改单),经与生态环境部沟通,确定本项目的环境影响评价文件形式为环境影响报告表。

为此,海南核电有限公司委托中国核动力研究设计院开展环评工作,委托书见附件 1。环境影响评价单位按照环境影响评价有关技术规范、导则及环保部门的有关要求和规定,在组织有关技术人员对该项目进行现场踏勘、资料收集和工程分析的基础上,根据《海南昌江核电厂 1、2 号机组长燃料循环换料堆芯燃料管理论证报告》编制了《海南昌江核电厂 1、2 号机组长燃料循环换料建设项目环境影响报告表》。

二、建设项目概况

1、技改前项目概况

海南昌江核电厂 1、2 号机组为 650MWe 压水堆核电机组。每台核电机组均由包括核 反应堆及其核辅助设施的核岛和包括汽轮发电机及其辅助设施的常规岛组成。

1 号机组于 2015 年 10 月 27 日并网发电, 2017 年 3 月 25 日进行首次换料大修; 2 号机组于 2016 年 6 月 20 日并网发电, 2018 年 3 月 22 日进行首次换料大修。

反应堆堆芯由121组改进型燃料组件组成,换料采用年换料制。

海南昌江核电厂在 1、2 号机组正式投运前编制了环境影响评价报告,环境保护部以文件《关于海南昌江核电厂一、二号机组环境影响报告书(运行阶段)的批复》(环审[2015]190号)对其环评报告进行了批复。

2、技改后项目概况

拟将每年进行一次换料的堆芯燃料管理策略,改进为每 18 个月进行一次换料的长燃料循环堆芯燃料管理策略。本项目技改内容仅仅是对堆芯燃料管理的技术实施改进,以及提高堆芯燃料富集度,不对核电厂既有的系统、设备及其运行工艺和管理进行改变,即不对昌江核电厂 1、2 号机组现有的系统和设备实施改造。具体情况见表五工程分析及辐射环境影响专项评价。

三、项目总平面布置

本次技改不改变现有总平面布置。

昌江核电厂1、2 号机组用地主要分为主厂房区、辅助生产区、循环水设施区、开关 站区、厂前区。主厂房区、辅助生产区的布置如下:

主厂房区:包括核岛和常规岛,由反应堆厂房、电气厂房、核辅助厂房、柴油发电机厂房、燃料厂房、联结厂房、辅助给水储存罐间、汽轮发电机厂房、主变压器和降压变压

器等组成。主厂房区布置在厂区用地中部,核岛厂房西南向,常规岛厂房东北向布置。

辅助生产区:主要包括放射性辅助生产厂房和非放射性辅助生产厂房。放射性辅助生产厂房位于主厂房西侧,包括核岛废液排放厂房、常规岛废液排放厂房、放射性机修及去污车间、放射性洗衣房、放射性固体废物处理辅助厂房、放射性固体废物暂存库及特种车库。非放射性辅助生产区位于主厂房的东北侧及西北侧。除盐水生产厂房、除盐水储罐布置在主厂房的东北侧;辅助锅炉房、空压机房、柴油发电机厂房、厂区实验楼等布置在主厂房西侧;放射源库、润滑油及油脂库与主厂房联系少且有一定危险性,布置在厂区东北角;有防爆要求的氢气站及贮存厂房布置在厂区东侧边缘,远离人群和重要设施。生产办公楼、电仪修车间及调试大棚布置在厂区西北侧边缘,靠近厂区和厂前区联系的主要出入口。

废液、废气的排放口位置如下:

昌江核电厂废液排放口(冷却水和重要厂用水排水口),位于厂址西北的北部湾海域, 距厂区西北侧地产界限的最小直线距离约 3433m,液态流出物通过地下管沟排至虹吸井, 经排水隧道排至废液排放口,进入北部湾海域。

昌江核电厂 1、2 号机组共用一个放射性废气排放口(烟囱),位于 1、2 号机组核辅助厂房顶部,烟囱高出反应堆厂房屋顶至+62.30m标高处,距离陆域地产边界线最小距离为:西北侧边界线 627m,东北侧边界线 312m,东南侧边界线 471m,西南侧边界线 196m。

与本项目有关的原有污染情况及主要环境问题:

昌江核电厂1、2号机组自投入商运以来,三废处理设施运行正常。昌江核电厂1、2号机组共用一套放射性流出物排放设施。放射性流出物排放量的统计按照1、2号机组一起统计。根据《海南昌江核电厂流出物及环境监测评价年报》,昌江核电厂1、2号机组2016、2017年放射性气载、液态流出物排放量见表1-1~1-4。

由表 1-1~1-4 可见,昌江核电厂 1、2 号机组自投入商运以来,放射性流出物排放情况良好,放射性流出物的年排放量小于国家批准的排放申请值;并且,每个季度的排放总量小于批准的年排放申请值的二分之一,每个月的排放总量小于批准的年排放申请值的五分之一,满足《核动力厂环境辐射防护规定》(GB6249-2011)中对放射性流出物排放量的控制要求。

昌江核电厂 1、2 号机组产生的放射性固体废物类型主要包括可压缩废物、不可压缩废物、浓缩液、废树脂、水过滤器芯子、APG 树脂、通风滤芯、大尺寸废物、杂项待解控废物、废油和废有机溶剂等。其中废油和废有机溶剂暂存于 QR 厂房内, APG 树脂、

通风滤芯、杂项待解控废物后续进行清洁解控,其他放射性固体废物均整备成 400L	金属
桶货包的形式暂存于放射性固体废物暂存库内。	
综上所述,昌江核电厂1、2号机组自投入商运以来,流出物排放控制有效,放	射性
固体废物经妥善整备后形成废物包存于暂存库内,无遗留环境问题。	

表 1-1 2016 年昌江核电厂 1、2 号机组放射性气载流出物排放量统计表

月/季度	氚	碳-14	惰性气体	碘	粒子 (T1/2≥8d)
1	4.96E+09	1.18E+09	1.66E+11	4.08E+05	3.95E+05
2	1.46E+10	3.06E+09	1.19E+11	9.63E+05	1.07E+06
3	9.04E+09	2.09E+09	1.47E+11	2.77E+06	6.26E+05
第一季度	2.86E+10	6.33E+09	4.32E+11	4.14E+06	2.09E+06
4	6.48E+09	2.44E+09	1.64E+11	6.25E+05	7.76E+05
5	3.99E+09	2.71E+09	1.41E+11	7.04E+05	6.48E+05
6	7.19E+09	2.89E+09	1.27E+11	3.01E+05	3.69E+05
第二季度	1.77E+10	8.04E+09	4.32E+11	1.63E+06	1.79E+06
7	1.44E+10	6.14E+09	2.10E+11	2.26E+07	2.77E+05
8	1.02E+10	5.42E+09	1.97E+11	1.30E+07	1.87E+05
9	1.25E+10	5.81E+09	1.33E+11	1.83E+06	2.52E+05
第三季度	3.71E+10	1.74E+10	5.40E+11	3.74E+07	7.16E+05
10	1.32E+10	3.61E+09	1.82E+11	7.58E+06	4.81E+05
11	9.88E+09	4.94E+09	1.83E+11	7.86E+06	8.03E+05
12	2.84E+10	2.46E+10	1.71E+11	2.58E+07	7.61E+05
第四季度	5.15E+10	3.32E+10	5.36E+11	4.12E+07	2.05E+06
全年合计	1.35E+11	6.49E+10	1.94E+12	8.44E+07	6.64E+06
批准排放值*	5.49E+12	5.42E+11	1.45E+14	9.00E+08	1.09E+08

^{*}出自《关于海南昌江核电厂一、二号机组环境影响报告书(运行阶段)的批复》(环审[2015]190

号)

表 1-2 2016 年昌江核电厂 1、2 号机组放射性液态流出物排放情况统计表

月/季度	氚	碳-14	其余核素
1	9.62E+10	1.06E+07	8.60E+06
2	6.48E+10	2.05E+06	1.80E+06
3	2.64E+11	9.61E+06	7.93E+06
第一季度	4.25E+11	2.23E+07	1.83E+07
4	3.13E+11	1.40E+07	5.42E+06
5	8.05E+10	2.72E+07	2.15E+07
6	1.24E+11	4.15E+07	2.19E+07
第二季度	5.18E+11	8.27E+07	4.88E+07
7	2.65E+11	3.92E+07	7.97E+06
8	4.60E+11	8.04E+07	4.57E+07
9	1.93E+11	2.92E+07	1.55E+07
第三季度	9.18E+11	1.49E+08	6.92E+07
10	3.07E+11	5.08E+07	2.05E+07
11	9.90E+11	1.89E+08	1.25E+07
12	2.75E+12	4.77E+08	2.40E+07
第四季度	4.05E+12	7.17E+08	5.70E+07
全年合计	5.91E+12	9.71E+08	1.93E+08
批准排放值	5.49E+13	4.00E+10	1.37E+10

^{*}出自《关于海南昌江核电厂一、二号机组环境影响报告书(运行阶段)的批复》(环审[2015]190

表 1-3 2017 年昌江核电厂 1、2 号机组放射性气载流出物排放量统计表

月/季度	氚	碳-14	惰性气体	碘	粒子 (T1/2≥8d)
1	6.04E+10	6.68E+10	1.37E+11	7.18E+06	1.11E+06
2	3.75E+10	1.66E+10	1.60E+11	2.67E+06	7.51E+06
3	1.95E+10	2.14E+10	1.38E+11	4.21E+06	1.96E+06
第一季度	1.17E+11	1.05E+11	4.35E+11	1.41E+07	1.06E+07
4	2.39E+10	1.45E+10	1.27E+11	2.20E+06	8.39E+05
5	4.25E+10	1.72E+10	1.26E+11	3.40E+06	9.35E+05
6	5.10E+10	1.75E+10	1.58E+11	6.80E+06	6.94E+05
第二季度	1.17E+11	4.92E+10	4.11E+11	1.24E+07	2.47E+06
7	4.89E+10	1.71E+10	1.58E+11	1.45E+06	8.47E+05
8	4.94E+10	1.13E+10	1.55E+11	5.08E+06	6.58E+05
9	3.01E+10	7.93E+09	1.42E+11	1.46E+06	7.24E+05
第三季度	1.28E+11	3.63E+10	4.55E+11	7.99E+06	2.23E+06
10	2.98E+10	1.28E+10	1.46E+11	2.11E+06	6.71E+05
11	3.12E+10	1.30E+10	7.98E+11	3.06E+06	6.74E+05
12	1.85E+10	1.07E+10	1.95E+11	5.52E+07	1.69E+06
第四季度	7.95E+10	3.65E+10	1.14E+12	6.04E+07	3.04E+06
全年合计	4.43E+11	2.27E+11	2.44E+12	9.48E+07	1.83E+07
批准排放值*	5.49E+12	5.42E+11	1.45E+14	9.00E+08	1.09E+08

^{*}出自《关于海南昌江核电厂一、二号机组环境影响报告书(运行阶段)的批复》(环审[2015]190

号)

表 1-4 2017 年昌江核电厂 1、2 号机组放射性液态流出物排放情况统计表

月/季度	氚	碳-14	其余核素
1	1.64E+12	3.72E+08	2.54E+07
2	4.62E+11	1.21E+08	4.04E+07
3	3.08E+12	4.65E+08	4.68E+07
第一季度	5.18E+12	9.58E+08	1.13E+08
4	5.25E+11	2.65E+08	2.68E+07
5	9.64E+11	2.90E+08	1.37E+08
6	1.86E+11	1.09E+08	2.22E+07
第二季度	1.68E+12	6.64E+08	1.86E+08
7	5.80E+10	8.14E+07	2.38E+07
8	1.77E+12	3.73E+08	1.19E+07
9	1.80E+12	6.52E+08	1.69E+07
第三季度	3.63E+12	1.11E+09	5.26E+07
10	2.02E+12	6.12E+08	1.47E+07
11	4.32E+12	1.04E+09	8.36E+06
12	6.18E+11	1.61E+08	2.24E+07
第四季度	6.96E+12	1.81E+09	4.55E+07
全年合计	1.74E+13	4.54E+09	3.96E+08
批准排放值	5.49E+13	4.00E+10	1.37E+10

^{*}出自《关于海南昌江核电厂一、二号机组环境影响报告书(运行阶段)的批复》(环审[2015]190

自然环境简况(地形、地貌、地质、气候、气象、水文、植被、生物多样性等):

1、地理位置

海南昌江核电厂厂址位于海南省昌江县海尾镇塘兴村,濒临北部湾。地理坐标为东经 108°53′20″~108°54′23″、北纬 19°27′5″~19°28′2″。厂址东北距海口市约 160km,东南距三亚市约 150km,西南距东方市约 51km;东距儋州市约 48km,东南距昌江县城约 27km;东北距海头镇约 7.5km,西南距海尾镇约 9.6km。厂址地理位置见图 2-1。

昌江核电厂1、2号机组反应堆厂房中心地理坐标为:

1号机组厂房 东经 108°53′56″, 北纬 19°27′39″

2号机组厂房 东经 108°53′57″, 北纬 19°27′36″

2、地质地震

近区域地质: 厂址在区域大地构造上位于华南褶皱系内的次级坳陷五指山断坳带上,在新构造上属于比较稳定的琼中南西部断块隆起区的次级单元琼中南西部断块隆起区。 厂址区可不考虑第四纪火山活动的影响。

区域内断裂极为发育,分布有北东向、北东东向、北西向和近东西向四组断裂,共48条。其中,北东—北东东向断裂一般规模较大,第四纪晚期多已停止;北西向断裂一般规模较小,少数在第四纪晚期仍有活动;东西向断裂在区域内分布最少,最新活动时代为晚更新世。

区域内发震构造共发育 32 条,其中震级最大的发震构造为马袅一铺前断裂东段和铺前清澜断裂北段,最大潜在地震级为 7.5 级,该两条发震构造距厂址分别为 168km 和 182km。距厂址最近的发震构造为王五一文教断裂西段,距厂址 37km 左右,最大潜在地震级为 5.5 级。厂址所在的琼中西南部地震构造区最大弥散地震震级为 5.0 级。

厂址近区域陆域主要分布有北东向、东西向、北西—北西西向 3 组 5 条断裂,均为前第四纪断裂。近区域海域范围内无断层。厂址近区域没有发震构造。

厂址附近范围陆域内仅发育红地岭断裂,是近区域的红地岭断裂延伸至厂址附近范围的部分,为前第四纪断裂。海域范围无断层。厂址附近范围无能动断层。厂址附近范围无能动断层。厂址附近范围无不良地质作用与地质灾害,不受火山活动和地震海啸的影响。厂址属于地壳运动稳定地区。

厂**区地质**: 厂址地层简单,主要为第四系和侵入岩。第四系主要为海积、残破积层,岩性为中砂、砾砂和粉质粘土; 侵入岩主要以燕山晚期白垩纪黑云母花岗岩和石英闪长岩为主。在开挖到厂坪标高以后,场地主要为侵入岩。

厂址内构造主要表现为节理隙和节理密集带,不存在断层。

厂址不存在岩溶、滑坡、危岩与崩塌、泥石流、地面塌陷和沉降等不良地质作用与 地质灾害,厂址区内无地下采空区,也没有具开采价值的矿床,不存在影响地基安全的 人类活动。

厂址开挖平整后,主厂区内第四系均被挖除,主要建(构)筑物均坐落在岩石地基上,建筑场地类别为 I 类,属于对建筑物抗震有利地段。取水隧洞上覆的第四系场地类别为 II 类,属可进行建设的一般场地。取水隧洞围岩为强~微风化岩体,其剪切波速均大于500m/s,建筑场地类别为 I 类,属于对建筑抗震有利地段。

核岛地基主要为中等风化岩体和微风化岩体,PX 泵房地基为微风化岩体,安全厂用水进水管沟基础位于强风化一微风化基岩上。取水隧洞穿越强风化一微风化基岩。强风化岩体的基本质量等级为 V 级,剪切波速为 638m/s,承载力特征值为 0.5MPa。中等风化岩体的基本质量等级为 IV 级,剪切波速为 1455m/s,承载力特征值为 3.1MPa。微风化岩体的基本质量等级为 II 级,剪切波速为 2533m/s,承载力特征值为 15.6MPa。安全相关建(构)筑物地基不存在地基回弹、沉降和滑动,地基是稳定的。

厂址自然坡度 5°~25°, 自然斜坡处于稳定状态。场地平整后, 在厂址的东、南、西边出现人工边坡, 其中南侧的人工边坡最高, 为 14m。人工边坡对安全相关建(构)筑物的安全没有影响, 为非安全相关边坡。

地震: 厂址区域范围内自 1509 年至 2008 年共记录到 Ms≥4.7 级地震 22 次,其中 7.0~7.9 级地震 1 次 (1605 年 7 月 13 日琼山 7.5 级地震); 6.0~6.9 级地震 5 次; 5.0~5.9 级地震 12 次。

厂址区域地震活动总体呈现出北强南弱的特征。区域内绝大多数破坏性地震分布在近东西向王五一文教断裂以北地区,以南地区仅分布个别 5 级左右中强地震,近代小震分布显示出同样特征。厂址近区域内地震活动较弱,没有记到 3 级以上地震,现代微震分布零散。厂址附近范围内没有地震记录。厂址所遭受的历史地震影响较弱,最大影响烈度 VI 度,由 1605 年海南琼山 7½级地震造成。

经复核,厂址属于《中国地震动参数区划图》(GB 18306-2001)中 0.05g 分区,厂址 地震基本烈度为 VI 度。

3、气候、气象

(1) 区域气候

海南岛地处北热带,整体属于北热带海洋季风型气候。厂址位于琼西中部沿海,由于地处海南中南部高大山体的背风坡,下沉作用致当地雨日和雨量较琼中、琼东地区偏少。按照海南气候区划厂址大致位于半湿润和半干旱气候区的交界。当地大致 3 月中旬入夏,11 月下旬入秋,夏季长度可达 250~260 天,余者是季节相连的秋春两季,约 110 天左右。这里无寒潮现象,也很少有冷空气强降温。为了简化气象描述,经常依照夏季风和冬季风的主导型和气象要素把 3 月中~11 月中成为夏半年,其他月、旬成为冬半年。

厂址的区域气候既受低纬环流的制约,又受中高纬大气环流边缘的影响。副热带西风、热带风、赤道西风三种基本风系的交替出现和影响,构成海南各季气候的基本布局。

冬季我国大陆直到南海北缘为深厚、强盛的东南亚大槽控制。与此高空环流场对应 的海平面气压场表现为蒙古一带的庞大冷高压和阿留申群岛的低气压,于是形成东亚地 区的东北季风。海南居于冬季风的南缘,盛行东北风,天气变化主要有由北方南下的冷 空气所决定。不过强弩之末的冷空气,已很难给海南造成强降温。

夏季整个西风带明显北移,西太平洋副热带高压随之加强北抬,它的平均脊线可达 N25~30°,赤道辐合带随之北移,盛夏时大致位于 N10~15°。地面气压场配置表现为热低压区,西太平洋为高压区,东亚进入夏季风时期,盛行东南风或西南风。随夏半年的 到来,低纬热带天气系统进入活跃鼎盛期。这时琼西沿海常见的天气类型有三种:第一种是副热带高压控制下的晴热少雨天气,第二种是台风等热带天气系统影响时的狂风暴雨天气,第三种是辐合区控制时的不稳定性雷雨天气。

对琼西沿海区域有影响的主要天气系统包括: (1)西风带天气系统,如北支西风槽、西南低涡、冷锋、华南静止锋等: (2)副热带天气系统,如南支西风槽、西太平洋副热带高压、南海高压等: (3)热带天气系统,如台风、热带辐合带、东风波、南海季风低压、热带云团等。

根据厂址周边东方、儋州、昌江和临高四个气象站多年气象要素统计资料,厂址区域年平均气温 23.4~24.9℃,极端最高气温为 40.3℃(临高站,2003.5.7),极端最低气温为 0.4℃(儋州站,1955.1.11);平均气压为 992.1~1010.0hPa;年平均相对湿度 77~84%;年日照时数为 2624h;年平均降雨量为 970.0~1835.1mm;年蒸发量为 2423mm。当地的主要气象灾害是台风、暴雨和干旱。台风的大风影响轻于琼东沿海。

(2) 现场气象观测结果分析

本节采用昌江核电厂地面气象站(EC4-5)2016年的观测资料进行现场地面气象要素分析;塔层风向、风速采用气象铁塔2017年的观测数据进行分析。2016年地面站、铁塔的数据获取率分别为99.97%、97.44%。

地面气象站及铁塔观测数据的统计结果如下:

风向和风速: 2016 年铁塔 70m 梯度风向频率分布见表 2-1 和图 2-2。可见,铁塔 70m 高度的最多风向为 NNE(14.64%),次多风向 NE(12.61%)。静风(<0.5m/s)频率为 0.84%。

2016 年地面气象站风向频率分布见表 2-1 和图 2-2。可见,地面气象站的最多风向为 NNE (13.23%),次多风向 NE (13.00%)。静风(<0.5m/s)频率为 2.27%。

表 2-2 给出了 2016 年塔层 70m 高度、地面气象站的月、年平均风速。塔层 70m 梯度 年平均风速为 5.32m/s,地面气象站年平均风速为 2.73m/s。

温度: 2016 年, 塔层 70m 高度、地面气象站的年平均温度分别为 24.24℃、24.70℃。 相对湿度: 2016 年地面站现场观测的年平均相对湿度 77.9%。最低相对湿度为 22%。 降雨量: 2016 年地面站现场观测的年降雨量为 1710.3mm。

(3) 联合频率

本次环境影响评价分别采用 2016 年地面气象站 EC4-5、气象铁塔 70m 高度的风向、风速资料, 计算厂址 10m、70m 高度的风向、风速、稳定度三维联合频率; 利用地面站的降水数据以及铁塔 70m 高度的风向、风速资料, 计算 70m 高度的风向、风速、稳定度、雨况四维联合频率, 计算稳定度和联合频率的气象资料的联合获取率为 97.76%。表 2-3~表 2-5 分别给出了 2016 年 10m 高度的三维联合频率和 70m 高度的三维、四维联合频率。

(4) 大气稳定度

2016年厂址区域的稳定度以不稳定类(A、B、C类)占主导,频率为 36.43%; 其次为中性 (D类),频率为 35.27%; 稳定的 E、F 类频率总和为 28.29%。各稳定度年出现频率见表 2-6。

(5) 混合层高度及大气扩散参数

1) 混合层高度

北京大学于 2009 年冬、夏两季在厂址开展的大气边界层探测。根据东、夏两季大气边界层实验得到的不同稳定度类型的混合层高度的观测值,以及这些混合层高度特征值的大小范围,根据大气边界层越不稳定混合层发展越旺盛的一般概念,剔除不合理的观测值后混合层高度的平均值以及理论和经验合理分析,综合分析后得到厂址不同稳定度下混合层高度值如下:

A-B 类: 1040m

C 类: 750m

D 类: 480m

2) 大气扩散参数

为研究厂址的大气扩散特征,于 2009 年开展了大气扩散试验,主要包括示踪实验、 湍流观测和大气扩散数值模拟。

对不同方法计算得到的水平扩散参数进行综合对比,得到对于 B~D 类稳定度情况,数值模拟结果与示踪实验结果吻合很好,湍流观测结果与示踪实验和数值模拟结果有所差别,主要由于湍流观测结果反映了局地相对较小范围的影响,不能反映拉格朗日扩散过程和路径上气流的时空变化造成的扩散作用,同时湍流资料处理中倾向于把较大尺度的扰动成分滤除,因此,由当地单点湍流观测资料导出的扩散参数不能反映导致示踪实验结果偏大的扩散因子。示踪实验和数值模拟结果能够反映出当地沿岸局地环流对侧向扩散的影响。稳定条件下,由于缺乏示踪实验观测结果,而湍流观测和补充数值模拟的结果都显示扩散参数略大于 P-G 曲线,因而稳定条件下水平扩散参数的确定主要以数值模拟结果为依据,并参照湍流观测的近处结果。

对于垂直扩散参数,三种方法获得的结果具有较好的可比性,湍流观测结果在不稳定一侧略偏低。考虑到垂直湍流观测反映的较小尺度的湍流特征对当地扩散有较好的代表性,同时数值模拟的结果也与湍流观测的较为接近,D类稳定度条件下的垂直扩散参数采用湍流观测结果,不稳定条件下的垂直扩散参数取示踪实验结果与湍流观测结果的几何平均,稳定条件下则参考补充数值模拟情况对湍流观测结果进行修正。

近些年厂址的主要地形地貌和气象特征没有发生改变,因此仍沿用 2009 年获取的扩散参数,见表 2-7。

4、水文

(1) 海洋水文

厂址位于海南岛中部的琼中南隆起中低山地区,塘兴水库北侧的山脊上,属滨海台地,自然地面高程约为 9.3~30.4m, 地形平缓。整体地势呈西南-东北走向,向大海倾斜。

北部湾是雷州半岛、海南岛和广西壮族自治区及越南之间的海湾,面积接近 13 万平方公里,比渤海面积略大。平均水深 42 米,最深达 100 米。有南流江、红河、珠碧江等注入,由于沿岸河流不多,带入海湾中的泥沙较少。

工程海域每个潮汐日有一次高潮和一次低潮。

根据工程海域厂址站和东方站 2008 年 7 月~2009 年 6 月的同期潮位观测资料,计

算得到厂址的潮位特征值如下:

1000 年一遇高潮位 3.64m

100 年一遇高潮位 3.31m

50 年一遇高潮位 3.20m

33 年一遇高潮位 3.14m

厂址平均海面 0.55m

33 年一遇低潮位-1.40m

50 年一遇低潮位-1.45m

100 年一遇低潮位-1.53m

1000 年一遇低潮位-1.78m

根据海南昌江核电厂址夏季全潮水文测验资料,工程海域的潮流类型基本属不规则全日潮流性质,潮流基本属往复流,落潮实测平均流向与涨潮实测平均流向反向的差值一般不足 10°。实测涨、落潮平均流速大潮分别为 0.36m/s 和 0.40m/s,中潮分别为 0.24m/s 和 0.29m/s,小潮分别为 0.09m/s 和 0.16m/s,落潮平均流速大于涨潮流速,其比值为 1.2;涨落潮平均流速大、中、小潮分别为 0.38m/s、0.26m/s 和 0.13m/s,大潮流速为中潮的 1.4 倍,为小潮的 3.0 倍。

根据实测资料统计,施测海区夏季平均涨、落潮历时: 大潮分别为 13h46min 和 11h14min,中潮分别为 13h21min 和 11h20min,小潮分别为 9h50 min 和 14h17min,大、中潮涨潮流历时大于落潮流历时,平均历时差达 2 个小时 17 分钟,小潮反之,落潮流历时大于涨潮流历时,历时差近 4 个半小时;冬季平均涨、落潮历时:大潮分别为 12h50min 和 11h44min,中潮分别为 15h06min 和 10h07min,小潮分别为 12h55 min 和 12h43min,大、中潮涨潮流历时大于落潮流历时,平均历时差达 2 个小时 06 分钟。

根据东方站 1960~2007 年共 48 年的表层海水温度连续观测资料进行分析计算。东方站表层海水温度的多年平均值为 26.3℃。本海区终年水温较高,不存在冰情影响问题。

根据冬、夏工程海域盐度实测资料可知,本海域海水盐度相对稳定,涨、落潮基本相同,夏冬季分别为33.05‰和32.05‰;盐度的时空分布及其变化均在1.6‰之内。

工程海域位于海南岛西北部临海沿岸,没有大的河流入海,沙源有限。在全潮水文 测验时段内,海水较清,所取水样基本为清水,水体含沙浓度很低。

(2) 陆地水文

昌江核电厂址属珠碧江流域, 距珠碧江约 4km, 珠碧江是海南岛西部较大的河流, 发源于白沙县南高岭, 流经昌江县, 至儋州市海头港入海。珠碧江全长 83.8km, 集水面

积 957km²。

山鸡江(亦称德立河)属珠碧江流域,发源于儋州市西南部的富克镇的富克村附近,流向自东向西经儋州市的富克镇、海头镇,于儋州市海头镇汇入海头港,全长 24.6km,流域集雨面积 112km²,河床平均坡降 2.68‰,流域平均宽度 5.8km。多年平均径流深 300mm,多年平均来水量 3360 万 m³。

红洋水库位于山鸡江中下游河段上,坝址位于儋州市海头镇新洋村委会旧洋村东南1km的河谷处,距海头村7km。1970年3月兴建,1974年竣工。坝址以上集水面积78.61km²,占山鸡江流域面积的70.2%,河流长度16.4km,河床平均坡降3.2‰。水库大坝坝顶高程33.53m,总库容2565万 m³,正常蓄水位30.67m,正常库容2280万 m³,兴利库容为1800万 m³,水库防洪标准为1%洪水设计,0.1%洪水校核。是一座以灌溉为主,结合防洪、供水等综合利用的中型水库。

昌江核电厂淡水水源取自石碌水库。石碌水库总库容 1.29 亿 m³,是一座以灌溉为主,结合供水、发电、防洪、养鱼等综合利用的大型水利工程,石碌水库特征见表 2.6-15。核电厂设计取水保证率为 97%,校核保证率为 99%,石碌水库可以满足核电厂淡水用水要求。

(3) 地下水

厂区内水文地质条件较为简单,地下水类型主要分为第四系孔隙潜水和基岩裂隙水 两大类。

第四系孔隙潜水主要分布于海岸平原地貌单元中的海积砂层,受季节影响变化较大。在枯水期地下水稳定水位在第四系以下,在丰水期第四系孔隙水主要赋存于台地的残积层和砂层下部。据可研钻孔水位测量资料,厂区地下水水位标高为 15m~17m,孔隙潜水一般分布在第四系底部。

基岩裂隙水可分为风化裂隙水和构造裂隙水。基岩风化裂隙水含水层基本为全风化、强风化岩层。由于全、强风化带节理裂隙很发育,裂隙连通性较好,全~强风化岩体与第四纪地层形成了统一的地下水含水系统。风化裂隙水含水层埋深与岩体风化破碎程度有关,一般岩体破碎、风化深度大时,特别有岩脉入侵时,含水层厚度大。中等风化一微风化岩体可形成局部的构造裂隙水,但不形成统一的含水层及地下水位,受裂隙风化程度及岩脉侵入原生节理发育程度控制,水量大小不均,富水性差。基岩含水层为相对隔水层。

在厂址西南方向有一塘兴水库,水库水主要接收大气降水和地下水补给,距离厂址约 500m。在塘兴水库下游,有季节性溪流,该溪流绕经厂址南、东、北三侧,最后向西

北方向流入大海,流量一般收季节影响,雨季时水量较大,旱季水量明显减少或干涸。 在厂址西北部有一池塘,池塘水位标高一般在7.4m左右。厂址区北部有季节性水田,在 丰水期,水田内有地表水流过,枯水期水田干涸。

厂址区位于相对较高的台地上,开挖后,厂坪标高 11m, 东、南、西三面边坡标高 25m, 在厂址的东、南边有地下水分水岭,该两处分水岭在厂址开挖后仍然存在。在枯水期,厂址南侧边坡区地下水位高于塘兴水库水位,地下水由地势较高地区向地势较低地区渗流。向北部渗流的地下水直接排入稻田,向南、东方向排泄的地下水排向塘兴水库和季节性溪流,绕过核电厂南、东、北三侧最终向西北方向排入大海。在丰水期,塘兴水库水位与厂址南侧边坡区地下水水位大体一致,边坡区地下水主要接受大气降水的补给,然后渗流补给周围地表水,塘兴水库的水不会渗流补给厂址区。

据调查,地下水面与地形基本一致,地下水顺地形坡降向大海方向径流排泄,在近海岸地段与海水相遇,形成混合水。由于第四系孔隙潜水地下水位大都高于潮水位,因此海水对地下水的影响带较小,根据水质分析养虾场附近地下水均为淡水。

5、生态概况

厂址邻近水域中的海洋生物包括: 浮游植物(硅藻、甲藻、蓝藻、绿藻、金藻)、浮游动物(桡足类、腹足类、水母类、樱虾类、毛颚类、端足类、被囊类、介形动物)、潮间带生物(甲壳类、多毛类、软体动物等)、底栖生物(环节动物、甲壳动物、纽形动物、棘皮动物、软体动物)、游泳动物(鱼类、甲壳类、头足类、贝类)等。

厂址半径 5km 范围内各行政村林地占其土地总面积在 19%-58%之间,除了长山村为 19%, 其他四个行政村都达到了 39%以上。厂址半径 5km 范围内没有大规模林业资源分布。

社会环境简况(社会经济结构、教育、文化、文物保护等):

1、人口分布

(1) 厂址半径 5km 范围内的人口分布

厂址半径 5km 范围涉及三联、五联、南罗、五大和长山 5 个行政村下属的 13 个自然村总人口 7048 人。厂址所在三联行政村由两个自然村组成,分别是塘兴新村和马地,2015 年底总人口 1824 人。其中,塘兴新村位于厂址 S 方位 2.3km,人口 1638 人;马地村位于厂址 SSW 方位 1.3km,人口 186 人。距离厂址最近的自然村为五联村下辖的林好

自然村,位于厂址 SE 方位 1.2km,人口 420人。

厂址半径 5km 范围内居民点分布情况,见表 2-8 及图 2-3。

(2) 厂址半径 15km 范围内的人口分布

厂址半径 15km 范围内涉及海尾镇、海头镇、十月田镇下辖的 28 个行政村,以及国营红林农场下辖的红田、红林 2 个片区。距离厂址最近的行政村为海尾镇的三联,位于厂址 S 方位 1.3km, 2015 年底人口数为 1824 人;海尾镇的五联距离厂址也较近,位于厂址 SSE 方位 2.2km,人口数为 1915 人;厂址所在海尾镇政府驻地海尾社区居委会(海鱼村)位于厂址 WSW 方位 9.6km,人口数为 5100 人。

据昌江黎族自治县城市总体规划(2002-2020)和儋州市城市总体规划(2001-2020年),厂址半径 15km 范围涉及的海尾镇、十月田镇和海头镇规划人口分别为 1.5 万人、0.4 万人和 3~5 万人。

厂址半径 15km 范围内重要居民点分布情况,见表 2-9。

(3) 厂址半径 80km 区域内的人口分布

厂址半径 80km 范围 2015 年底人口总数为 1990845 人,平均人口密度为 99 人/km², 扣除水域面积后按陆域面积计算的平均人口密度为 210 人/km², 海南省同期按陆域面积平均的人口密度为 259 人/km², 厂址半径 80km 范围内的陆域平均人口密度低于海南省的陆域平均人口密度。

厂址半径 80km 范围涉及昌江黎族自治县 7 个镇(乡)和 2 个农场,儋州市 17 个镇(乡)和 10 个农场,白沙黎族自治县 11 个镇(乡)和 3 个农场,东方市 10 个镇(乡)和 4 个农场,乐东市 3 个镇(乡)、五指山市 2 个镇(乡)、临高县 2 个镇(乡),以及洋浦经济开发区。

厂址半径 80km 范围内无 100 万人口以上的大城市。有两个十万人口以上的城镇,即东方市八所镇和儋州市那大镇,分别位于厂址 SW 方位 48km 和 E 方位 71.9km, 2015 年底人口数分别为 161173 人和 159893 人。

厂址半径 80km 范围内重要城镇分布情况, 见表 2-10。

厂址半径 80km 范围内各子区人口分布(2015年) 见表 2-11。

2、社会经济

厂址半径 15km 范围内仅有 1 家规模以上的工业企业——海头镇的海头糖业有限公司,位于厂址 ENE 方位 14km。其产品为蔗糖,年产量 25 万吨,职工人数 393 人,家属人数 850 人。

厂址半径 5km 范围内没有规模以上的工业企业,仅有 2 个地处海尾镇五大村的石英厂(洪源公司和海南昌江石英砂有限公司),分别位于厂址 ESE 方位 202km 和 SW 方位 4.4km,职工人数分别为 32 人和 16 人,主要业务为开采石英砂,不做深加工。

厂址半径 15km 范围内没有工业园区和经济技术开发区。

厂址半径 15km 范围内没有油库和易燃易爆的化学品仓库,仅有一个液化气有限公司和 6 座加油站,储量不大。液化气、汽油、石油运输线路相对厂址最近距离为 6.0km,液化气单次最大运输量为 20 吨,汽油、柴油单次最大运输量为 10 吨。根据计算,液化气有限公司、加油站及其运输车均不会对核电厂安全构成潜在威胁。

3、交通

厂址所在区域以西线高速(海口一三亚)、海榆西线国道(海口一榆林)、石昌线省道(石碌一昌化)和海南铁路西环线为主体,连接区内各市、县。各乡镇之间都有县道,甚至省道相通,交通比较方便。

厂址半径 15km 范围内没有铁路,各乡镇之间均有县道连通,各村之间均有乡村公路连通。厂址可通过乡村公路与县道(海尾镇一新港段)对外联系,厂址与海头镇(属儋州境内)直线距离约 7.5km,在海尾镇可以从新港乘坐渡船前往海头镇。

据厂址所在的昌江黎族自治县城市总体规划(2002~2020),在昌江黎族自治县境内城市道路交通规划中,建设城市过境路即西线高速公路,其作用是为了过境车辆快速便捷地通过,减轻城市中心的交通压力;建设城市快速干道一高速公路连接线(叉一太快速干道),分别连接高速公路叉河立交和太坡立交的两条连接线,是快速疏导城市对外交通的干道;建设城市主干道(昌江大道、人民路、建设路等),城市次干道(主要连接主干道和次干道)等。目前规划中的上述公路均已建成,"十一五期间"将进行太坡路段公路改造工程。

厂址所在的昌江黎族自治县主要港口有新港、海尾港和昌化港。其中,新港、海尾港和昌化港均为渔港,分别位于厂址 NNE 方位 6.2km、WSW 方位 9.6km 和 WSW 方位 27.5km。此外,厂址半径 15km 范围涉及儋州市的海头港,属渔港,距离厂址 7.0km。

厂址附近海上航线主要是兵马角至四更沙角的海南岛环岛沿岸航线, 航线相对厂址最近距离约 21km。

上述港口和码头均不涉及易燃易爆危险品贮存和运输,厂址附近海上航线距离厂址 21kn 以外,故而不会对核电厂安全构成潜在威胁。

厂址半径 80km 范围内有两个机场,东方市的东方直升机场和儋州市西庆农场的农

业机场(西庆机场)。东方直升机场位于厂址 SW 方位 43km,主要承担东方 1-1 油气田海上钻井平台的货物运输、食物补给、人员运送等任务。西庆机场位于厂址 E 方位 47km,仅在临时有任务时进行飞机农林作业。经中国民用航空中南地区管理局调整后,厂址上空飞行航线水平投影相对厂址最近距离为 14.1km。按核安全导则 HAD101/04 的规定,在筛选距离 10km 范围内无机场,空中航线距离厂址也较远,不会对核电厂安全构成影响。

4、教育、文化

厂址半径 5km 范围内分布有 3 所幼儿园和 3 所小学, 位于海尾镇。距离厂址最近的为位于厂址 SSE 方位 2km 的海联小学, 该小学学生 98 人, 教职工 14 人。

厂址半径 5km 范围内学校分布情况,见表 2-12。

5、文物保护

厂址半径 15km 范围内没有国家级和省级文物、古迹保护单位和风景名胜区。

表 2-1 (1/2) 2016 年气象铁塔 70m 风向频率 (%)

	• •		•	4-4-9-4-11	, ,,			
风 向	N	NNE	NE	ENE	E	ESE	SE	SSE
频率 (%)	7.54	14.64	12.61	9.00	6.15	3.36	2.88	8.57
风 向	S	SSW	SW	WSW	W	WNW	NW	NNW
频率 (%)	6.23	4.05	4.06	7.23	5.76	2.52	2.51	2.09
C	0.84							

表 2-1(2/2) 2016年地面气象站风向频率(%)

风 向	N	NNE	NE	ENE	Е	ESE	SE	SSE
频率 (%)	6.26	13.23	13.00	4.60	4.53	6.67	9.46	9.19
风向	S	SS W	SW	WSW	W	WNW	NW	NNW
频率 (%)	5.19	3.11	4.22	4.06	4.13	3.80	3.24	3.07
C	2.27							

表 2-2(1/2) 2016年气象铁塔 70m 高度各月、年的风速平均值(m/s)

月份	1	2	3	4	5	6			
平均风速, m/s	5.24	6.95	4.26	4.17	4.52	5.32			
月份	7	8	9	10	11	12			
平均风速,m/s	5.10	5.19	4.4	6.14	5.84	6.71			
年平均风速,m/s		5.32							

表 2-2(2/2) 2016 年地面气象站各月、年的风速平均值(m/s)

月份	1	2	3	4	5	6
平均风速, m/s	2.34	3.36	2.15	2.24	2.49	3.24
月份	7	8	9	10	11	12
平均风速,m/s	2.74	3.30	2.32	3.04	2.78	2.81
年平均风速,m/s			2.	73		

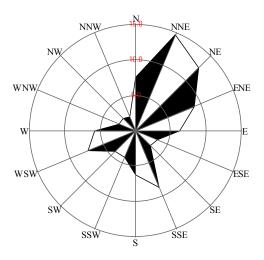


图 2-2.a 70m 高度风向玫瑰图(静风频率 0.84%)

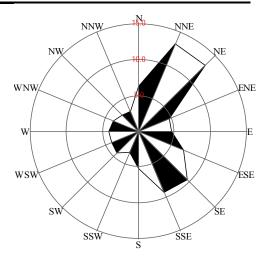


图 2-2.b 地面风向玫瑰图(静风频率 2.27%)

表 2-3 2016年10米高度风向、风速、稳定度联合频率(%)

				100	2-3 2	2016年	10 小同	这人们的	· MAE	・心化に	又収口の	ሊ ጥ (/0 <i>)</i>	1					
稳定度	风向	平均	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
10.70,50	风速级(m/s)	风速	- '		- ,-		_		~-		_ ~	~~	~					
	С	0.250									000							
	0.5~1.9	1.414	0.082	0.047	0.082	0.116	0.035	0.035	0.012	0.058	0.093	0.047	0.012	0.023	0.035	0.012	0.035	0.070
A	2.0~3.9	2.929	0.396	0.303	0.338	1.106	0.955	0.082	0.093	0.116	0.186	0.140	0.256	0.082	0.640	0.431	0.664	0.664
Λ	4.0~5.9	4.629	0.175	0.000	0.221	0.640	0.198	0.000	0.000	0.000	0.186	0.256	0.093	0.000	0.128	0.093	0.058	0.466
	6.0~7.9	6.507	0.058	0.000	0.000	0.023	0.000	0.000	0.000	0.000	0.035	0.128	0.000	0.000	0.000	0.000	0.000	0.035
	≥8.0	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	С	0.150								0.1	16							
	0.5~1.9	1.456	0.198	0.279	0.326	0.140	0.163	0.070	0.198	0.291	0.116	0.058	0.128	0.093	0.128	0.116	0.151	0.058
D	2.0~3.9	2.869	0.396	0.920	0.827	0.431	0.559	0.221	0.245	0.163	0.128	0.175	0.384	0.489	0.512	0.955	0.431	0.454
В	4.0~5.9	4.754	0.023	0.023	1.269	0.349	0.128	0.070	0.012	0.000	0.035	0.116	0.675	0.163	0.256	0.384	0.233	0.082
	6.0~7.9	6.832	0.035	0.000	0.559	0.198	0.000	0.000	0.000	0.000	0.384	0.233	0.303	0.000	0.023	0.012	0.116	0.012
	≥8.0	8.885	0.023	0.000	0.070	0.012	0.000	0.000	0.000	0.000	0.384	0.408	0.000	0.000	0.000	0.000	0.012	0.000
	С	0.220			,					0.0	58			,				
	0.5~1.9	1.383	0.210	0.640	0.245	0.070	0.082	0.082	0.082	0.163	0.163	0.047	0.082	0.058	0.105	0.035	0.047	0.082
	2.0~3.9	2.753	0.268	1.164	0.873	0.233	0.198	0.116	0.093	0.186	0.093	0.070	0.268	0.198	0.186	0.384	0.128	0.151
С	4.0~5.9	4.739	0.012	0.128	1.025	0.082	0.023	0.023	0.000	0.012	0.012	0.093	0.093	0.012	0.023	0.070	0.140	0.000
	6.0~7.9	6.756	0.000	0.000	0.617	0.047	0.000	0.000	0.000	0.000	0.035	0.070	0.000	0.000	0.000	0.035	0.093	0.012
	≥8.0	8.715	0.012	0.000	0.210	0.000	0.000	0.000	0.000	0.000	0.023	0.058	0.000	0.000	0.000	0.000	0.047	0.012
	С	0.256			,					0.7	22			,				
	0.5~1.9	1.346	2.271	3.319	0.932	0.198	0.489	0.582	0.605	1.397	1.316	0.140	0.547	0.582	0.419	0.256	0.105	0.361
D	2.0~3.9	2.655	0.885	4.530	1.782	0.338	0.803	1.327	0.454	0.396	0.361	0.116	0.442	1.386	0.815	0.408	0.442	0.442
D	4.0~5.9	4.707	0.023	0.396	1.502	0.140	0.070	0.291	0.023	0.000	0.000	0.140	0.082	0.093	0.058	0.058	0.093	0.000
	6.0~7.9	6.898	0.023	0.000	0.850	0.082	0.047	0.023	0.012	0.000	0.128	0.082	0.070	0.023	0.012	0.023	0.116	0.000
	≥8.0	11.470	0.082	0.000	0.466	0.012	0.035	0.000	0.000	0.000	0.221	0.314	0.070	0.000	0.093	0.128	0.151	0.070
	С	0.001		L			L			0.0	35	L		l	L			
	0.5~1.9	1.626	0.047	0.023	0.000	0.000	0.035	0.047	0.000	0.140	0.035	0.000	0.000	0.035	0.023	0.000	0.000	0.012
-	2.0~3.9	2.508	0.012	0.082	0.082	0.082	0.093	0.442	0.163	0.047	0.035	0.012	0.047	0.082	0.116	0.210	0.012	0.012
Е	4.0~5.9	4.328	0.000	0.000	0.035	0.023	0.000	0.000	0.000	0.000	0.023	0.012	0.000	0.000	0.012	0.000	0.012	0.000
	6.0~7.9	5.931	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000
	≥8.0	9.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	C	0.247		I			ı		J		39	ı	1	ı	ı			
	0.5~1.9	1.273	0.990	1.374	0.477	0.198	0.582	2.143	4.809	5.391	1.164	0.279	0.582	0.640	0.442	0.105	0.082	0.035
_	2.0~3.9	2.251	0.023	0.000	0.198	0.082	0.035	1.118	2.643	0.827	0.023	0.105	0.082	0.105	0.105	0.082	0.070	0.035
F	4.0~5.9	5.058	0.012	0.000	0.012	0.000	0.000	0.000	0.012	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	6.0~7.9	6.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	≥8.0	9.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

表 2-4 2016 年 70 米高度风向、风速、稳定度三维联合频率

				N	Z-4 Z	010	O ZIVINI	及八川、	八达、	イビスしい	と二年申	ヘロクバー						
稳定度	风向	平均	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
10/0/2	风速级(m/s)	风速	-,	11112	1,2	11,11	1	LOL	1	2)	2011	J 11			******	1,11	111111
	C	0.399								0.0	23							
	0.5~1.9	1.396	0.023	0.012	0.047	0.047	0.000	0.000	0.023	0.047	0.047	0.035	0.023	0.000	0.012	0.023	0.023	0.047
A	2.0~3.9	3.096	0.291	0.070	0.105	0.640	0.163	0.058	0.023	0.186	0.186	0.186	0.105	0.082	0.058	0.140	0.489	0.442
A	4.0~5.9	4.831	0.431	0.151	0.233	1.339	0.291	0.012	0.012	0.082	0.303	0.338	0.175	0.210	0.058	0.093	0.082	0.268
	6.0~7.9	6.666	0.268	0.186	0.151	1.025	0.035	0.000	0.000	0.000	0.175	0.105	0.070	0.047	0.035	0.000	0.000	0.012
	≥8.0	8.459	0.023	0.000	0.000	0.140	0.000	0.000	0.000	0.000	0.000	0.035	0.000	0.000	0.000	0.000	0.000	0.000
	С	0.192								0.0	35							
	0.5~1.9	1.464	0.105	0.047	0.058	0.082	0.070	0.035	0.023	0.047	0.023	0.093	0.000	0.023	0.058	0.105	0.058	0.058
В	2.0~3.9	2.886	0.256	0.268	0.279	0.431	0.279	0.128	0.128	0.408	0.338	0.140	0.186	0.175	0.175	0.291	0.314	0.198
ь	4.0~5.9	4.848	0.116	0.291	0.198	0.256	0.221	0.058	0.058	0.082	0.105	0.058	0.268	0.291	0.221	0.396	0.291	0.163
	6.0~7.9	6.902	0.221	0.605	0.605	0.466	0.373	0.012	0.000	0.070	0.116	0.175	0.501	0.734	0.210	0.058	0.082	0.047
	≥8.0	9.513	0.233	0.291	1.001	0.955	0.116	0.000	0.000	0.012	0.082	0.955	0.233	0.245	0.140	0.000	0.000	0.000
	С	0.285								0.0	147							
	0.5~1.9	1.326	0.012	0.012	0.047	0.047	0.012	0.012	0.035	0.000	0.023	0.035	0.035	0.000	0.000	0.035	0.082	0.035
C	2.0~3.9	2.953	0.093	0.221	0.210	0.035	0.163	0.093	0.035	0.175	0.070	0.058	0.105	0.082	0.058	0.186	0.140	0.058
	4.0~5.9	4.920	0.233	0.722	0.442	0.163	0.105	0.012	0.023	0.151	0.082	0.070	0.116	0.163	0.105	0.105	0.093	0.035
	6.0~7.9	6.870	0.198	0.838	0.454	0.268	0.058	0.000	0.012	0.082	0.047	0.058	0.035	0.175	0.070	0.023	0.000	0.000
	≥8.0	10.038	0.082	0.349	1.467	0.466	0.047	0.000	0.000	0.012	0.012	0.116	0.000	0.047	0.058	0.000	0.000	0.035
	С	0.163								0.1	75							
	0.5~1.9	1.405	0.070	0.198	0.151	0.186	0.116	0.093	0.093	0.163	0.128	0.105	0.105	0.128	0.070	0.163	0.093	0.082
D	2.0~3.9	2.929	0.512	0.792	0.745	0.594	0.361	0.314	0.291	0.652	0.489	0.163	0.303	0.419	0.221	0.221	0.326	0.175
D	4.0~5.9	5.026	1.188	2.189	0.932	0.408	0.373	0.175	0.070	0.652	0.734	0.070	0.198	0.943	0.384	0.210	0.151	0.047
	6.0~7.9	6.803	1.106	3.563	1.269	0.163	0.419	0.082	0.070	0.291	0.617	0.093	0.047	0.885	0.757	0.012	0.012	0.023
	≥8.0	10.764	0.291	1.421	2.876	0.617	0.408	0.023	0.058	0.070	0.233	0.594	0.245	0.384	0.943	0.151	0.082	0.047
	С	0.001		•						0.0	12		•	•				
	0.5~1.9	1.643	0.000	0.000	0.000	0.023	0.023	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.023	0.000
Г	2.0~3.9	2.893	0.012	0.000	0.000	0.058	0.023	0.000	0.012	0.000	0.000	0.000	0.012	0.000	0.023	0.070	0.035	0.023
Е	4.0~5.9	5.073	0.000	0.023	0.012	0.070	0.105	0.047	0.035	0.047	0.000	0.012	0.012	0.035	0.023	0.012	0.012	0.000
	6.0~7.9	6.945	0.058	0.047	0.105	0.035	0.175	0.035	0.023	0.128	0.047	0.012	0.023	0.151	0.245	0.000	0.000	0.000
	≥8.0	8.447	0.012	0.012	0.035	0.000	0.047	0.000	0.012	0.012	0.012	0.000	0.012	0.012	0.035	0.000	0.000	0.000
	С	0.203								0.5	47							
	0.5~1.9	1.351	0.210	0.221	0.210	0.151	0.291	0.279	0.373	0.303	0.175	0.221	0.466	0.419	0.291	0.082	0.023	0.175
E	2.0~3.9	2.922	0.571	1.095	0.605	0.245	1.223	1.456	0.955	1.968	0.792	0.256	0.687	0.803	0.559	0.093	0.082	0.105
F	4.0~5.9	4.777	0.571	0.757	0.326	0.082	0.559	0.419	0.466	2.224	0.885	0.047	0.093	0.594	0.734	0.035	0.012	0.012
	6.0~7.9	6.566	0.349	0.221	0.047	0.012	0.093	0.012	0.047	0.640	0.501	0.023	0.000	0.186	0.186	0.000	0.000	0.000
	≥8.0	8.347	0.000	0.035	0.000	0.000	0.000	0.000	0.000	0.070	0.012	0.000	0.000	0.000	0.035	0.000	0.000	0.000

表 2-5(1/2) 2016 年 70 米高度风向、风速、稳定度、降水四维联合频率 (%)(有雨)

		衣	2-5 (1/2) 20.	16 年 70	术尚及	八川、	风速、	梞 疋及、	降水	当维联 征	1 妙平	(%) (有雨	I)			
稳定度	风向	平均	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
107075	风速级 (m/s)	风速			·				-									
	С	0.250									000							
	0.5~1.9	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A	2.0~3.9	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7.1	4.0~5.9	4.527	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	6.0~7.9	6.089	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	≥8.0	9.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	C	0.250									000							
	0.5~1.9	1.835	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
В	2.0~3.9	2.668	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.000	0.012	0.012	0.012	0.000	0.000	0.012
Б	4.0~5.9	4.315	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.000	0.000	0.000
	6.0~7.9	7.191	0.000	0.000	0.012	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.012	0.012	0.000	0.000	0.000
	≥8.0	9.579	0.000	0.012	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.000
	С	0.250								0.0	000							
	0.5~1.9	0.756	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.000
0	2.0~3.9	3.415	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.000
С	4.0~5.9	4.651	0.012	0.012	0.023	0.012	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	6.0~7.9	7.009	0.000	0.035	0.000	0.012	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	≥8.0	9.006	0.000	0.023	0.000	0.012	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	С	0.250			•		•			0.0	000		•	•				
	0.5~1.9	1.431	0.000	0.012	0.000	0.000	0.000	0.000	0.012	0.023	0.000	0.012	0.000	0.000	0.012	0.012	0.012	0.000
D	2.0~3.9	3.072	0.000	0.023	0.000	0.012	0.000	0.058	0.035	0.035	0.012	0.000	0.070	0.058	0.012	0.012	0.012	0.000
D	4.0~5.9	4.999	0.116	0.128	0.023	0.012	0.012	0.023	0.035	0.058	0.012	0.012	0.047	0.047	0.012	0.000	0.000	0.012
	6.0~7.9	6.791	0.058	0.279	0.035	0.012	0.000	0.047	0.012	0.000	0.035	0.023	0.035	0.047	0.000	0.000	0.000	0.012
	≥8.0	13.375	0.058	0.186	0.629	0.105	0.093	0.023	0.047	0.012	0.070	0.349	0.221	0.105	0.023	0.128	0.035	0.023
	С	0.250	,						,	0.0	000		,					
	0.5~1.9	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
г	2.0~3.9	3.411	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.000
Е	4.0~5.9	4.902	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.012	0.000	0.000	0.012	0.000	0.012	0.000	0.000	0.000
	6.0~7.9	7.108	0.000	0.012	0.023	0.000	0.000	0.012	0.012	0.023	0.000	0.012	0.012	0.012	0.000	0.000	0.000	0.000
	≥8.0	8.958	0.012	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	С	0.371	ı				L			0.0)12			L				
	0.5~1.9	1.319	0.000	0.012	0.012	0.012	0.012	0.012	0.000	0.000	0.000	0.012	0.000	0.000	0.012	0.000	0.000	0.000
	2.0~3.9	3.050	0.023	0.035	0.023	0.012	0.047	0.035	0.012	0.093	0.035	0.000	0.012	0.000	0.012	0.012	0.000	0.000
F	4.0~5.9	4.801	0.000	0.035	0.000	0.012	0.023	0.012	0.023	0.058	0.047	0.000	0.012	0.035	0.035	0.012	0.000	0.000
	6.0~7.9	6.844	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.023	0.012	0.000	0.000	0.012	0.000	0.000	0.000	0.000
	≥8.0	9.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
									•									

表 2-5(2/2) 2016 年 70 米高度风向、风速、稳定度、降水联合频率 (%)(无雨)

		衣	2-5 (2)	<i>(</i> 2) 20	116年7	∪术尚凡	更风问、	风速、	稳定度	、降水	联台观	举	(%) (尤雨)				
稳定度	风向 风速级(m/s)	平均 风速	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
	C	0.399								0.0	123							
	0.5~1.9	1.396	0.023	0.012	0.047	0.047	0.000	0.000	0.023	0.047	0.047	0.035	0.023	0.000	0.012	0.023	0.023	0.047
	2.0~3.9	3.096	0.023	0.070	0.105	0.640	0.163	0.058	0.023	0.186	0.186	0.186	0.105	0.082	0.012	0.140	0.489	0.442
A	4.0~5.9	4.832	0.431	0.151	0.233	1.327	0.291	0.012	0.012	0.082	0.303	0.338	0.175	0.210	0.058	0.093	0.082	0.268
	6.0~7.9	6.669	0.268	0.186	0.151	1.013	0.035	0.000	0.000	0.002	0.175	0.105	0.070	0.047	0.035	0.000	0.002	0.012
	≥8.0	8.459	0.023	0.000	0.000	0.140	0.000	0.000	0.000	0.000	0.000	0.035	0.000	0.000	0.000	0.000	0.000	0.000
	<u></u>	0.192	0.023	0.000	0.000	0.110	0.000	0.000	0.000	0.0		0.055	0.000	0.000	0.000	0.000	0.000	0.000
	0.5~1.9	1.459	0.093	0.047	0.058	0.082	0.070	0.035	0.023	0.047	0.023	0.093	0.000	0.023	0.058	0.105	0.058	0.058
	2.0~3.9	2.889	0.256	0.268	0.279	0.431	0.279	0.128	0.128	0.408	0.326	0.140	0.175	0.163	0.163	0.291	0.314	0.186
В	4.0~5.9	4.852	0.116	0.279	0.198	0.256	0.221	0.058	0.058	0.082	0.105	0.058	0.268	0.291	0.210	0.396	0.291	0.163
	6.0~7.9	6.898	0.221	0.605	0.594	0.454	0.373	0.012	0.000	0.070	0.116	0.175	0.489	0.722	0.198	0.058	0.082	0.047
	≥8.0	9.513	0.233	0.279	0.990	0.955	0.116	0.000	0.000	0.012	0.082	0.955	0.233	0.233	0.140	0.000	0.000	0.000
	С	0.285			I				I	0.0	47		I	I				
	0.5~1.9	1.360	0.012	0.012	0.035	0.047	0.012	0.012	0.035	0.000	0.023	0.035	0.035	0.000	0.000	0.035	0.070	0.035
	2.0~3.9	2.943	0.093	0.210	0.210	0.035	0.163	0.093	0.035	0.163	0.070	0.058	0.105	0.070	0.058	0.186	0.140	0.058
C	4.0~5.9	4.927	0.221	0.710	0.419	0.151	0.093	0.012	0.023	0.151	0.082	0.070	0.116	0.163	0.105	0.105	0.093	0.035
	6.0~7.9	6.867	0.198	0.803	0.454	0.256	0.047	0.000	0.012	0.082	0.047	0.058	0.035	0.175	0.070	0.023	0.000	0.000
	≥8.0	10.056	0.082	0.326	1.467	0.454	0.035	0.000	0.000	0.012	0.012	0.116	0.000	0.047	0.058	0.000	0.000	0.035
	С	0.163								0.1	75							
	0.5~1.9	1.404	0.070	0.186	0.151	0.186	0.116	0.093	0.082	0.140	0.128	0.093	0.105	0.128	0.058	0.151	0.082	0.082
D	2.0~3.9	2.921	0.512	0.769	0.745	0.582	0.361	0.256	0.256	0.617	0.477	0.163	0.233	0.361	0.210	0.210	0.314	0.175
D	4.0~5.9	5.028	1.071	2.061	0.908	0.396	0.361	0.151	0.035	0.594	0.722	0.058	0.151	0.897	0.373	0.210	0.151	0.035
	6.0~7.9	6.804	1.048	3.284	1.234	0.151	0.419	0.035	0.058	0.291	0.582	0.070	0.012	0.838	0.757	0.012	0.012	0.012
	≥8.0	9.895	0.233	1.234	2.247	0.512	0.314	0.000	0.012	0.058	0.163	0.245	0.023	0.279	0.920	0.023	0.047	0.023
	C	0.001								0.0	12							
	0.5~1.9	1.643	0.000	0.000	0.000	0.023	0.023	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.023	0.000
Е	2.0~3.9	2.869	0.012	0.000	0.000	0.058	0.023	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.023	0.070	0.035	0.023
L	4.0~5.9	5.093	0.000	0.023	0.012	0.058	0.105	0.047	0.035	0.035	0.000	0.012	0.000	0.035	0.012	0.012	0.012	0.000
	6.0~7.9	6.926	0.058	0.035	0.082	0.035	0.175	0.023	0.012	0.105	0.047	0.000	0.012	0.140	0.245	0.000	0.000	0.000
	≥8.0	8.379	0.000	0.012	0.023	0.000	0.047	0.000	0.012	0.012	0.012	0.000	0.012	0.012	0.035	0.000	0.000	0.000
	С	0.199			T		,		,	0.5			T	,				
	0.5~1.9	1.352	0.210	0.210	0.198	0.140	0.279	0.268	0.373	0.303	0.175	0.210	0.466	0.419	0.279	0.082	0.023	0.175
F	2.0~3.9	2.918	0.547	1.060	0.582	0.233	1.176	1.421	0.943	1.875	0.757	0.256	0.675	0.803	0.547	0.082	0.082	0.105
1	4.0~5.9	4.776	0.571	0.722	0.326	0.070	0.536	0.408	0.442	2.166	0.838	0.047	0.082	0.559	0.699	0.023	0.012	0.012
	6.0~7.9	6.560	0.349	0.221	0.047	0.012	0.093	0.012	0.047	0.617	0.489	0.023	0.000	0.175	0.186	0.000	0.000	0.000
	≥8.0	8.347	0.000	0.035	0.000	0.000	0.000	0.000	0.000	0.070	0.012	0.000	0.000	0.000	0.035	0.000	0.000	0.000

表 2-6 大气稳定度分类结果

	稳定度	A	В	С	D	E	F
ſ	频率 (%)	10.04	16.52	9.87	35.27	2.08	26.21

表 2-7 昌江核电厂大气扩散参数

			* ,0	
稳定度	水平扩散参数	$(\sigma_y = a \cdot x^p)$	垂直扩散参数	$(\sigma_z = b \cdot x^q)$
心足 及	a	p	b	q
A	1.188	0.900	0.353	0.934
В	0.811	0.866	0.301	0.888
С	0.514	0.883	0.238	0.860
D	0.326	0.883	0.218	0.808
Е	0.200	0.880	0.202	0.747
F	0.124	0.880	0.199	0.672

表 2-8 厂址半径 5km 范围内各自然村人口

	12.2	0 / 41 111.	A TATAL	11 D W/11/CD	
序号	 行政村	自然村	相	目对厂址位置	人口数
一	11 政们	日然们	方位	距离(km)	八口奴
1	三联村	马地村	SSW	1.3	186
2	二块竹	塘兴新村	S	2.3	1638
3		林好村	SE	1.2	420
4		永安村	ESE	2.5	440
5	五联村	五联新村	SSE	2.5	415
6		里仁村	S	2.2	265
7		波兰村	SSE	1.9	375
8	南罗村	双塘村	NE	2.9	417
9		南罗村	NE	4.7	1737
10		北方村	SW	4.1	390
11	五大村	梧高村	WSW	3.5	290
12		甘塘村	SW	4.8	340
13	长山村	长田村	Е	4.9	135
		合计			7048

表 2-9 厂址半径 15km 范围内各行政村人口数

号 夕镇 行政村 1 三联村 S 2 五联村 SSE 3 南罗村 NE 6 五大村 SW 6 大山村 ENE 7 海尾镇 新港村 NE	1.3 1824 2.2 1915 4.7 2154 5.4 421 5.4 1785
1 三联村 S 2 五联村 SSE 3 南罗村 NE 6 五大村 SW 6 长山村 ENE 7 海尾镇 新港村 NE	1.3 1824 2.2 1915 4.7 2154 5.4 421 5.4 1785
2 五联村 SSE 3 南罗村 NE 4 高石塘村 ESE 5 五大村 SW 6 长山村 ENE 7 海尾镇 新港村 NE	2.2 1915 4.7 2154 5.4 421 5.4 1785
3 南罗村 NE 4 高石塘村 ESE 5 五大村 SW 6 长山村 ENE 7 海尾镇 新港村 NE	4.7 2154 5.4 421 5.4 1785
4 高石塘村 ESE 5 五大村 SW 6 长山村 ENE 7 海尾镇 新港村 NE	5.4 421 5.4 1785
5 五大村 SW 6 长山村 ENE 7 海尾镇 新港村 NE	5.4 1785
6 长山村 ENE 7 海尾镇 新港村 NE	
7 海尾镇 新港村 NE	5./ 1 927
7 39118-13 112	
	5.8 2547
大安村 ENE	
9 海农村 WSW 10 海尾社区居委会	9.6 5335
10 海色村) WSW	9.6 5100
	11.8 1980
12 进董村 SW	14.5 471
13 南港村 NE	7.3 3055
	7.5 3347
	7.8 4865
	8.1 1993
	8.3 2548
	9.9 3058
19 岭地村 ENE	10.4 4182
	11.9 4801
	12.4 2845
	13.6 3288
23 德立村 ENE	13.9 1725
	8.1 1388
	8.2 1280
26 十月田镇 沙田村 SE	13.8 1064
27王炸村SSE	14.4 3102
	14.9 1588
29 红田六队 SSE	8.9 32
30 红田十一队 SSE	9.5 115
31 红田八队 SE	11.7 102
32 红田十八队 SE	12.4 169
33 国营红林农厂 红田二十五队 SE	12.6 60
34 国营红标状》 红田七队 SE	13.2 120
35 红田二队 SSE	13.6 75
36 红林 13 队 SE	13.6 123
37 红林 15 队 SE	14.3 145
38 红田十七队 SSE	14.5 108
合计	72735

表 2-10 厂址半径 80km 范围内 10 万人以上的城镇

	所属市(县)	镇(乡)	相对厂	址位置	1 (1)
)	別馬叩(玄)	は(タ)	方位	距离	人口(人)
1	东方市	八所镇	SW	48.0	161173
2	儋州市	那大镇	Е	71.9	159893

表 2-11 厂址半径 80km 范围内的人口分布(2015 年)

距离(km) 方位	0~1	1~2	2~3	3~5	5~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80	合计
N	0	0	0	0	0	0	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0	0	0	0	0	0	0
NE	0	0	417	1737	18355	4074	5477	8764	131318	80681	54748	18629	324200
ENE	0	0	0	0	792	12258	16595	18956	53914	88330	81500	85186	357531
Е	0	0	0	135	3098	14357	14127	19204	57440	53962	97975	131764	39206
ESE	0	0	440	0	421	1018	23908	46900	13558	21281	50322	15165	173013
SE	0	420	0	0	1280	18228	42029	18039	1422	8060	2799	4042	96319
SSE	0	305	321	0	5038	27792	17409	4353	21762	0	3312	22010	102143
S	0	1467	248	398	0	6984	16223	34526	41715	7007	6969	4786	120323
SSW	0	185	0	0	0	7066	0	0	0	21557	10776	97153	136737
SW	0	0	0	442	2018	7067	66530	37822	169704	0	0	0	283583
WSW	0	0	0	363	9629	9550	32397	0	0	0	0	0	51939
W	0	0	0	0	0	0	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0	0	0	0	0	0	0
合计	0	1364	1545	3616	37379	89127	258529	170451	503985	325320	286924	423185	2102425

表 2-12 厂址半径 5km 范围内学校、幼儿园分布情况

序号	学校名称	所在地名称	与厂址村	目对位置	学生	住校人	教职工数
一一一	子仪名你	別住地名你	方位	距离(km)	人数	数	教职工数
1	海联小学	海尾镇五联村	SSE	2.0	98	0	14
2	塘兴新村幼 儿园	海尾镇塘兴新村	S	2.3	130	0	6
3	幸福幼儿园	海尾镇塘兴新村	S	2.3	104	0	4
4	五大小学	海尾镇五大村	SW	4.9	42	0	10
5	南罗小学	海尾镇南罗村	NE	4.8	76	0	14
6	南罗幼儿园	海尾镇南罗村	NE	4.9	105	0	6
		合计			555	0	54

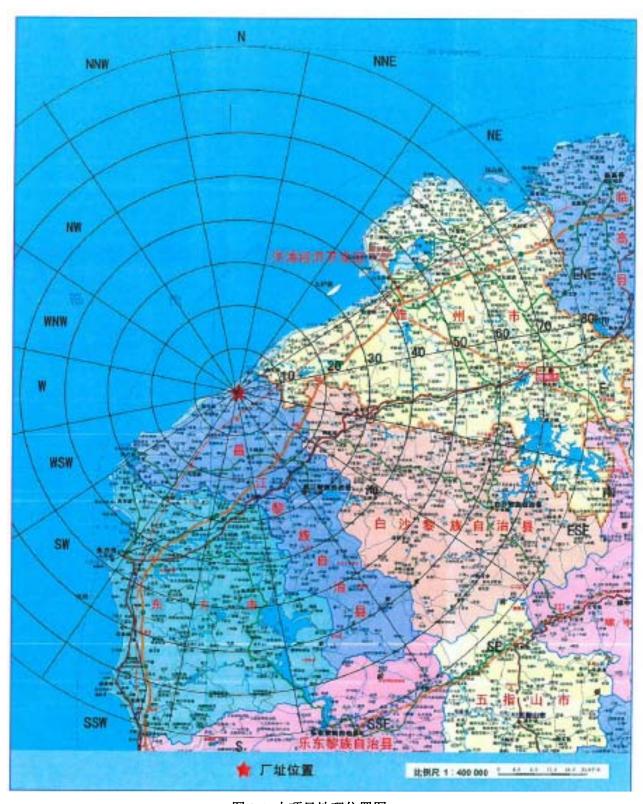


图 2-1 本项目地理位置图

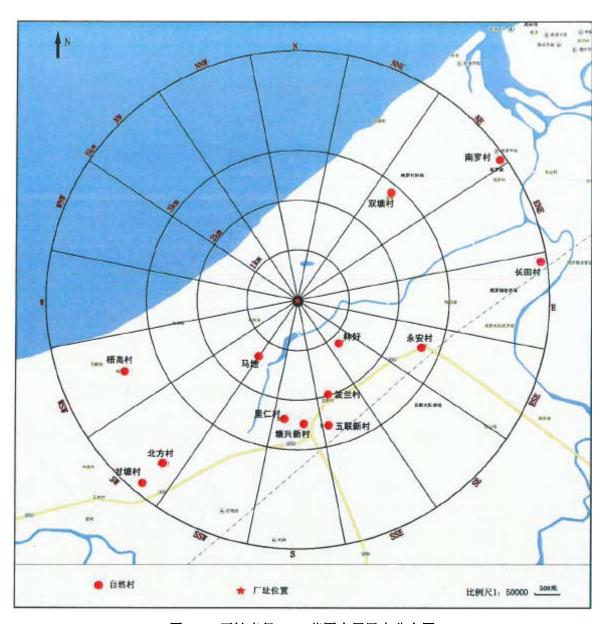


图 2-3 厂址半径 5km 范围内居民点分布图

环境质量状况 (表三)

建设项目所在地区域环境质量现状及主要环境问题(环境空气、地面水、地下水、声环境、生态环境等):

本项目所在区域的辐射环境质量现状及环境本底数据引用《海南昌江核电厂环境辐射监测年报(2017年)》中的数据。

1、贯穿辐射剂量率

2017 年,厂址周围 50km 范围内贯穿辐射剂量率设置 52 个连续监测点位进行 1 次/季的监测,田野贯穿辐射剂量率监测结果在 $3.1\times10^{-8}\sim21.4\times10^{-8}$ Gy/h 之间,路面贯穿辐射剂量率监测结果在 $4.0\times10^{-8}\sim20.1\times10^{-8}$ Gy/h 之间,处于本底($6.0\times10^{-8}\sim18\times10^{-8}$ Gy/h)水平。

2、大气、沉降物和降水

2017年,对厂址所在区域 4 个气溶胶监测点进行了 1 次/月的取样监测,监测项目为总 β 、 γ 谱分析。结果表明,各监测点的气溶胶总 β 监测值范围为 0.050~4.36mBq/m³,处于本底(2.38~2.75mBq/m³)水平。 γ 谱分析测量结果中,所关心的人工核素(137 Cs、 134 Cs、 58 Co、 54 Mn、 60 Co、 131 I、 106 Ru、 110m Ag)测量结果均低于探测限。

2017 年,对厂址所在区域 4 个空气监测点进行了 1 次/月的取样监测,监测项目为 131 I、 3 H、 14 C,结果表明, 131 I、 3 H 低于探测限。 14 C 监测结果在 $^{110.8}$ ~176.9mBq/g 之间,处于本底水平(240.5mBq/g)。

2017年,对厂址所在区域 3 个沉降灰监测点进行了 1 次/季的取样监测,监测项目为总 β 、 γ 谱分析。沉降灰总 β 监测结果值在 0.93~8.61Bq/m²-月之间,在本底(4.39~4.99Bq/m²-月)涨落范围内,沉降灰 γ 谱分析测量结果中,所关心的人工核素的监测结果均低于探测限。

2017年,对厂址所在区域 3 个降水监测点进行了 1 次/季的取样监测,监测项目为 ³H、γ 谱分析。监测结果显示:降水中的 ³H 低于探测限;所关心的人工核素也均小于探测限。

3、地表水、地下水、饮用水

2017年,对厂址附近 5个地表水监测点进行了 1次/半年取样监测,监测项目为 γ 谱分析、³H。地表水监测结果表明: ³H 低于探测限;所关心的人工核素也均低于探测

限。

2017年,厂址附近 2 个地下水监测点进行了 1 次/半年取样监测。监测项目为 γ 谱分析、³H。地下水监测结果表明:³H 低于探测限,所关心的人工核素也均低于探测限。

2017年,对厂址附近 3 个饮用水监测点进行了 1 次/季取样监测,监测项目为 γ 谱分析、³H。饮用水监测结果表明:各测点 ³H、所关心的人工核素均未检出。

2017年,对厂址附近 3 个地表水底泥监测点进行了 1 次/年的取样监测,监测项目为 90 Sr、 γ 谱分析,结果表明:地表水底泥中 90 Sr 的活度浓度范围为 0.14~1.16Bq/kg,在本底(0.76~1.01Bq/kg)涨落范围内; 54 Mn 的活度浓度范围 2.32~3.05Bq/kg,其余关心的人工核素均低于探测限。

4、土壤

2017年度对厂址附近 6 个陆地土壤监测点进行了 1 次/年的取样监测,监测项目为 90 Sr、γ 谱分析,分析结果表明:厂址附近地表土壤中 90 Sr 的活度浓度范围<LLD ~0.68Bq/kg,在本底(0.66~1.25Bq/kg)涨落范围内; ¹³⁷Cs 的活度浓度范围 <LLD~1.13Bq/kg,在本底(<LLD~1.19Bq/kg)涨落范围内; ⁵⁴Mn 的活度浓度范围 <LLD~1.48Bq/kg,最大值出现在南罗村;其余关心的人工核素均低于探测限。

5、海水及海洋沉积物

2017 年度对厂址附近海域 7 个海水监测点进行了半年一次的取样监测,对取、排水口海水进行每月一次取样监测。监测项目为 ³H、γ 谱分析,分析结果表明:取、排水口海水仅在 3 月检出 ³H,活度浓度分别为 1.37±0.06Bq/L、8.19±0.44Bq/L,高出本底(0.30~0.66 Bq/L、0.19~0.40Bq/L),厂址附近海域其余监测点海水中 ³H、人工核素活度浓度均低于探测限。

2017年度对厂址附近海域 7 个海洋沉积物监测点进行了 1 次/年的取样监测,监测项目为 90 Sr、 γ 谱分析,分析结果表明:厂址附近海域各个监测点海洋沉积物中 90 Sr 的活度浓度范围为 $0.18\sim1.12$ Bq/kg,在本底($1.02\sim2.15$ Bq/kg)涨落范围内; 54 Mn 的活度浓度范围为LLD~1.50Bq/kg,与 2016 年相比测值没有显著变化;其余人工核素未检出。

6、生物

(1) 海洋生物

2017 年,对 4 种海洋生物样品进行 1 次/年取样监测,监测项目为 γ 谱分析、 90 Sr 放化分析。监测结果显示,新港石斑鱼检出了 137 Cs 以及 90 Sr,其余核素(包括 134 Cs、 58 Co、

 60Co、131I、54Mn、106Ru、110mAg)
 测量结果均小于探测限。新港石斑鱼 90Sr 测量值为

 0.12Bq/kg, 137Cs 测量值为 0.045Bq/kg, 处在本底涨落范围内。虾、鱿鱼、麒麟菜均未

 检出其他核素。

(2) 陆生生物

2017年,对 6 种陆生生物样品进行取样监测,陆生生物样品品种包含了大米、空心菜、豆角、香蕉、西瓜和肉类,其中,香蕉、西瓜和肉类监测频次为 1 次/年,其余样品均为 1 次/半年,监测项目为γ谱分析、⁹⁰Sr 放化分析。

陆生生物监测结果显示,在大米、羊肉样品中监测出 ¹³⁷Cs,大米中 ¹³⁷Cs 活度浓度 范围为<LLD~0.08Bq/kg,在本底测量值(0.009~0.16Bq/kg)涨落范围内,对检出 ¹³⁷Cs 大米进行 ⁹⁰Sr 放化分析,其测量值范围为 0.03~0.079Bq/kg,处于本底(0.017~0.20Bq/kg) 涨落范围内; 肉类样品中 ¹³⁷Cs 活度浓度范围为<LLD~0.074Bq/kg,处于本底(<LLD~0.43Bq/kg)涨落范围内;其余陆生生物样品中 ¹³⁷Cs 均未检出;所有样品中其余人工核素也均未检出。

陆地指示生物为仙人掌、木麻黄和蛤,监测频次为 1 次/年,监测项目为 γ 谱分析、 ⁹⁰Sr 放化分析。监测结果显示,所有样品均未测出 ¹³⁷Cs,鸡地监测点的木麻黄有 ⁵⁴Mn 检出但仍处于探测限附近。其余样品均未检出人工核素。

7、结论

根据环境监测结果,2017 年厂址周围环境γ 辐射剂量率及环境介质中放射性物质的含量均处在本底水平,部分环境介质中检出 ⁵⁴Mn,后续将持续关注。总体来说,昌 江核电厂 1、2 号机组的运行未引起核电厂周围环境辐射水平的明显变化。

主要环境保护目标(列出名单及保护级别):

本项目环境保护目标包括:居民点、幼儿园、学校等。

厂址半径 5km 范围内居民点分布情况,见表 2-8 及图 2-3;

厂址半径 5km 范围内学校、幼儿园的分布情况, 见表 2-12;

厂址半径 15km 范围内居民点分布情况, 见表 2-9;

厂址半径 80km 范围内城镇分布情况,见表 2-10。

环境质量标准

1)海水水质标准

根据《海水水质标准》(GB3097-1997)中的要求,海水中放射性核素浓度限值如下:

Co-60: 0.03 Bq/L; Sr-90: 4 Bq/L; Ru-106: 0.2 Bq/L; Cs-134: 0.6 Bq/L; Cs-137: 0.7 Bq/L。

2) 环境空气质量标准

执行《环境空气质量标准》(GB3095-2012)的二级标准。

3) 声环境质量标准

执行《声环境质量标准》(GB3096-2008)中的3类标准。

执行《核动力厂环境辐射防护规定》(GB6249-2011)中规定的放射性流出物排放量控制值。

污染物排放标准

控	GB 6249-2011 规定的排 放控制值	
	惰性气体(Bq/a)	7.72E+14
气载放射性流出物	碘(Bq/a)	2.58E+10
	粒子(半衰期≥8d)(Bq/a)	6.44E+10
	碳-14(Bq/a)	9.00E+11
	氚(Bq/a)	1.93E+13
	氚(Bq/a)	9.66E+13
液态放射性流出物	碳-14(Bq/a)	1.93E+11
	其余核素(Bq/a)	6.44E+10

放射性液态流出物排放浓度限值:根据 GB6249-2011《核动力厂环境辐射防护规定》的相关规定,槽式排放出口处的放射性流出物中除氚和碳 14 外其他放射性核素浓度不超过 1000Bq/L。

电离辐射评价标准

运行状态:整个海南昌江核电厂所致公众的辐射剂量执行《核动力厂环境辐射防护规定》(GB6249-2011)中"任何厂址的所有核动力堆向环境释放的放射性物质对公众中任何个人造成的有效剂量,每年必须小于0.25mSv 的剂量约束值。"其中1、2号机组的年剂量约束值为0.06mSv。

事故工况: 执行《核动力厂环境辐射防护规定》(GB6249-2011)关于设计 基准事故的潜在照射后果的规定,具体如下:

在发生一次稀有事故时,非居住区边界上公众在事故后2h内以及规划限制区外边界上公众在整个事故持续时间内可能受到的有效剂量控制在5mSv以下,甲状腺当量剂量控制在50mSv以下。

在发生一次极限事故时,非居住区边界上公众在事故后2h 内以及规划限制区外边界上公众在整个事故持续时间内可能受到的有效剂量控制在0.1Sv以下,甲状腺当量剂量控制在1Sv 以下。

总量控制指标

/

工艺流程简述 (图示)

本次技改不改变核电厂总的工艺流程及产污环节,仅改变堆芯燃料管理策略。

1、总工艺流程

海南昌江核电厂由反应堆回路(一回路)、汽轮机回路(二回路)和发电机回路(三回路)三个基本部分组成。

反应堆回路主要由反应堆、蒸汽发生器和主泵等组成密闭式的高压循环回路。其 作用是将反应堆堆芯内核裂变所释放的大量热能导出,传给蒸汽发生器二次侧的给水, 使之产生饱和蒸汽送入汽轮发电机。

汽轮机回路的主要设备有汽轮发电机、凝汽器、凝结水泵、低压加热器、除氧器、 主机水泵和高压加热器等与核岛部分的蒸汽发生器组成封闭的汽水循环回路。这个循 环回路的流程原理与火力发电厂的流程原理基本相同,只是由核岛部分的蒸汽发生器 代替了火力发电厂的蒸汽锅炉。

发电机回路的主要设备为发电机、励磁机、主变压器、厂用变压器、高压开关站等。

工艺流程图见下图。

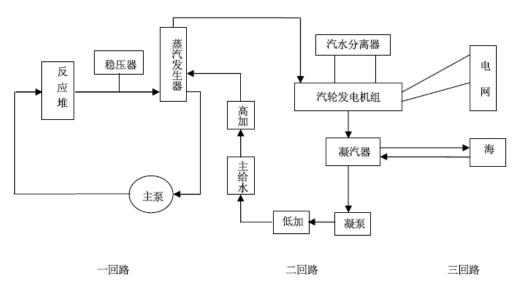


图 5-1 核电厂工艺流程图

2、燃料管理策略

堆芯装料时,为了提高堆芯平均功率密度和充分利用核燃料,采取按富集度不同 分区装料和局部倒料的燃料循环方式,换料时卸出内部区的乏燃料组件,外围的组件 向内部区域倒换,新加入的燃料组件放在最外围。

本次技改将换料方式由目前的年换料制改为长燃料循环换料制。技改前后堆芯燃料管理策略如下。

(1) 技改前燃料管理策略

昌江核电厂1、2号机组的反应堆堆芯均由121组AFA3G燃料组件及其相关组件组成。初装堆芯燃料组件的燃料富集度分1.9%、2.6%、3.1%三种,数量分别为41、40、40。最高富集度的组件装在堆芯外围,较低富集度的两种组件按棋盘格式布置在堆芯中部。采用年换料制,每次换料卸出36组乏燃料组件,同时装入36组富集度为3.25%的新燃料组件。经历第2、3、4、5过渡循环,到第6循环达到平衡循环。燃料管理的主要设计参数如下:

- 1) 换料组件富集度: 3.25%;
- 2) 平衡循环换料组件数: 36组;
- 3) 平衡燃料循环的循环长度 284EFPD。

(2) 技改后燃料管理策略

技改后换料改为 18 个月换料制。以年换料制第 4 循环堆芯为基础,从第 5 循环 开始,每个循环装入 48 组富集度为 4.45%的新燃料组件,经历第 6、7、8 三个过渡 循环,第 9 循环达到平衡循环。

技改后反应堆堆芯燃料组件采用全 M5 型 AFA 3G 燃料组件,燃料组件数不变。 与 AFA 3G 燃料组件相比,全 M5 型 AFA 3G 燃料组件的格架、导向管及仪表管材料改进为 M5 合金,其余技术参数没有变化。

为了补偿堆芯后备反应性和展平堆芯径向功率分布,在燃料组件中布置了可燃毒物。可燃毒物材料为 Gd₂O₃ 与 UO₂ 均匀弥散的载钆燃料棒。根据堆芯装载需要,在燃料组件中,分别含有 4 根、8 根、12 根和 16 根载钆燃料棒。

燃料管理的主要设计参数如下:

- 1) 换料组件富集度: 4.45%;
- 2) 平衡循环换料组件数: 48 组/44 组;
- 3) 堆芯换料模式:采用低泄漏装载模式;
- 4) 平衡循环的长循环循环长度为 520EFPD 左右,平衡循环的短循环循环长度为 460EFPD 左右:
- 5) 燃料组件的燃耗限值:燃料组件最大燃耗<52000MWd/tU。

主要污染工序:

(一) 放射性物质的产生

核电厂放射性物质最根本的来源是反应堆燃料芯块内的链式裂变反应,裂变产生的放射性核素基本上都包容在燃料元件芯块与包壳之内,只有极少量的裂变产物会由于燃料元件破损而泄漏到反应堆冷却剂中,或者由极少量的燃料元件加工制造过程中的表面铀沾污而直接进入主冷却剂。同时裂变产生的中子使反应堆冷却剂自身以及腐蚀产物、控制棒、硼酸和其它材料受到激活而产生中子活化及活化腐蚀产物。这些裂变产物和活化及活化腐蚀产物是主冷却剂系统及相关系统的主要放射性来源,其中蒸汽发生器传热管束的泄漏还有可能造成二回路系统的污染。

(二) 放射性废物的处理及排放情况

本次技改不改变昌江核电厂 1、2 号机组原有三废处理、排放设施,三废的处理处置及排放设施的情况详见《昌江核电厂 1、2 号机组长燃料循环换料项目辐射环境影响 专项评价》。以下仅列出排放量。

1、放射性废液

放射性液态流出物排入环境的排放量分为硼回收系统、废液处理系统、二回路系统三个途径分别估算。

放射性液态流出物排放量设计值汇总及技改前排放量设计值见下表。

液态流出物		氚(Bq/a)	碳-14(Bq/a)	其余核素(Bq/a)
排放量	技改前	5.49E+13	4.00E+10	3.35E+10
设计值	技改后	7.47E+13	3.49E+10	3.83E+10
GB6249-2011 控制值		9.66E+13	1.93E+11	6.44E+10

由上表可见,除 C-14 外,各种类型核素的排放量均比技改前有所增加。上表中技改前后的数据差异一方面是由于长燃料循环技改造成的,同时也有计算方法差异所造成的影响。由上表可见,技改后,液态放射性流出物各类核素的年排放量设计值均满足 GB6249-2011 的控制值要求。

鉴于昌江核电厂 1、2 号机组长燃料循环换料项目的放射性液态流出物排放量设计值比起年换料制排放量设计值有所增加,故需调整原申请值。新申请值取值方法为: H-3、C-14 取设计值;除 H-3、C-14 之外的核素取设计值的 90%。新申请值见下表。

液态流出物	氚(Bq/a)	碳-14(Bq/a)	其余核素(Bq/a)
申请值	7.47E+13	3.49E+10	3.45E+10

2、放射性废气

放射性气载流出物排入环境的排放量分为放射性废气处理系统排放、反应堆厂房排风、核辅助厂房排风、以及二回路的排放四个途径分别估算。

放射性气载流出物排放量设计值汇总及技改前后排放量设计值对比见下表。

气载流出物		惰性气体 (Bq/a)	碘(Bq/a)	粒子(半衰期 ≥8d) (Bq/a)	碳-14 (Bq/a)	氚(Bq/a)
排放量	技改前	1.50E+14	1.25E+09	1.39E+08	5.42E+11	5.49E+12
设计值	技改后	1.90E+14	1.52E+09	1.67E+08	4.75E+11	7.47E+12
GB6249-	2011 控制值	7.72E+14	2.58E+10	6.44E+10	9.00E+11	1.93E+13

由上表可见,除 C-14 之外,各种类型核素的排放量均比技改前有所增加。上表中 技改前后的数据差异一方面是由于长燃料循环技改造成的,同时也有计算方法差异所 造成的影响。由上表可见,技改后,气载放射性流出物各类核素的年排放量设计值均 满足 GB6249-2011 的控制值要求。

鉴于昌江核电厂 1、2 号机组长燃料循环项目排放量设计值比起年换料制排放量设计值有所增加,故需调整原申请值。新申请值取值方法: H-3、C-14 取设计值;除 H-3、C-14 之外的核素取设计值的 90%。新申请值见下表。

	惰性气体 (Bq/a)	碘(Bq/a)	粒子(半衰期 ≥8d) (Bq/a)	碳-14 (Bq/a)	氚(Bq/a)
申请值	1.71E+14	1.37E+09	1.50E+08	4.75E+11	7.47E+12

项目主要污染物产生及预计排放情况

(表六)

内容 类型	排放源 (编号)	污染物 名称	处理前产生浓 <u>质</u>	•	排放浓度及排放量 (单位)		
			Bq/a	Bq/m ³	Bq/a	Bq/m ³	
		惰性气体	1.36E+13	4.19E+03	1.36E+13	4.19E+03	
十层汇		碘	3.80E+09	1.17E+00	1.14E+08	3.51E-02	
大气污染物*	烟囱	粒子(半衰 期≥8d)	1.27E+09	3.90E-01	1.27E+07	3.90E-03	
		C-14	4.30E+11	1.32E+02	4.30E+11	1.32E+02	
		H-3	7.08E+12	2.18E+03	7.08E+12	2.18E+03	
	废液排放槽		Bq/a	Bq/L	Bq/a	Bq/L	
		H-3	7.08E+13	1.22E+06	7.08E+13	1.22E+06	
-le 3=		C-14	3.16E+10	5.45E+02	3.16E+10	5.45E+02	
水污 染物*		排放槽 其余核素 **	硼回收系统	2.32E+06	5.86E+06	9.36E-01	
			废液处理系统	2.32E+06	1.43E+10	7.13E+02	
			二回路系统	4.14E+03	3.30E+08	1.04E+01	
	RCV、TEP、 PTR、TEU、 APG 系统除 盐器	废树脂	22.4m³/a 9.00E+12Bq/m³				
固体	TEP、TEU 系统蒸发器	浓缩液	12.4 m ³ /a 3.70E+	-12Bq/m ³	不外排		
废弃物	RCV、TEP、 PTR、TEU、 APG 系统过 滤器	废过滤器 芯	24.8m³/a 1.41E+13Bq/m³ (RCV 系 统过滤器芯活度最大,其他均较低)				
	劳保用品、 设备零部件	杂项废物	74.6m ³ /a 4.00E+	06Bq/kg			

主要生态影响:

不涉及

注: *各类污染物产生量、排放量为源项现实值。

^{**}正常稳态工况下的值

环境影响分析 (表七)

施工期环境影响分析

不涉及

营运期环境影响分析

1、正常运行的辐射环境影响

正常运行状态下的辐射环境影响评价详见《海南昌江核电厂 1、2 号机组长燃料循环 换料项目辐射环境影响专项评价》。主要结论如下:

厂址半径 80km 范围内最大个人有效剂量出现在 SSW 方位 1-2km 处,各年龄组(成人、青少年、儿童和婴儿)受到的个人最大有效剂量分别为 3.47×10^{-6} Sv/a、 2.77×10^{-6} Sv/a、 2.30×10^{-6} Sv/a 和 1.62×10^{-6} Sv/a。在各年龄组中成人组的剂量最大,其中,气态途径所致的剂量为 1.08×10^{-6} Sv/a,液态途径所致的剂量为 2.39×10^{-6} Sv/a。气、液态途径释放的放射性核素所致评价范围内公众的集体剂量为 0.185 Sv/a。

对于关键人群组海尾镇三联行政村马地村成人组,其受到的个人最大有效剂量为 2.15×10⁻⁶Sv/a,约占昌江核电厂 1、2 号机组个人剂量约束值(0.06mSv/a)的 3.58%。对于关键人群组,关键途径为岸边活动造成的地面沉积外照射,其所致剂量为 1.40×10⁻⁶Sv/a,约占总剂量的 65.17%; 其次为食入海产品造成的内照射和吸入内照射,分别占总剂量的 22.05%和 8.99%。各核素中关键核素为 Co-60,它所致的剂量为 1.10×10⁻⁶Sv/a,约占总剂量的 51.37%。

2、事故工况辐射环境影响分析

事故工况下的辐射环境影响评价详见《海南昌江核电厂1、2号机组长燃料循环换料项目辐射环境影响专项评价》。主要结论如下:

根据《核动力厂环境辐射防护规定》GB 6249-2011的规定,在发生一次稀有事故时,非居住区边界上公众在事故后2h内以及规划限制区外边界上公众在整个事故持续时间内可能受到的有效剂量应控制在5mSv以下,甲状腺当量剂量应控制在50mSv以下。在发生一次极限事故时,非居住区边界上公众在事故后2h内以及规划限制区外边界上公众在整个事故持续时间内可能受到的有效剂量应控制在0.1Sv以下,甲状腺当量剂量应控制在1Sv以下。

由计算结果可以得到:各类极限事故导致在非居住区边界(500m)上公众中任何个人在事故后 2h 内可能受到的最大有效剂量为 3.95×10⁻²Sv,甲状腺当量剂量为 7.17×10⁻¹Sv;导致规划限制区(5000m)外边界上公众中任何个人在整个事故持续时间 内可能受到的最大有效剂量为 8.90×10⁻³Sv,甲状腺当量剂量为 1.67×10⁻¹Sv。

各类稀有事故导致在非居住区边界(500m)上公众中任何个人在事故后 2h 内可能受到的最大有效剂量为 2.17×10^{-3} Sv,甲状腺当量剂量为 3.69×10^{-2} Sv;导致规划限制区外边界(5000m)上公众中任何个人在整个事故持续时间内可能受到的最大有效剂量为 2.14×10^{-4} Sv,甲状腺当量剂量为 3.64×10^{-3} Sv。

综上所述,极限事故和稀有事故的放射性后果均低于 GB 6249-2011 中规定的剂量控制值。因此,技改后设计基准事故的环境影响满足 GB 6249-2011 的要求。将厂址非居住区半径设置为 500m、将规划限制区半径设置为 5000m 在技改后仍然是适宜的。

建设项目拟采取的防治措施及预期治理效果

(表八)

内容 类型	排放源 (编号)	污染物名称	防治措施	预期治理效果											
大气污染物		惰性气体	废气系统对其进行收集、处理(含氢) 废气在废气处理系统衰变箱内衰变) 和排放,且排放前取样分析和审批, 排放时连续监测。	达标排放											
		碘	废气系统对其进行收集、处理(含氢) 废气在废气处理系统衰变箱内衰变; 碘吸附器过滤)和排放,且排放前取样分析和审批,排放时连续监测。	达标排放											
	烟囱	烟囱	烟囱	烟囱	烟囱	烟囱	烟囱	烟囱	烟囱	烟囱	烟囱	烟囱	粒子 (半衰期≥8d)	废气系统对其进行收集、处理(含氢) 废气在废气处理系统衰变箱内衰变; 排气预过滤器、高效过滤器、高效颗 粒过滤器过滤)和排放,且排放前取 样分析和审批,排放时连续监测。	达标排放
														C-14	废气系统对其进行收集和排放,且排 放前取样分析和审批,排放时连续监 测。
						Н-3	废气系统对其进行收集和排放,且排 放前取样分析和审批,排放时连续监 测。	达标排放							
	排放槽	Н-3	废液系统对其进行收集、暂存、输送、 和排放,且排放前取样分析和审批, 排放时连续监测。	达标排放											
水污染	排放槽	C-14	废液系统对其进行收集、暂存、输送、 和排放,且排放前取样分析和审批, 排放时连续监测。	达标排放											
物	排放槽	其余核素	废液系统对其进行收集、暂存、输送、 处理(化学中和、蒸发净化、除盐净 化、过滤净化)和排放,且排放前取 样分析和审批,排放时连续监测。	达标排放											
固 体 废 物	/	固体废物	固体废物系统对其进行分拣、处理(湿固体废物水泥固化;干固体废物压实、水泥固定)、封装和暂存,且制定和执行严格的废物管理程序。	不外排											

生态保护措施及预期效果:

不涉及。

结论 (表九)

一、建设项目概况

本项目是对海南昌江核电厂1、2号机组原工程设计规定的每年进行一次换料的堆芯燃料管理策略,改进为每18个月进行一次换料的长燃料循环堆芯燃料管理策略。本项目技改内容仅仅是对堆芯燃料管理的技术实施改进和提高,不对核电厂既有的系统和设备及其运行工艺和管理进行改变,即原则上不对核电厂现有的系统和设备实施改造。

二、环保措施有效性分析

海南昌江核电厂1、2号机组自运行以来,各核电机组运行正常,废气、废液和固体废物处理系统的处理性能满足设计要求,流出物排放控制有效,年排放量远低于国家批准的控制值。无遗留环境问题。

本次技改不改变海南昌江核电厂原有三废处理、排放设施,原三废处理、排放设施运行状况良好,能够满足技改后放射性废物处理、排放的需要。

海南昌江核电厂1、2号机组在本次技改实施后的放射性流出物排放量设计目标值 低于GB6249-2011 所规定的排放量控制值。

根据长燃料循环的特点,提出了新的申请值(见下表,表中同时列出技改前年换料的排放量申请值)。海南昌江核电厂1、2号机组在本次技改实施后的放射性流出物排放量设计目标值、申请值均低于GB6249-2011 所规定的排放量控制值。

申请值	惰性气体 (Bq/a)	碘(Bq/a)	粒子(半衰期 ≥8d)(Bq/a)	碳-14 (Bq/a)	氚(Bq/a)
气载流出物					
年换料	1.45E+14	9.00E+08	1.09E+08	5.42E+11	5.49E+12
长循环	1.71E+14	1.37E+09	1.50E+08	4.75E+11	7.47E+12
液态流出物					
年换料	/	/	1.37E+10	4.00E+10	5.49E+13
长循环	/	/	3.45E+10	3.49E+10	7.47E+13

海南昌江核电厂1、2号机组槽式排放出口处的放射性流出物中除氚和碳14 外其他放射性核素浓度小于1000Bq/L,满足GB6249-2011的要求。

三、环境影响分析

(1) 运行状态下环境影响分析

技改后昌江核电厂 1、2 号机组释放的放射性流出物对厂址半径 80km 评价范围内有人居住子区的公众所致最大个人年有效剂量为 3.47×10⁻⁶Sv/a,出现在 SSW 方位 1-2km 子区。关键人群组为马地自然村的成人组,年有效剂量为 2.15×10⁻⁶Sv/a,约占本工程个人剂量约束值(0.06mSv/a)的 3.58%。厂址半径 80km 范围内公众的集体剂量为 0.185 人.Sv/a。

剂量计算结果与技改前年换料的结果对比见下表:

	年换料	长循环
对公众个人所致最大有效剂量 Sv/a	3.42×10 ⁻⁶	3.47×10 ⁻⁶
对公众个人所致集体剂量 Sv/a	0.111	0.185
对水生生物所致最大剂量率 μGy/h	1.63×10 ⁻²	2.13×10 ⁻²

(2) 事故工况下环境影响分析

在本项目的事故工况环境影响评价中,考虑了12 个设计基准事故,事故后果预测结果表明,极限事故和稀有事故的放射性后果均低于《核动力厂环境辐射防护规定》(GB 6249-2011)中规定的剂量控制值,放射性后果是可以接受的。将厂址非居住区边界设置为500m、将规划限制区半径设置为5km在技改后仍然是适宜的。

事故剂量计算结果与技改前年换料的结果对比见下表:

	0h-2	h, 500m	0d-30d, 5000m		
稀有事故	最大有效剂量 (Sv)	最大甲状腺当量剂 量(Sv)	最大有效剂量 (Sv)	最大甲状腺当 量剂量(Sv)	
年换料	1.52E-03	2.10E-02	1.00E-04	1.38E-03	
长循环	2.17E-03	3.69E-02 2.14E-04		3.64E-03	
极限事故	最大有效剂量 (Sv)	最大甲状腺当量剂 量(Sv)	最大有效剂量 (Sv)	最大甲状腺当 量剂量(Sv)	
年换料	9.52E-03	1.24E-01	1.29E-03	1.82E-02	
长循环	长循环 3.95E-02		8.90E-03	1.67E-01	

四、评价结论

海南昌江核电厂 1、2 号机组长燃料循环换料项目实施后,在燃料管理策略存在变化而电厂主辅系统设备不变的前提下,根据放射性流出物对环境影响的预测结果来看,其对环境的影响与本项目实施前的年换料制下

的环境影响水平基本相当。在海南昌江核电厂现行的三废控制措施及管理
制度下,正常运行状态及事故工况下对电厂周围公众的辐射影响均满足国
家相关标准的要求。非居住区、规划限制区边界的划分是适宜的。从环境
保护角度考虑,本项目的实施是可行的。

海南昌江核电厂 1、2 号机组长燃料循环换料 辐射环境影响专项评价

1 工程分析

本次技改不改变核电厂总的工艺流程,仅改变堆芯燃料管理策略。

1.1 燃料管理策略

堆芯装料时,为了提高堆芯平均功率密度和充分利用核燃料,采取按富集度不同分 区装料和局部倒料的燃料循环方式,换料时卸出内部区的乏燃料组件,外围的组件向内 部区域倒换,新加入的燃料组件放在最外围。

本次技改将换料方式由目前的年换料制改为 18 个月换料制。技改前后堆芯燃料管理策略如下。

(1) 技改前燃料管理策略

昌江核电厂 1、2 号机组的反应堆堆芯均由 121 组 AFA 3G 燃料组件及其相关组件组成。初装堆芯燃料组件的燃料富集度分 1.9%、2.6%、3.1%三种,数量分别为 41、40、40。最高富集度的组件装在堆芯外围,较低富集度的两种组件按棋盘格式布置在堆芯中部。采用年换料制,每次换料卸出 36 组乏燃料组件,同时装入 36 组富集度为 3.25%的新燃料组件。经历第 2、3、4、5 过渡循环,第 6 循环达到平衡循环。技改前各循环的堆芯燃料组件数见表 1.1-1。

燃料管理的主要设计参数如下:

- 1) 换料组件富集度: 3.25%;
- 2) 平衡循环换料组件数: 36 组:
- 3) 平衡燃料循环的循环长度 284EFPD。

(2) 技改后燃料管理策略

技改后换料改为长燃料循环换料制。以年换料制第 4 循环堆芯为基础,从第 5 循环 开始,每个循环装入 48 组富集度为 4.45%的新燃料组件,经历第 6、7、8 三个过渡循环,第 9 循环达到平衡循环。

技改后反应堆堆芯燃料组件采用全 M5 型 AFA 3G 燃料组件,燃料组件数不变。与 AFA 3G 燃料组件相比,全 M5 型 AFA 3G 燃料组件的格架、导向管及仪表管材料改进 为 M5 合金,其余技术参数没有变化。

为了补偿堆芯后备反应性和展平堆芯径向功率分布,在燃料组件中布置了可燃毒物。可燃毒物材料为 Gd₂O₃ 与 UO₂ 均匀弥散的载钆燃料棒。根据堆芯装载需要,在燃料

组件中,分别含有4根、8根、12根和16根载钆燃料棒。

技改后过渡循环、平衡循环堆芯各批燃料组件数见表 1.1-2~1.1-3。

燃料管理的主要设计参数如下:

- 1) 换料组件富集度: 4.45%;
- 2) 平衡循环换料组件数: 48 组/44 组;
- 3) 堆芯换料模式:采用低泄漏装载模式;
- 4) 平衡循环的长循环循环长度为 520EFPD 左右, 平衡循环的短循环循环长度 为 460EFPD 左右;
- 5) 燃料组件的燃耗限值: 燃料组件最大燃耗≤52000MWd/tU。

表 1.1-1 技改前堆芯各批燃料组件数

	WITT DOUBLE HOWITH WITH							
温集度	各区燃料组件数目							
1111	(%)	第1循环	第2循环	第3循环	第4循环	第5循环	第6循环	
1	1.9	41	5	1	1			
2	2.6	40	40	8				
3	3.1	40	40	40	12			
4	3.25		36	36	36	13		
5	3.25			36	36	36	13	
6	3.25				36	36	36	
7	3.25					36	36	
8	3.25						36	

表 1.1-2 技改后堆芯各批燃料组件数(过渡循环)

		₹ 1.1-2		M. M			
批	X	富集度 (%)	过渡循环				
			第5循环	第6循环	第7循环	第8循环	
1	1	1.90					
	3	3.10	8				
2	4	3.25	8				
3	5	3.25	25				
4	6	3.25	32	29	8		
5	7a	4.45(4gd)	8	8	8		
	7b	4.45(8gd)	8	8	8	8	
	7c	4.45(12gd)	32	32	5		
6	8a	4.45(4gd)		16	16	13	
	8b	4.45(8gd)		8	8	8	
	8c	4.45(16gd)		20	20		
7	9a	4.45(4gd)			16	16	
	9b	4.45(8gd)			12	12	
	9c	4.45(12gd)			12	12	
	9d	4.45(16gd)			8	8	
8	10a	4.45(4gd)				16	
	10b	4.45(8gd)				8	
	10c	4.45(16gd)				20	

表 1.1-3 技改后堆芯各批燃料组件数 (平衡循环)

411.	富集度	循环				
批	(%)	N	N+1	N+2	N+3	
	4.45(4gd)	13				
2	4.45(8gd)	8				
n-2	4.45(12gd)					
	4.45(16gd)	8				
	4.45(4gd)	16	13			
n-1	4.45(8gd)	8	8			
	4.45(16gd)	20	8			
	4.45(4gd)	16	16	13		
_	4.45(8gd)	12	12	8		
n	4.45(12gd)	12	12			
	4.45(16gd)	8	8	8		
	4.45(4gd)		16	16	13	
n+1	4.45(8gd)		8	8	8	
	4.45(16gd)		20	20	8	
	4.45(4gd)			16	16	
	4.45(8gd)			12	12	
n+2	4.45(12gd)			12	12	
	4.45(16gd)			8	8	
	4.45(4gd)				16	
n+3	4.45(8gd)				8	
	4.45(16gd)				20	

1.2 放射性废物管理系统和源项

1.2.1 放射性源项

核电厂放射性物质最根本的来源是反应堆燃料芯块内的链式裂变反应,裂变产生的放射性核素基本上都包容在燃料元件芯块与包壳之内,只有极少量的裂变产物会由于燃料元件破损而泄漏到反应堆冷却剂中,或者由极少量的燃料元件加工制造过程中的表面铀沾污而直接进入主冷却剂。同时裂变产生的中子使反应堆冷却剂自身以及腐蚀产物、控制棒、硼酸和其它材料受到激活而产生中子活化及活化腐蚀产物。这些裂变产物和活化及活化腐蚀产物是主冷却剂系统及相关系统的主要放射性来源,其中蒸汽发生器传热管束的泄漏还有可能造成二回路系统的污染。

1.2.1.1 堆芯主要裂变产物积存量

根据《海南昌江核电厂1、2号机组长燃料循环换料堆芯燃料管理论证项目—堆芯裂变产物积存量计算报告》,堆芯裂变产物积存量计算方法与技改前一致,使用ORIGEN-S程序,对各循环各区采用燃耗分段的包络计算方法。主要计算参数如下:

堆芯额定热功率: 1930MWt:

燃料组件数: 121;

燃料富集度: 4.45%。

技改后由于堆芯燃料组件富集度及循环长度等发生改变,导致堆芯积存量发生改变。堆芯主要裂变产物积存量见表1.2-1。

1.2.1.2 一回路源项

根据《海南昌江核电厂1、2号机组长燃料循环换料堆芯燃料管理论证项目——回路源项计算报告》,一回路源项计算的假设及方法与技改前一致。用于计算正常运行工况下排放到环境中的放射性气态和液态流出物的一回路源项,分为现实和保守两种情况。现实情况中关于燃料元件的行为、废物处理系统运行及其释放的假设均建立在运行经验反馈的基础上,其放射性活度值称为"预期值"。保守情况相应于运行状态下反应堆冷却剂活度的极限工况,其放射性活度值称为"设计值",用于放射性废物处理系统的源项设计,也是最大设计源项值。

现实和保守情况下一回路冷却剂中的裂变产物和腐蚀产物均考虑了稳态工况和瞬态工况两种运行工况。计算假设及方法如下:

1) 现实情况

裂变产物: 稳态运行工况下一回路冷却剂中裂变产物比活度取0.55GBq/t I-131当量

比活度(法国同类电站200个堆年的运行平均值),使用PROFIP5程序计算。瞬态值采用与参考电站一样的峰值因子。

腐蚀产物:稳态运行工况下一回路冷却剂中腐蚀产物(除 Ag-110m、Sb-124)比活度使用 PACTOLE 程序计算;腐蚀产物中的 Ag-110m 和 Sb-124 的稳态值为参考电站的设计值。瞬态值和冷停堆值均为参考电站的设计值。

2) 保守情况

裂变产物:对稳态工况下一回路冷却剂比活度使用 PROFIP5 程序计算。采用如下假设:

- 0.55GBq/t I-131 当量,在最初 1/4 燃料循环周期;
- 4.44GBq/t I-131 当量,在中间 1/2 燃料循环周期;
- 37GBq/t I-131 当量,在最后 1/4 燃料循环周期。

瞬态值采用与参考电站一样的峰值因子。

腐蚀产物:根据参考电站的假定,保守情况的稳态运行工况下一回路冷却剂中的腐蚀产物比活度,保守地认为是现实情况结果的三倍。瞬态值和冷停堆值均为参考电站的设计值。

一回路源项计算结果见表1.2-2。

1.2.1.3 二回路源项

二回路系统的污染是由于蒸汽发生器的传热管出现泄漏造成。与一回路源项相对应,二回路源项分为现实和保守两种情况进行计算。现实和保守情况下二回路冷却剂中的裂变产物和腐蚀产物均考虑了稳态工况和瞬态工况两种运行工况。

根据《海南昌江核电厂 1、2 号机组长燃料循环换料堆芯燃料管理论证项目—二回路源项计算报告》,稳态工况和瞬态工况下二回路源项计算采用的假设如下:

稳态工况:假设两台蒸汽发生器中只有一台在一年中的最后两个月发生泄漏(实际运行中的大亚湾核电站和岭澳一期核电站至今尚未记录到可测到的蒸汽发生器泄漏率),单台蒸汽发生器一次侧向二次侧的初始泄漏率为0.5kg/h,假设反应堆冷却剂从一回路到二回路的泄漏率在2个月内从0变为72kg/h,并假设是在较为不利的情况下,即考虑反应堆运行在37GBq/tI-131当量比活度下发生泄漏。

瞬态工况: 瞬态工况持续 2 小时,假定两台蒸汽发生器中只有一台发生一回路向二回路系统的泄漏,瞬态期间其泄漏率保持稳态末期的值不变。

计算得到各种工况下二回路系统水和蒸汽中惰性气体、碘和铯的各核素最大比活度 见表 1.2-3。

1.2.1.4 H-3 源项

在压水堆核电站中,氚的主要产生途径包括:燃料裂变(三元裂变)产生的氚通过燃料包壳扩散或燃料包壳破损处泄漏进入主冷却剂中;主冷却剂中中子与可溶硼的反应;主冷却剂中中子与可溶锂的反应;主冷却剂中中子与氘的反应;二次中子源中铍受中子活化产生的锂进一步与中子发生反应产生氚,然后通过不锈钢包壳进入主冷却剂中。

根据《海南昌江核电厂 1、2 号机组长燃料循环换料堆芯燃料管理论证项目—反应 堆冷却剂中氚产生量计算报告》,堆芯氚积存量采用 ORIGEN-S 程序计算。一回路冷却 剂中核反应(产生氚相关)的反应率采用 MCNP 程序计算。分为现实和保守两种情况 进行计算。各种情况下的计算假设如下:

现实情况下假设堆芯中氚的释放份额(由燃料芯块释放到一回路冷却剂)为0.5%, Li-7 的丰度为99.98%;保守情况下假设堆芯中氚的释放份额为1%,Li-7 的丰度为99.96%。在两种假设下,B-10 的丰度均取为19.8%,氚的丰度取0.015%。计算中考虑了负荷因子0.9。结合参考电站的气液态排放比例,得出单台机组氚的设计年排放量为:

·现实情况:气态: 3.54E+12Bq/a; 液态: 3.54E+13Bq/a。

·保守情况:气态: 3.93E+12Bq/a; 液态: 3.93E+13Bq/a。

1.2.1.5 C-14 源项

C-14 是碳的一种放射性同位素,是一种半衰期长达 5730 年的纯 β 源。在反应堆中存在多种可以产生 C-14 的核反应,主要由燃料、堆芯结构材料和冷却剂中的 N-14、O-17和 C-13 与中子发生核反应产生。另外,C-14 也可以通过三元裂变产生,但这种途径产生的 C-14 的量可以忽略不计。

根据《海南昌江核电厂 1、2 号机组长燃料循环换料堆芯燃料管理论证项目—C-14 源项计算报告》,一回路冷却剂中 C-14 的产生率采用 MCNP 程序进行计算。分为现实和保守两种情况进行计算。各种情况下的计算假设如下:

现实情况下假设一回路冷却剂中 N 浓度为 5ppm,保守情况下假设一回路冷却剂中 N 浓度为 25ppm,在两种假设下,O-17 的丰度均取为 0.038%,N-14 的丰度取 99.632%,反应堆运行的负荷因子为 0.9。

结合参考电站的气液态排放比例,得出单台机组 C-14 的设计年排放量为:

·现实情况:气态: 2.15E+11 Bq/a;液态: 1.58E+10 Bq/a。

·保守情况:气态: 2.60E+11 Bq/a;液态: 1.91E+10 Bq/a。

1.2.2 放射性废液管理系统及排放源项

本次技改不改变昌江核电厂 1、2 号机组原有废液处理、排放设施,废液处理、排放设施的情况如下。

放射性废液系统用于控制、收集、处理、输送、贮存、监测和排放核电厂正常运行期间(包括发生预计运行事件时)产生的放射性废液。废液管理系统由下列系统组成:

- 硼回收系统(TEP):
- 废液处理系统(TEU):
- 核岛废液排放系统(TER);
- 放射性废水回收系统(SRE);
- 核岛疏水排气系统(RPE)。

其它已被污染或可能被污染的废液由下列系统收集、处理或排放:

- 化学和容积控制系统(RCV);
- 反应堆换料水池和乏燃料水池冷却和处理系统(PTR);
- 蒸汽发生器排污系统(APG):
- 常规岛废液收集系统(SEK);
- 一 常规岛废液排放系统(SEL)。

1.2.2.1 硼回收系统(TEP)

硼回收系统(TEP)是通过过滤、除盐和除气工艺将来自化学和容积控制系统(RCV)和核岛疏水排气系统(RPE)的未污染的含氢反应堆冷却剂进行净化、贮存,然后通过蒸发工艺,制取反应堆补给水和 4%(重量百分比)的硼酸溶液返回反应堆硼和水补给系统(REA)复用。

本系统还可以直接对 RCV 系统的硼酸浓度低的反应堆冷却剂下泄流用离子交换工艺进行除硼。

(1) 设计基准

TEP 系统为两台机组共用,位于核辅助厂房。系统设置了两条生产线,每条生产线由净化、水与硼分离和除硼三部分组成。在正常运行情况下,净化部分是一条生产线对应一台机组,水和硼酸分离部分为两台机组共用;除硼部分由三个除盐器组成,每台机组的 RCV 装置各用一个除盐器(005DE、007DE),另一个除盐器(006DE)为两台机组蒸馏液除硼共用。

本系统设计成能处理电厂以基本负荷或负荷跟踪运行时所产生的含氢反应堆冷却剂,再加上电厂每年每台机组多次停堆和启动瞬变时所产生的含氢反应堆冷却剂。

本系统的前贮槽和净化部分可接收和处理每台机组的 RCV 系统来的最大下泄流 (27.2m³/h),两条生产线独立运行,在正常运行期间,每条生产线对应一台机组,又 能互相备用,每条生产线的处理能力为 27.2m³/h。

前贮槽的部分容积还能用来接收余热导出系统(RRA)在 180℃冷却开始时的中间 热停堆期间所排出的反应堆冷却剂。

中间贮槽的容积可以满足本系统前后两部分的独立运行,同时不影响反应堆的运行。中间贮槽共三个,每个贮槽的有效容积为 350m³。

本系统蒸发部分将反应堆冷却剂分离为蒸馏液和浓缩液,处理能力为 3.5 m³/h。蒸馏液经冷却后,含硼量低于 5ppm,通常可作为反应堆补给水复用,当一回路氚的浓度高于控制值时,TEP 蒸馏液直接送往 TER 系统监测、排放;浓缩液含硼量为 7000ppm,质量合格时可作为 4%硼酸溶液复用。

(2) 系统描述

TEP 系统由三部分组成:

- 净化部分:包括前贮槽、过滤器、除盐器和除气装置。
- 水和硼酸分离部分: 包括中间贮槽、蒸发装置、蒸馏液监测槽和浓缩液监测槽。
- 一 除硼部分: 设三个相同的阴床除盐器,对 RCV 来的含硼反应堆冷却剂直接除硼。 一台机组对应一台除盐器,另一台蒸馏液用除盐器可以作为前二个除盐器的备用。

两台机组排出的含氢反应堆冷却剂分别由两个前贮槽(001BA,008BA)接收,然后用前贮槽泵(001PO,002PO)输送到两个净化系列,每个净化系列对应一台机组。含氢的反应堆冷却剂经除盐预过滤器(001FI,002FI),再经阳床除盐器(001DE,002DE)、混床除盐器(003DE,004DE)、树脂滞留过滤器(003FI,004FI)净化后,进入除气塔(001DZ,002DZ)进行脱气。去除了裂变气体和氢气的反应堆冷却剂由除气塔疏水泵(003PO,004PO)送去冷却,经过两次冷却(经 001EX、002EX 与 001RF、002RF)后进入中间贮槽(002BA 或 003BA、004BA)暂时贮存。

由除气塔脱出的气体经冷凝器(001CS,002CS)冷却后,通过核岛疏水排气系统(RPE)送到废气处理系统(TEG)的含氡废气子系统进行贮存衰变。

三个中间贮槽(002BA或003BA、004BA)共用一台混合和输送泵(007PO)。

用蒸发器供料泵(005PO,006PO)将已经过净化处理的反应堆冷却剂从一个中间 贮槽抽出,送至自然循环蒸发器(001EV、002EV)内,通过蒸发装置的分离操作,得 到浓度约 4%的硼酸溶液和蒸馏液。两者经过冷却后分别收集在浓缩液监测槽(007BA,016BA)和蒸馏液监测槽(005BA,006BA)内,经取样分析监测合格后用浓缩液泵(014PO)和蒸馏液泵(013PO,012PO)送到反应堆硼和水补给系统(REA)的 4%硼酸贮存槽和反应堆补给水箱内待复用。

如果蒸馏液中硼含量偏高(>5ppm)时,则可以在阴床除盐器(006DE)中进一步进行除硼处理。

还有两台阴床除盐器(005DE,007DE)直接对化学和容积控制系统(RCV)来的含硼量较低的反应堆冷却剂进行除硼,然后直接返回原系统。

TEP系统的设备全部安装在核辅助厂房内。

TEP 系统主要设备特性参见表 1.2-4。

(3) 系统运行

1) 正常运行

本系统净化部分配备了两条相同的生产线,两条生产线内配置了两套相同的设备。 每条生产线的净化部分(即前贮槽、过滤器、除盐器和除气塔等设备)处理相应的反应 堆排出的冷却剂。

中间贮槽、蒸发装置、蒸馏液监测槽和浓缩液监测槽是两台机组共用的。前贮槽、除盐器和除气塔的操作都是自动连续进行的。蒸发和除硼操作是由操作人员按需要间歇进行的。

前贮槽 001BA (008BA) 覆盖着一定数量的氮气。在正常操作下,不排出气体,气体覆盖层压力随液位变化而变化,通常在 0.12 至 0.32MPa (绝压)之间变化。前贮槽除了有压力与液位检测报警外,槽顶气相与槽底液相管路上均设有安全阀可以保护贮槽。

前贮槽 001BA(008BA)的液位与压力检测系统自动控制除气塔 001DZ(002DZ)的启动和停运。前贮槽的正常液位控制在 $10\sim28m^3$ 之间,以确保前贮槽在净化部分不能使用时,仍能贮存反应堆以最大排放速率($27.2m^3/h$)送来的冷却剂至少半小时的量。

当一个中间贮槽被注满时,则手动关闭该槽的进料阀,打开另一个中间贮槽的进料阀。

蒸发操作前,要先用输送和混合泵 007PO 将中间贮槽 002BA 中的料液连续搅动混合,然后取样分析。蒸发器手动启动,操作稳定后,改为自动运行。蒸发产生的二次蒸汽经蒸馏液冷凝器 003CS(004CS)冷凝后,再经蒸馏液冷却器 003RF(004RF)冷却至 50℃,进入蒸馏液监测槽 005BA(006BA)。

在蒸馏液监测槽中的蒸馏液通过取样分析后有以下几种出路:

- · 如果蒸馏液的水质满足反应堆补给水要求,则由蒸馏液泵 013PO (012PO) 将其直接送到 REA 反应堆硼和水补给系统作补给水使用:
- · 如果蒸馏液中硼含量略高,则将其送到阴床除盐器 006DE 进一步除硼后送 REA 使用:
- ·如果蒸馏液不合格,需再处理时,则用蒸馏液泵 013PO (012PO) 打回中间贮槽 去,重新在本系统的蒸发装置中处理:
- · 为了维持反应堆冷却剂中合适的氚浓度,通过废液处理系统(TEU)的排放管将 含氚高的蒸馏液送到废液排放系统(TER)排放。

蒸发器中的浓缩液自动排出,经浓缩液冷却器 005RF(006RF)冷却后进入浓缩液监测槽(007BA,016BA)。

在浓缩液监测槽中的浓缩液经取样分析后有以下几种出路:

- · 如果浓缩液合格,则用浓缩液泵 014PO 送到 REA 反应堆硼和水补给系统作为补给硼酸用;
- · 如果浓缩液不合格(硼含量远小于 7000ppm,但其他指标合格),则经浓缩液泵(014PO)返回到中间贮槽中去,重新用蒸发器处理;
- · 如果浓缩液不合格(放射性浓度较高),也可用泵送到废液处理系统(TEU)化 学排水接收槽,由 TEU 系统蒸发器处理:
- · 在浓缩液放射性浓度大于 1.85TBq/m³ 的情况下,送至固体废物处理系统(TES)装桶固化。

2) 特殊运行

- · 在打开反应堆压力容器前,利用除气塔对反应堆冷却剂进行除气。
- ·用蒸发器对由除盐水分配系统(SED)来的补给水除氧。
- · 对含氧太高的 REA (硼和水补给系统)补给水除氧。
- · 一条净化生产线不能使用时的运行。

1.2.2.2 废液处理系统(TEU)

废液处理系统收集、贮存和监测核电厂正常运行工况和预期运行事件下产生的含有放射性的废液,根据要求对各类废液进行处理,处理过的废液经监测合格后通过核岛废液排放系统(TER)向环境排放。

(1) 设计基准

废液处理系统的设计基准是确保核电厂放射性液体流出物的年排放量和放射性浓度低于国家规定的限值,使公众和运行人员所受的辐射照射满足"可合理达到尽量低"的ALARA 原则。

废液处理系统是按容纳和处理核电厂正常运行和预期运行事件下产生的最大预期 废液量和最大预期放射性活度、并留有适当的裕量而进行设计的。

本系统是两堆共用,位于核辅助厂房内。所有贮槽均布置在相应的设备间内,设备间设计成可滞留贮槽泄漏或破损时流出的放射性废液。

(2) 系统描述

放射性废液根据放射性浓度和化学成分由 RPE 系统分类收集,然后送至 TEU 系统 贮槽分别贮存。按照废液的特性分别采用下述方法进行处理。

地面排水、服务排水放射性浓度低,悬浮固体含量高,用过滤方法处理,处理能力为 27.2m³/h。每台机组地面排水量约为 10000m³/a(双堆),服务排水量约为 2500m³/a(双堆)。

工艺排水放射性浓度高,化学物质含量低,一般采用除盐工艺处理,处理能力为 $10\text{m}^3/\text{h}$,去污因子为 $10\sim100$ 。工艺排水量约为 $4500\text{m}^3/\text{a}$ (双堆)。

化学排水放射性浓度高,化学物质含量也高,用蒸发方法处理,处理能力为 3.5 m³/h, 去污因子为 1000,处理废液量约为 3000m³/a(双堆)。

设计中要考虑各类废液与每一种处理系列之间的横向联接,以便根据废液水质情况 选择合适的处理方法。

地面排水接收槽的容积为 $2\times20\text{m}^3$ 和 $2\times40\text{m}^3$,化学排水接收槽的容积为 $3\times50\text{m}^3$,工艺排水接收槽的容积为 $2\times35\text{m}^3$,监测槽的容积为 $2\times35\text{m}^3$ 。

a) 除盐工艺包括:

两个工艺排水接收槽 TEU001/002BA。工艺排水在贮槽中混和、取样分析。

- 一台工艺排水泵(001PO),用于废液的混和搅拌、取样分析和输送。当废液需要除盐处理时,用其将废液送往除盐净化装置。当废液的放射性浓度低于排放管理限值时,也用其将废液送往过滤器 TEU002/012FI 过滤后经 TER 系统监测、排放。
 - 一台预过滤器 TEU004FI。用于去除悬浮物质,以保证除盐器效率。 两台串联的除盐器。
 - 一台树脂滞留过滤器 TEU005FI。

经过处理后的废液进入监测槽 TEU009/010BA。

b) 蒸发工艺包括:

- 三个化学排水接收槽 TEU005/006/007BA 用于废液的收集、贮存、混和、取样分析和 pH 值调节。
- 一台化学排水泵 TEU003PO,用于 TEU005/006/007BA 槽内废液的混合搅拌、取样分析和输送。
- 一个化学中和站由酸、碱试剂槽和两台计量泵组成,用于调节接收槽中废液的 pH 值。
- 一套蒸发处理设备包括:蒸发器供料泵 TEU005PO、蒸发预过滤器 TEU001FI、加热器 TEU001RE、蒸发器 TEU001EV、旋风分离器 TEU001ZE、泡罩塔 TEU002ZE、冷凝器 TEU001CS、蒸馏液冷却器 TEU001RF 和冷凝水冷却器 TEU002RF。

蒸发浓缩液(硼含量约为 40000ppm)由 TES 系统的浓缩液槽收集,然后装桶固化或返回蒸发器再处理。

蒸馏液由两个监测槽(TEU009/010BA)接收。

蒸发净化单元包括化学试剂注入装置,当蒸发器处理易起泡的废液时,可由本装置注入消泡剂。蒸发净化单元和除盐净化单元设有集中和就地取样点,通过取样分析来监测废液的特性及处理效果。

对监测槽 TEU009/010BA 中的废液进行取样分析。如果其放射性浓度和化学特性符合排放要求,则排往废液排放系统(TER)监测排放。否则,送至蒸发器重新处理。

c) 过滤工艺包括:

四台地面排水接收槽 TEU003/004BA, TEU012/013BA, 用于地面排水和服务排水的收集、贮存、混和、取样分析及化学中和。

地面排水泵 TEU002/004PO, 用于废液的混和搅拌、取样分析和输送。

两台并联使用的过滤器 TEU002/012FI。可以在不停止处理废液的情况下更换过滤器芯子。

当地面排水接收槽内废液的放射性浓度高于排放管理限值时,可送至化学排水接收槽采用蒸发工艺处理。与废液接触的设备的材料均为不锈钢。

TEU 系统主要设备特性参见表 1.2-5。

(3) 系统运行

TEU 系统总的运行原则如下:

TEU 系统有手动控制和自动控制两种控制方式,操作人员可在 KSN 工作站监测系统的运行。

每类废液的接收槽(包括工艺排水接收槽、化学排水接收槽、地面排水接收槽)应 保持有一个槽处于可接收废液的状态。接收槽充满后,要对槽内废液进行搅拌和取样。

根据取样分析结果,废液经过滤装置送往 TER 系统监测、排放;或由蒸发净化单元或除盐净化单元。

蒸发净化单元由手动启动,运行稳定后,即进入自动控制状态。除盐器是手动启动的。

1.2.2.3 核岛废液排放系统(TER)

(1) 设计基准

- 1) 核岛废液排放系统逐槽收集下列来源的废液,每槽经混匀、取样分析,有控制 地将低于放射性浓度排放限值的液态流出物向环境排放。
 - ① 放射性废液
 - 硼回收系统(TEP)蒸馏液监测槽来的蒸馏液。
 - 一 废液处理系统(TEU)来的废液。
 - 放射性废水回收系统(SRE)来的废液。
 - 核岛疏水排气系统(RPE)排水。
 - 核岛废液排放系统(TER)地坑疏排水。
 - 固体废物处理系统(TES)的疏水。
 - ② 常规废水
 - 蒸汽发生器排污系统(APG)蒸汽发生器排污液。
- 2) 当因环境稀释能力不足而要求延迟排放、或当取样分析或辐射监测系统(KRT) 监测到废液放射性浓度超过规定排放限值时,可暂存废液。
 - 3) 将超过排放限值的放射性废液送往废液处理系统(TEU)处理。
- 4) 按照 GB6249-2011《核动力厂环境辐射防护规定》的要求, TER 系统设计排放浓度控制值为 1000Bq/L。

(2) 系统描述

TER 系统设置三个 500m³ 的废液排放贮槽 TER001/002/003BA, 贮槽置于与 SEL 系统共用的滞留池内,滞留池的容量大于两个系统六个贮槽同时破裂溢出的全部废液量。三个贮槽中一个用于接收废液,一个用于废液的混匀、取样分析和监测排放,另一个用于备用。

每个贮槽配有一台排放泵 TER001/002 /003PO, 用于在取样分析之前搅拌槽内料液和排放废液,或将废液送往废液处理系统(TEU)重新处理。地坑泵 TER004/005PO 安

装在地坑 TER001PS 内, 地坑泵 TER006PO 安装在地坑 TER002PS 内, 地坑泵 TER007PO 安装在地坑 TER003PS 内。地坑泵将地坑内废液送至贮槽。

三个贮槽有一根共用的排放管线及一根通往 TEU 系统的管线。在排放管线上安装有一台辐射监测仪和受 KRT 控制的自动隔离阀、一个手动隔离阀、一个流量调节阀、一个止逆阀及一个累计流量计。

贮槽的材料为碳钢内外涂涂料,其余设备的材料均为不锈钢。排放管线的材料为不锈钢。

TER 系统主要设备特性参见表 1.2-6。

(3) 系统运行

正常运行时,三个 TER 贮槽中的一个接收废液,一个混合、取样分析和监测排放 废液,另一个备用。各系统来的废液在贮槽内经充分混合使其成分均匀,取样分析后根 据废液放射性水平及环境稀释能力来确定废液的排放流量。

贮槽内废液放射性浓度超过排放限值,废液被送回 TEU 系统化学排水接收槽重新进行处理。

排放管上的 KRT 监测系统对贮槽内废水放射性浓度有辅助监测作用,如果排放废水的放射性浓度超过预定限值,监测器会发出警报并关闭隔离阀。

TER 系统和 SEL 系统相连,互为备用。当 TER 系统的贮槽不能接收废水时,SEL 的备用贮槽将用于接收核岛的废液。

(4) 排放管理

为了确保放射性流出物排放可控达标,昌江核电厂制订了管理文件《放射性液体排放管理》,用于各机组在正常运行生产活动中,与放射性流出物排放相关的申请、取样、分析、排放实施、监测管理等活动的监督管理。根据《放射性液体排放管理》,放射性液态流出物在排放前经过申请、取样及分析,达到排放条件,经批准后排放。排放条件如下:

- ①高潮位时排放。
- ②TER 执行排放时无其它生产单元机组 TER 同时排放。
- ③对于 TER, 要按照流出物监测人员在"三废管理系统"中确定的排放流速实施排放。
- ④TER 和 SEL 排放必须分别在 KRT901MA、KRT902MA 在线辐射监测仪的监测下进行,若排放过程中触发辐射监测仪报警,运行人员应按照报警规程进行处理。当排放工况不能满足时,则应立即停止排放。

1.2.2.4 放射性废水回收系统 (SRE)

(1) 设计基准

本系统有选择地收集下列场所产生的放射性废液或可能带放射性的废液:

- 放射性洗衣房(AN厂房)排放废液
- 核岛厂房内化学去污排放废液
- 一 核岛辅助设施(BOP)的厂区实验室(AL厂房)产生的废液
- 一 核岛辅助设施(BOP)的放射性机修及仓库(AC厂房)产生的机械去污废液和 化学去污废液

(2) 系统描述

a) 核岛部分

淋浴间、更衣室洗涤盆和电气厂房冷冻水系统(DEL)的排水靠重力流入废水贮槽 SRE001BA。

地坑 SRE003PS 收集 NB002 房间和 DVN 系统冷却器的疏水,然后由地坑泵 SRE008PO 将这些废液送到贮槽 SRE001BA 内。

来自核岛更衣室和全厂放射性实验室等房间的地面疏水靠重力收集在废水贮槽 SRE001BA 中。

贮槽中的废水由排水泵 SRE001PO 经过滤器 SRE001FI 过滤后再经 RPE 送往 TER 或 TEU 系统排放。

b) BOP 部分

①放射性机修车间及仓库 AC 产生的废液

放射性机修车间及仓库产生的化学去污废液靠重力流入化学去污水疏水箱 SRE202BA,经过混匀和取样分析后,由化学去污水排水泵 SRE202PO 送往 TES 系统的浓缩液槽处理或送往 TEU 系统的化学接收槽处理。

放射性机修车间及仓库排放的机械去污废液,借助重力流入机械去污水疏水箱 SRE201BA,经混匀和取样分析后,由泵 SRE201PO 送往 TEU 系统地面排水接收槽或送往 TER 系统监测、排放。

②厂区实验室 AL 产生的废液

厂区实验室产生的废液靠重力流入厂区试验室疏水箱 SRE203BA,经过混匀和取样分析后,由厂区试验室排水泵 SRE203PO 送往 TEU 系统地面排水接收槽处理或送往 TER 系统监测、排放。

③放射性洗衣房排水

洗衣机的洗涤和漂洗水靠重力分别流入洗衣房疏水箱 SRE301BA 或 302BA,用泵 经循环管线使箱内的废液混匀,以便取样分析。根据取样分析结果,由泵 SRE601PO 或 602PO 将废水送往 TEU 的地面排水槽 TEU013BA 进行处理;小于排放限值的废水,直接送往 TER 系统监测排放。

SRE 系统主要设备特性参见表 1.2-7。

(3) 系统运行

a) 核岛部分

当废水贮槽 SRE001BA 的液位达到高液位时,泵 SRE001PO 自动启动。当槽中液位达到低液位时自动停运。用泵经循环管道能使废水混合均匀,以便在排放前进行取样。贮槽可就地取样以检测废水的放射性水平,如果放射性浓度超过排放限值,则槽中的水需要经 RPE 地面疏水管送往 TEU 的地面排放水槽 TEU003、004BA 处理;小于该值,则送往 TER 系统。

b) BOP 部分

①放射性机修车间及仓库 AC 产生的废液

化学去污水疏水箱 SRE202BA 高液位报警信号通知操作人员水箱已充满。操作人员进行必要的处理后,根据取样分析结果,将废液送到 TES 系统的浓缩液贮槽或 TEU 系统的化学排水槽。出现低液位信号时,自动停泵。可注入化学试剂调节废液的 pH 值,以防沉淀物在回路中沉积。

②放射性机修车间及仓库排放的机械去污废液

机械去污水疏水箱 SRE201BA 高液位报警信号通知操作人员水箱已充满。操作人员可进行必要的处理,根据取样分析结果,将废液送往 TEU 的地面排水槽或 TER 的贮槽。出现低液位信号时,自动停泵。

③ 厂区试验室排放废液

厂区试验室疏水箱 SRE203BA 的高液位信号自动启动泵。根据取样分析结果,将废液送往 TEU 系统的地面排水接收槽或 TER 系统的贮槽。出现低液位信号时,自动停泵。

④ 放射性洗衣房排水

当疏水箱 SRE310BA 或 SRE302BA 内的水达到高液位时,排水泵自动启动。当达到低液位时泵自动停运。各疏水箱均可就地取样以检验废水的放射性水平。

1.2.2.5 核岛疏水排气系统(RPE)

核岛疏水排气系统 (RPE) 在核岛内有一部分是每台机组专用,其余部分是两台机组共用。本系统收集核岛内产生的所有放射性废液和废气,它们来自:

- 机组正常运行;
- 换料停堆、维修停堆各阶段及随后的启动:
- 设备维修及维修前设备排水;
- 正常泄漏和事故泄漏:
- 各种瞬态。

根据废物的特性(可复用或不可复用的废液、含氢或含氧废气),这些废物将分别由各自的管网输送到核辅助厂房的硼回收系统(TEP)、废液处理系统(TEU)和废气处理系统(TEG)。在反应堆发生事故以后,高放废液再注入反应堆厂房。

(1) 设计基准

根据所收集的放射性物质的种类不同,RPE 系统分为六个独立的子系统:反应堆冷却剂疏水子系统、工艺疏水子系统、地面疏水子系统、化学疏水子系统、含氢废气子系统、含氧废气子系统。

RPE 系统采用的设计基准如下:

- 从与安全有关设备间来的废水,要防止由于疏水管线回流而造成与安全有关设备的淹没;
- 贯穿安全壳的疏水管线设置隔离阀;
- 地坑泵有足够的能力,以防止在正常预期疏水期间地坑溢流:
- 采取预防措施在反应堆发生事故后将高放废液再注入反应堆厂房。

(2) 系统描述

1) 反应堆冷却剂疏水子系统

该系统收集含氢的反应堆冷却剂疏水和回路的泄漏。同时还收集当硼酸浓度发生变化时排出的反应堆冷却剂。这些废液被送至 TEP 系统处理。

2) 工艺疏水子系统

该系统收集含氧的反应堆冷却剂疏水和泄漏以及树脂冲洗水。这些疏水通常是化学成分含量低的放射性废液。对这些废液的收集和输送方法是:

- 送至核辅助厂房工艺疏水坑 (RPE002PS), 再用泵输送到 TEU 系统;
- 由 TEU 系统直接收集:
- 一 在事故工况时,一旦接收到高放射性信号,立即将收集在核辅助厂房工艺疏水坑 (RPE002PS) 和燃料厂房工艺疏水坑 (RPE008PS、009PS、012PS、013PS)的高放射 性废液再注入反应堆厂房。
 - c) 地面疏水子系统

该系统收集核辅助厂房、燃料厂房、连接厂房的地面疏水。这些疏水是化学成分含量不定的低放射性废水。这些废水按下述方法进行收集和输送:

- 由集水箱、排水沟和疏排管道收集;
- 用管道直接送至核辅助厂房地面疏水坑 (RPE001PS);
- 废水排至各自厂房的地面疏水坑中,用泵输送到 TEU 系统;
- 热洗衣房来的放射性废水,同样也送到地面疏水坑,再用泵输送到 TEU 系统;
- 在事故工况时,一旦接收到高放射性信号,即将收集在核辅助厂房地面疏水坑 (RPE001PS) 和燃料厂房地面疏水坑 (RPE010PS、014PS) 的高放射废液再注入反 应堆厂房。

4) 化学疏水子系统

该子系统收集核岛放化实验室的废水和来自处理含有放射性化学物质系统的疏水,包括反应堆厂房的地面疏水。这些疏水通常是含有高化学成份的放射性废水。

除反应堆厂房的地面疏水被直接送到 TEU 化学排水接收槽 (TEU005BA、006BA)或在应急情况下排入 TEU 备用槽(TEU016BA、017BA),通常化学疏水被送至核辅助厂房的化学疏水坑 (RPE003PS),再由泵输送到 TEU 化学排水接收槽。

5) 含氢废气子系统

该系统收集反应堆冷却剂系统、TEP系统除气塔运行中产生的含氢废气及用氮气吹扫各种箱体的覆盖层所产生的含氢废气。这些废气被送到TEG含氢废气子系统进行处理。

6) 含氧废气子系统

该系统收集反应堆在启动、冷停堆时设备排气及常压下贮槽、手套箱等排气,这些 废气被送到 TEG 含氧废气子系统进行处理。

RPE 系统主要设备特性参见表 1.2-8。

(3) 系统运行

1) 反应堆冷却剂疏水子系统

该系统设计成间歇运行方式。它可在正常运行期间和预期瞬态期间保持连续运行。 反应堆厂房产生的反应堆冷却剂疏水被收集到反应堆冷却剂疏水箱(RPE001BA), 并由两台并联安装的泵(RPE001PO、RPE002PO)输送。

2) 工艺疏水子系统

该系统设计成间歇运行方式。它可在正常运行期间和预期瞬态期间保持连续运行。

在反应堆厂房位置高于工艺疏水管安全壳贯穿件的系统和设备,工艺疏水靠重力收集到核辅助厂房的 TEU 工艺排水接收槽。

在反应堆厂房位置低于工艺疏水管安全壳贯穿件的系统和设备,工艺疏水收集到工艺疏水箱(RPE003BA),再用泵(RPE014PO)将废液送到核辅助厂房工艺疏水坑(RPE002PS)。工艺疏水箱(RPE003BA) 有溢流管,可使超过溢流管的废水排到安全壳疏水坑(RPE011PS)。

其它厂房的系统和设备疏水输送方式:送到核辅助厂房工艺疏水坑(RPE002PS),再用泵(RPE023PO、024PO)输送到TEU系统;靠重力直接送到TEU系统。

c) 化学疏水子系统

本系统靠重力收集疏水,这些废水被送到化学疏水坑(RPE003PS),再用泵输送到 TEU 化学排水接收槽。

反应堆厂房地面疏水由重力收集到安全壳疏水坑(RPE011PS),疏水坑液位测量 仪表,根据预先设定的高高和低低液位整定值来分别控制两台泵的启动和关闭。这些疏 水通常是含有放射性化学成份的废水,由泵将其送至核辅助厂房的 TEU 化学排水接收 槽(TEU005BA、006BA)。

4) 地面疏水子系统

该系统设计成间歇运行方式。它能在正常运行期间和各种预期瞬态期间保持连续运行。燃料厂房和连接厂房中的地面疏水通过重力收集到各自厂房的疏水坑,再用泵送至核辅助厂房地面疏水坑 (RPE001PS)。

核辅助厂房地面疏水坑(RPE001PS)接收核辅助厂房的设备泄漏、疏水,及其它厂房地面疏水和房间地面疏水 (一般情况下放射性水平低于排放管理限值),再用两台并联安装的泵将疏水坑中废液输送到 TEU 地面排水接收槽。

5) 含氢废气子系统

维持本系统压力略高于大气压,以防止空气渗入。

6) 含氧废气子系统

位于反应堆厂房的本系统,通过安全壳换气通风系统 (EBA) 的排风机使系统在运行时保持负压。机组在停堆期间本系统主要用来收集反应堆冷却剂系统中的饱和湿气,这些气体经过疏水含氧废气罐(RPE002BA)被分离后,气体排入安全壳换气通风系统 (EBA),废水排入RPE工艺疏水子系统。

核辅助厂房的含氧废气排至废气处理系统(TEG),由 TEG 的排风机保持负压。

1.2.2.6 化学和容积控制系统 (RCV)

(1) 设计基准

化学和容积控制系统(RCV)为反应堆冷却剂系统(RCP)提供以下服务:

- 反应堆冷却剂容积控制:
- 一 反应堆冷却剂化学控制:与硼和水补给系统(REA)共同完成硼浓度的调节,从而控制反应性;控制气体的浓度;净化和过滤;含氧量和 pH 值的控制(与 REA 系统一起)。
 - 反应堆冷却剂泵密封水注入。

RCV 系统还提供以下服务:

- 为稳压器提供辅助喷淋;
- 稳压器满水时控制 RCP 压力:
- 为余热排出系统(RRA)的投运作准备;
- 为 RCP 系统充水、排水和进行水压试验;
- 高压安全注入(RCV系统的一部分与安全注入系统(RIS)共用);
- 当反应堆冷却剂系统处于半管运行时,使用上充泵进行自动补给(RCV系统的部分管道与安全注入管道(RIS)共同完成)。

RCV 系统定量设计基准参见表 1.2-9。

(2) 系统描述

RCV 系统由两个子系统组成:上充、下泄、密封水子系统和反应堆冷却剂净化和化学控制子系统。

1) 上充、下泄、密封水子系统

化学和容积控制系统的上充和下泄功能用于保持反应堆冷却剂系统稳压器中的水位,从而在电厂所有的运行阶段内保持适当的反应堆冷却剂的容量。

反应堆冷却剂的下泄流从一个反应堆冷却剂回路的冷段排到化学和容积控制系统中,在流过再生热交换器的壳侧时将流经管侧的上充流加热,然后下泄流流过下泄孔板进行降压,再流过下泄热交换器的管侧,其温度进一步降低。在下泄热交换器的下游,通过低压下泄阀使下泄流的压力进一步降低。低压下泄阀的功能是保持其上游的压力,以防在下泄孔板的下游发生闪蒸。

下泄流流过两台混合床除盐装置中的一台进行净化,去除离子态腐蚀产物和多数裂变产物。在需要降低反应堆冷却剂中的铯和过量的锂时可以再流过阳床除盐装置。

下泄流流过反应堆冷却剂的过滤器并从容积控制箱顶部的一条喷淋接管进入容积控制箱。氢气连续不断地供给容积控制箱,以扫除容控箱气相空间的裂变气体和控制在

堆芯处由于水的辐射分解所产生的氧的浓度。

三台离心式上充泵中的两台从容积控制箱吸水并将被冷却、净化过的反应堆冷却剂返回到反应堆冷却剂系统。正常工况下上充流由一台上充泵输送,这股上充流被分成两路:一路经再生热交换器的管侧被注入到反应堆冷却剂系统。另一路通过轴封水流量调节阀进入轴封水,它在泵轴承和第一级密封之间进入泵体。并在此分为两股,一股冷却剂流(称作泄漏流)润滑泵轴,然后大部分通过高压密封引漏离开泵体,其中的一小部分通过低压密封引漏离开泵体并引入 RPE 系统。反应堆冷却剂泵高压密封泄漏返回的冷却剂流通过密封水热交换器到上充泵吸入端。另一股冷却剂流冷却泵的下部轴承,进入 RCP 系统。它作为下泄流的一部分,通过正常或过剩下泄流道从 RCP 系统排出。

2) 反应堆冷却剂净化和化学控制子系统

化学和容积控制系统与反应堆硼和水补给系统共同完成对反应堆冷却剂中硼浓度 的控制,以补偿因温度变化、燃耗和氙毒变化所引起的反应性的慢变化。

去除反应堆冷却剂中的腐蚀产物和裂变产物,以便将反应堆冷却剂中的杂质含量及放射性水平控制在允许的范围内。

控制反应堆冷却剂的pH值、氧含量和其它溶解气体的浓度。

RCV 系统主要设备特性参见表 1.2-10。

(3) 系统运行

在反应堆启动时,化学和容积控制系统可为反应堆冷却剂系统充水、加压及排气。 在充水和排气操作完成后,即可建立化容控制系统的上充和下泄流量。在反应堆启动和 冷却剂系统升温时,利用余热排出系统和化容系统的低压下泄管线控制反应堆冷却剂的 压力。

在正常运行期间,通过上充、下泄维持主回路化学容积条件。

在停堆过程中,在堆芯冷却期间,由于冷却剂的收缩要求增加上充流量进行补偿。同期,将硼浓度提高到冷停堆的数值。如果必须打开反应堆压力容器,则通过用氮气置换容积控制箱中的氢气使反应堆冷却剂的含氢量降到 5mL/kg 以下,定期将容积控制箱的气体排到废气处理系统,释放出溶解的氢气。在电厂停堆时,如果要进行换料或维修操作,可利用化容系统的除盐装置净化放射性离子并采用扫气去除裂变气体,从而降低反应堆冷却剂的放射性水平。

1.2.2.7 反应堆换料水池和乏燃料水池冷却和处理系统(PTR)

(1) 设计基准

反应堆换料水池和乏燃料水池冷却和处理系统的冷却回路要满足单一故障准则的要求。冷却水泵和热交换器的冗余度为 2×100%。冷却水泵由柴油发电机供给应急电源。反应堆换料水池和乏燃料水池冷却和处理系统冷却回路的安全等级为 3 级。

1) 乏燃料水池冷却回路

冷却回路取决于乏燃料水池中乏燃料组件的剩余功率,乏燃料水池剩余功率将根据换料工况和乏燃料组件贮存情况确定。换料操作采用"全卸全装"的方式,即每次卸料时将堆芯的燃料组件全部卸入乏燃料水池。

在正常工况下,反应堆换料水池和乏燃料水池冷却和处理系统用一个冷却系列(一台泵和一台热交换器)冷却乏燃料水池水,并确保水池的水温不超过60℃(按设备冷却水系统水温为35℃考虑)。热交换器的换热面积将根据正常运行工况确定。

2) 乏燃料水池过滤和除盐回路

最高温度: 60℃; 处理能力: 60m³/h; 过滤孔径: 除盐装置前置过滤器过滤粒度为5μm, 除盐装置后过滤器过滤粒度为25μm。

3) 反应堆换料水池过滤回路 处理能力为 100m³/h, 过滤器的过滤粒度为 5um。

4) 换料水箱

换料水箱有效容积为 1664m³,可确保两台安喷泵、两台高压安注泵和两台低压安注泵约 20 分钟的用水量。

(2) 系统描述

1) 服务于乏燃料水池的设施

乏燃料水池分为 4 个部分:燃料转运舱、乏燃料水池、乏燃料容器装载井、乏燃料容器冲洗井。

- 冷却回路:水泵 001PO 或 002PO 抽送乏燃料水池的水流过热交换器 001RF 或 002RF,然后返回到乏燃料水池。
 - 一 过滤和除盐回路
 - 表面撇沫和过滤回路
 - 充水回路
 - 至换料水箱的排水回路
 - b) 服务于反应堆换料水池的设施

反应堆换料水池分成两个隔离室:反应堆换料水池和堆内构件存放区。

— 过滤回路

— 反应堆换料水池充水和排水

当反应堆换料水池需急速充水时,使用低压安注泵;缓慢充水则可用该系统的 002PO 水泵。

排水分两步进行,急速排水使用余热排出系统的水泵排至换料水箱。当水位降到反应堆压力容器法兰的高度,改用该系统 005PO 水泵继续排水。

PTR 系统主要设备特性参见表 1.2-11。

(3) 系统运行

乏燃料贮存水池通常是充满水的。在换料时,反应堆换料水池和燃料转运舱需充满水。当反应堆压力容器进行检查时,反应堆换料水池也需充满水。反应堆堆内构件存放区单独充水时,可用水闸门与反应堆换料水池隔离。

系统正常运行:

1) 乏燃料水池冷却、过滤和除盐回路

从乏燃料组件贮存在乏燃料水池起,冷却回路开始连续运行,水池的水温不高于 60℃。用一个冷却系列(一台泵和一台热交换器)冷却乏燃料水池。

冷却回路的流量为 361.5m³/h,由流量计监测。水泵的工作流量为 421.5m³/h,其中 60m³/h 提供给过滤和除盐回路。

过滤和除盐回路连续运行,其处理流量 60m³/h 由流量计监测,手动调节阀根据过滤器和除盐装置的压降调节流量。

回路最高工作温度根据树脂要求定为 60°C。当温度高于 60°C时,温度控制器发出报警信号,要求隔离过滤和除盐回路。

根据乏燃料水池的水质情况,可以投运表面撇沫和过滤回路,其流量为6m³/h。

2) 反应堆换料水池和附属回路

在整个反应堆压力容器开盖和换料水池充水过程中,应通过余热排出系统、化学和容积控制系统和硼回收系统对反应堆冷却剂进行去污处理,但要防止降低换料水池操作时的硼浓度。裂变气体和溶解的氢则通过化学和容积系统的容积控制箱和硼回收系统的除气塔去除。

当反应堆压力容器封头打开,反应堆换料水池充水后,过滤回路投入连续运行,过滤水量为 100m³/h, 由流量计监测。

余热排出系统保持反应堆换料水池的冷却剂最高温度为60℃。

根据反应堆换料水池的水质情况,可以投运表面撇沫和过滤回路,其流量为 5m³/h。

3) 换料水箱

在冬季需将换料水箱的水温保持在 7~13℃之间,为此设置了一组由温度控制器控制的电加热元件。

1.2.2.8 蒸汽发生器排污系统(APG)

(1) 设计基准

- 1)在正常运行时,APG 系统水处理设计流量最高能达到 59t/h,每台蒸汽发生器的排污量是相同的,每台蒸汽发生器的最大排污量约为额定蒸汽流量的 1.5%(即 29.5t/h)。
 - 2) 经排污系统处理后的排污水质指标应与二回路系统补给水的指标一致。

(2) 系统描述

蒸汽发生器排污系统分为排污水收集、冷却、减压、处理、回收或排放五部分,主要由热交换器、减压和流量控制阀、过滤器、离子交换器以及相应的管道和阀门等组成。

每台蒸汽发生器的排污水是靠两个径向对称的支管段在管板上收集的,并在其中的一根支管上设置一根取样接管,供取样分析用。两根支管在安全壳内合并后穿过安全壳。在安全壳外的排污管上设置了一根供蒸汽发生器保养用的氮气接管,并在每一根排污管上安装了一个无泄漏的隔离阀和一个手动流量控制阀,操作人员可以根据二次侧水质的好坏通过此阀控制排污量的大小。在功率运行时,排污量在7~59t/h之间变化。

两根排污管在安全壳外合并为一根排污母管,根据运行工况,可将排污水输向再生 热交换器,或非再生热交换器。一般来说,在电厂正常运行时,为了回收其热量,排污 水应由再生热交换器来冷却;而在热备用、热试验及与再生热交换器连接的设备或部件 失效时,排污水才由非再生热交换器进行冷却。再生热交换器的冷却水为凝结水抽取系 统来的凝结水,而非再生热交换器的冷却水则为设备冷却水。

排污水由热交换器冷却至与离子交换树脂相适应的温度(即 45~56°C 左右)之后,通过一个减压和流量控制阀,将热交换器下游的压力限制到 1.4MPa (表压)。

冷却和减压后,排污水被引至处理系列,即先通过一台过滤粒度为 5μm 的过滤器,然后通过一条或两条并联的离子交换管路进行净化处理,每条管路均串联有一台阳离子交换器、一台混合床离子交换器和一个手动流量调节阀。处理过的排污水再通过一台过滤粒度为 25μm 的树脂捕集过滤器,清除掉水中破碎树脂。

处理后的排污水通过凝汽器真空保护装置送到凝汽器。

在反应堆冷却剂系统向二回路泄漏之后的一台或多台蒸汽发生器的疏水情况下,处理后的排污水不能回到凝汽器,而排往废液排放系统。

在特殊情况下,也允许排污水不经处理直接排放。有以下两种特殊情况:

— 处理设施失效:

— 凝汽器失效且排污水只有轻微放射性。

在处理设施失效的情况下,排污水要进行连续的放射性监测,然后再送到废液排放 系统。

APG 系统主要设备特性参见表 1.2-12。

(3) 系统运行

1) 正常运行

正常运行工况下,蒸汽发生器二次侧的排污是连续的,排污水经过再生热交换器冷却后,经过减压、除盐处理后进入冷凝器。排污流量控制在 7~59t/h 之间。不论系统排污流量有多大,系统两条除盐管线必须同时运行。

- 2) 特殊稳态运行
- ① 使用非再生热交换器

在再生热交换器不可用或是反应堆处于冷凝器和凝结水泵不可用的情况下,排污水 经过非再生热交换器冷却,一般排污流量限制在25t/h。

② 向核岛废液排放系统的排放

当向凝汽器的排污循环不可用时,排污将引向核岛废液排放系统的贮存罐,进行分析后向环境排放,或者输送到废液处理系统处理后由核岛废液排放系统排放。

- ③ 特殊瞬态运行
- 蒸汽发生器的疏水

当热交换器或减压阀失效时,可用临时接管旁通失效设备进行疏水,也可利用重力 疏水,还可经过安全壳隔离阀下游的支路进行疏水。

— 蒸汽发生器传热管断裂

当蒸汽发生器传热管断裂时,该蒸汽发生器必须切断给水供应,保持最大排污流量以便完全排空。

1.2.2.9 常规岛废液排放系统(SEL)

(1) 设计基准

本系统收集以下来源的废液,每槽经混匀、取样分析,有控制地将低于放射性浓度 排放限值的液态流出物向环境排放:

- 冷凝器热阱的疏水;
- 汽轮机厂房汽水回路的疏水和排气冷凝液:
- 收集疏水回收泵池中的水;
- 冷凝液泵池收集的疏水。

当要求延迟排放,或当取样分析或辐射监测系统(KRT)监测到废液的放射性浓度超过允许排放限值时,可暂存废液。将超过允许排放限值的废液输送至废液处理系统(TEU)处理。

(2) 系统描述

本系统设置三个废液排放贮槽 SEL004/005/006BA, 贮槽置于与 TER 系统共用的滞留池内,滞留池的容量大于两个系统六个贮槽同时溢出的废液量。三个贮槽中一个用于接收废液,一个用于废液的混匀、取样分析和监测排放,另一个用于备用。

每个贮槽配有一台排放泵 SEL008/009/010PO,用于在取样和分析之前搅拌槽内废液, 也用于废液排放, 或将废液送回废液处理系统(TEU)重新处理。地坑 SEL001PS 内设地坑泵 SEL011PO、SEL012PO。地坑泵将地坑内的水输送至贮槽。

各贮槽有一根共用的排放管及一根通往 TEU 的旁路管,在排放管上装有一台辐射监测仪和受 KRT 控制的自动隔离阀、一个手动隔离阀、一个流量调节阀及一个累计流量计。

SEL 系统主要设备特性参见表 1.2-13。

(3) 系统运行

正常运行时,三个 SEL 贮槽中的一个接收废液,一个混合、取样分析和监测排放废液,另一个备用。废液在贮槽内经充分混合使其成分均匀,取样分析后根据废液放射性浓度及环境稀释能力确定废液的排放流量。

排放管上的 KRT 监测系统对贮槽废液有辅助监测作用,如果排放废液的放射性浓度超过预定值,监测系统会发出警报并自动关闭隔离阀。

贮槽废液放射性浓度超过排放限值,废液被送往 TEU 系统化学排水槽作再处理。 当 SEL 系统的贮槽不能接收废水时,TER 的备用贮槽将用于接收常规岛的废液。

1.2.2.10 放射性废液的排放源项

放射性液态流出物排入环境的排放量分为硼回收系统、废液处理系统、二回路系统三个途径分别估算。

(1) 硼回收系统(TEP)

硼回收系统的排放包括在稳态运行和瞬态运行两种工况下的排放量,瞬态运行工况 排放量又分别按 8 小时热停堆、90 小时热停堆、冷停堆给出。

在硼回收系统(TEP)中处理的最短时间是 5 天。根据运行经验给出去污因子; 化学和容积控制系统(RCV)除盐器的去污因子为 10,硼回收系统(TEP)除盐器的去污

因子为 100,硼回收系统(TEP)蒸发装置的去污因子为 1000,总的去污因子为 10^5 ,考虑到 110m Ag 的处理效率较低,则去污因子为 10^4 。

废液在排放前可在 TER 罐中衰变 5 天。

(2) 废液处理系统(TEU)

废液处理系统(TEU)废液的化学水质和放射性取决于不同的废液来源。废液处理系统(TEU)处理流程的选择取决于废液的化学水质和放射性活度。

服务排水的放射性水平极低,一般可以不经处理即排放。只有当出现比活度高于排放控制值时,才将这些废水送入(TEU)地面排水槽。

冷停堆前的设备疏水以及冷停堆期间一回路泄漏的主冷却剂量包括在工艺疏水中。 此外,也考虑具有高放射性的设备疏水的量,这些疏水量估计为 20m³~50m³ 的一回路 除气主冷却剂,可通过蒸发装置处理。

正常处理的运行方式如下:工艺疏水由除盐器处理;地面排水经过滤后排放;化学排水经蒸发处理。

蒸发可作为下列排水的一种备用处理方法:

- —化学组成不符合除盐处理的工艺排水;
- —活度太高的地面排水。

在废液处理系统(TEU)中的处理时间是5天。

根据法国运行经验得到的去污因子为:

- 一废液处理系统(TEU)除盐器为100。
- 一废液处理系统(TEU)蒸发装置为 1000。

废液在排放前可在 TER 罐中衰变 5 天。

(3) 二回路系统

在正常运行期间,蒸汽发生器二次侧水经处理后回复使用,只有在停堆时通过蒸汽发生器排污系统排空二次侧水;同时二回路系统本身存在的泄漏也会导致放射性流出物排入环境。

二回路系统本身的泄漏通过疏水管道送往常规岛废液排放系统(SEL)监测排放。 参考电站反馈表明,SEL系统液态流出物放射性活度低于仪器探测下限,一般不经处理 直接排放到环境中去。因此,计算中不考虑二回路系统泄漏,仅考虑蒸汽发生器排污释 放。

(4) 放射性液态流出物排放量设计值

放射性液态流出物排放量计算模式与技改前所用模式相同,放射性液态流出物排放

量与下列参数有关:

- ——一回路冷却剂中的放射性比活度;
- ——相关系统的设备性能,例如泄漏率、去污因子等;
- ——液态放射性流出物相关系统的运行参数,例如废液处理系统处理的一回路冷却 剂的数量、排污量、贮存时间等。

上述参数中除了一回路冷却剂中核素的比活度,其余参数与技改前相同。

计算模式及参数见附录 B。

根据上述模式及参数,计算得到现实、保守两种情况下的放射性液态流出物排放量,分别见表 1.2-14、表 1.2-15。将一台机组现实情况下的排放量加上另一台机组保守情况下的排放量作为两台机组的排放量设计值,见表 1.2-16。

放射性液态流出物排放量在技改前后的设计值见下表。

液态流出物		氚(Bq/a)	碳-14(Bq/a)	其余核素(Bq/a)	
排放量	技改前	5.49E+13	4.00E+10	3.35E+10	
设计值	技改后	7.47E+13	3.49E+10	3.83E+10	
GB6249-2011 控制值		9.66E+13	1.93E+11	6.44E+10	

由上表可见,除 C-14 之外,各种类型核素的排放量均比技改前有所增加。上表中 技改前后的数据差异一方面是由于长燃料循环技改造成的,同时也有计算方法差异所造 成的影响。由上表可见,技改后,液态放射性流出物各类核素的年排放量设计值仍然满 足 GB6249-2011 的控制值要求。

1.2.3 放射性废气管理系统及排放源项

昌江核电厂 1、2 号机组废气处理系统为两台机组共用,用于收集、贮存并处理两座反应堆正常运行工况和预计运行事件时产生的放射性废气。

1.2.3.1 放射性废气处理系统(TEG)

(1) 系统功能

废气处理系统(TEG)的功能是对核电厂产生的放射性惰性气体,卤素和空气中的 悬浮粒子进行收集和处理,以便将预期的放射性废气年释放量、工作人员在控制区和非 控制区内的受照剂量降低到"可合理达到尽量低"的水平。

TEG 系统不直接履行安全功能。但由于 TEG 系统处理的废气带有放射性,尤其是含氢放射性废气,除辐照危害外还存在爆炸和引起火灾的危险性,故在进行 TEG 系统的设计时,考虑了防止该气体向环境泄漏、安全防火、防爆和通风排气等问题,并将放

射性气体进行贮存衰变,使放射性气体排放保持在可接受的限值内。

(2) 设计基准

废气处理系统(TEG)的设计基准如下:

- TEG 系统提供足够的处理能力,使放射性气载流出物的排放低于国家标准 GB6249—2011《核动力厂环境辐射防护规定》和 RCC-P(5.4.3 节)中规定的限值:
- TEG 系统是按照 RCC-P《法国 90 万千瓦压水堆核电厂系统设计和建造规则》进行设计(第 2.3.7 节),并且满足了国家标准 GB9136—1988《轻水堆核电厂放射性废气处理系统技术规定》的要求:
- TEG 系统要能在主要设备停运检修期间和产生过多废气量期间提供足够的处理能力,所以主要能动设备都考虑冗余:含氢废气子系统的含氢废气压缩机的容量为2×100%;含氧废气子系统的电加热器、碘过滤器和风机的容量为2×100%。
- TEG 系统不执行核安全相关功能,但含氢废气子系统设计成安全 3 级,因为该子系统的故障可能会导致正常贮存衰变的放射性气体的释放;
- TEG 系统通过调整衰变箱排气速率、安装氢气和氧气检测仪表防范系统内潜在的氢氧混合爆炸危险。整个含氢废气子系统都保持正压,并且整个子系统和每个主要设备都有严格的密封措施,以防止空气渗入形成爆炸性的混合气体。
 - TEG 系统为两台机组所共用。主要设备位于 NX 厂房内。

(3) 系统组成

TEG 系统由含氢废气子系统和含氧废气子系统两个独立的子系统组成。

a) 含氢废气子系统

含氢废气主要是由氢气、氮气、衰变过程中产生的放射性惰性气体(例如 Xe, Kr)和碘等组成。

这类废气有如下两个来源,详见表 1.2-17:

- ①来自装有反应堆冷却剂的容器,即反应堆冷却剂系统(RCP)的稳压器卸压箱、 化学和容积控制系统(RCV)的容积控制箱和核岛疏水排气系统(RPE)的反应堆冷却 剂疏水箱。这类气体流量大,但每月只有一、二次。
- ②来自硼回收系统(TEP)的除气单元。这类气体流量小,约 2m³(STP)/h,但排气次数较多,每天两至三次。

该类废气进入本系统后采用压缩贮存、衰变的方法降低废气的放射性浓度。贮存期满后进行取样分析,如符合要求即可将废气排至 NX 厂房的通风系统(DVN),经由 DVN系统的主排风(空气)稀释后排向烟囱。

含氢废气子系统的主要工艺设备参数,详见表 1.2-18。

b) 含氧废气子系统

含氧废气主要由空气、少量放射性碘及其同位素组成。

这类废气来自与大气相通的容器(并可能含有放射性气体),详见表 1.2-17 (2/2)。

该类废气由核岛疏水排气系统(RPE)收集于含氧废气母管中,进入本系统后经碘吸附器进行除碘处理后排至通风系统(DVN),经由 DVN 系统的主排风(空气)稀释后排向烟囱(不经贮存)。

含氧废气子系统的主要工艺设备参数详见表 1.2-19。

(4) 系统运行

a) 含氢废气子系统

含氢废气子系统运行前用氮气吹扫净化。

含氢废气由 RPE 系统收集至缓冲罐(TEG001BA)。缓冲罐可对无规律的来气(不同压力和流量)进行调节稳定,从而向含氢废气压缩机提供平稳的气流,并分离废气中夹带的冷凝水。

正常运行时,含氢废气压缩机(TEG001/002CO)可以根据缓冲罐上的压力测量装置的设定值,进行自动操作(启动或停运):

- ①当缓冲罐压力上升达到 0.025MPa (表压) 时,第一台含氡废气压缩机启动。
- ②如果缓冲罐压力继续上升到 0.03MPa(表压)时,第二台含氢废气压缩机自动启动。
- ③在含氢废气压缩机运行时,当缓冲罐内压力回落到 0.005MPa(表压)时,正在运行的压缩机停运。

压缩后的气体经由压缩气体冷却器(TEG001/002RF)冷却后,送至衰变箱(TEG002/003/004/005/006/007BA)。

衰变箱在进气、衰变贮存、排气时的阀门操作均由远传手动进行。

向大气排放废气之前,衰变箱内的废气要进行取样分析,测其放射性浓度、氚浓度、主要核素等与安全排放有关的参数,碘放射性浓度≤3.7×10³Bq/m³ 时允许排放,并且要检查 DVN 系统的运行工况和大气环境条件是否满足排放要求。只有当两个串联的远传阀门已经被手动打开时,才能控制排放阀进行废气排放。

如果 DVN 系统碘吸附器出现故障,NX 厂房的烟囱放射性超过阀值,或者假如正在排放的衰变箱内的压力下降到 0.02MPa (表压)时,则自动停止排放。衰变箱内压力低于 0.02MPa (表压)时停止排放是为了防止外部空气进入衰变箱发生爆炸事故。

衰变箱与两套并联的排气管网相连,确保箱内废气在 5~84 个小时内以预定的流量排放到 NX 厂房 DVN 系统的碘吸附器入口管线上。排放总管上安装了测量废气排放流量和累积流量的流量计。

在基本负荷运行工况下,含氢废气在衰变箱内有 60 天的贮存期,在废气量大而放射性浓度低的负荷跟踪运行工况下,贮存期为 45 天。

b) 含氧废气子系统

正常运行时,一台电加热器,一台碘吸附器和一台排气风机串联投入运行。当信号显示第一台风机停运后,第二台风机即自动启动(包括与之相关的电加热器和碘吸附器)。

含氧废气干管内的负压由止回式调节风门维持;一旦风机停运,该阀就自动关闭。 含氧废气以及经由调节风门引入的空气,可经电加热器加热,用以降低气体的相对 湿度,以保护碘吸附器中活性碳的活性。

经过碘吸附器处理后的含氧废气,经 DVN 系统的主排风稀释后,排向 NX 厂房的烟囱。

1.2.3.2 厂房通风系统(HVAC)

核岛 HVAC 系统对各厂房进行采暖、通风和空调,维持各厂房内的环境条件和一定的换气次数。根据需要,对送、排风进行过滤和除碘处理,减少气载放射性物质向大气环境的排放,确保运行人员健康、安全及设备的有效运行。

(1) 系统设计

a) 主要系统

含放射性的废气主要来于下述厂房,并由相应的通风系统进行处理:

核辅助厂房:核辅助厂房通风系统(DVN)、外围设备间通风系统(DVW)。

反应堆厂房:安全壳连续通风系统(EVR)、安全壳空气净化系统(EVF)、安全壳内大气监测系统(ETY)、安全壳换气通风系统(EBA)。

燃料厂房:核燃料厂房通风系统(DVK)、安全注入和安全壳喷淋泵电机房通风系统(DVS)。

b) 受控区换气次数

根据不同的受控区要求,通风系统设计所采用的最小换气次数为:

核辅助厂房: 氢风险区域为 12 次/小时、红区与橙区为 4 次/小时、黄区为 2 次/小时、绿区为 1 次/小时。

电气厂房:绿区为1次/小时、蓄电池房间(氡风险区域)为12次/小时。

燃料厂房: 黄区为2次/小时、绿区为1次/小时。

厂房通风系统的送、排风量见表 1.2-20。

c)设计基准

各厂房通风系统的设计具有如下特性,以保证对环境的污染尽可能的低:

- —— 在污染区内,保证空气从低污染区流向高污染区;
- —— 每个厂房的通风系统的排风口尽可能远离新风口:
- —— 从潜在放射性污染区域排放的空气不能进行再循环:
- —— 没有污染的空气可以从屋项或墙上的通风口排至室外大气中;
- —— 所有可能来自污染区的空气,在排放之前要进行监测,通过烟囱排放至室外环境中:
- —— 厂外电源丧失时,所有与安全相关的能动部件(包括仪表)均由应急柴油机供电;
- —— 有抗震要求的设备和管道采取特殊措施。设备安装空间符合运行和维修的要求。

(2) 系统组成

每个厂房通风系统主要通过各类过滤器对放射性废气进行过滤处理。包括进风预过滤器、排风预过滤器、高效过滤器、高效空气粒子过滤器和碘吸附器等。

a) 进风预过滤器

用于除去大气浮尘,这种过滤器效率相对较低,但至少为 85%(基于标准 NFX44012)。

b) 排风预过滤器

用于高效过滤器或高效空气粒子过滤器前的排风过滤,捕集气流中的粗颗粒,以延长高效过滤器的寿命。这种过滤器效率至少为85%(基于标准NFX44012)。

c) 高效过滤器

高效过滤器用来捕集气流中的细小颗粒。这种过滤器效率至少为 95%(基于标准 NFX44012)。

d) 高效空气粒子过滤器

高效空气粒子过滤器用来捕集气流中的超细小颗粒。这种过滤器的净化系数至少为 3000 (基于标准 NFX44012)。

过滤器是一次性的,由标准尺寸的单元构成,过滤器介质使用玻璃纤维材料。过滤器单元放在不锈钢/碳钢涂漆的框架上或放在密封土建小室中。

e) 碘吸附器

用于吸附气流中的气载放射性碘。吸附分子碘的净化系数至少为 5000 (基于标准 NFM62206)。碘吸附器是一次性的,由标准尺寸的单元构成。吸附介质是含 1%KI (碘 化钾) 浸渍的煤基炭或椰壳炭。单体吸附器放在不锈钢/碳钢的框架上或放在密封过滤小室内。

(3) 系统运行

a)燃料厂房通风系统(DVK)

正常运行期间, DVK 系统是连续运行的"直流"式全新风系统。

事故工况下,DVK 系统以小流量排风子系统方式运行。在燃料装卸事故时,小流量排风与乏燃料水池大厅通风相连接。LOCA 时,小流量排风与±0.000m 以下房间的通风相连接。

在机组所有运行模式下,为了维持适当的环境,系统的设计满足单一故障准则的要求。事故工况下使用的小流量排风子系统,设有应急电源。

DVK 系统由主控制室远距离控制。

排风机组包括两台100%容量并联的机组,每个机组包括:

- 一组预过滤器:
- 一组高效空气粒子过滤器;
- 一个平衡阀:
- 一 一台 100%容量并联的排风机,装有止回阀。
- 一支通向烟囱的排风管,配有两个冗余设置的快速关闭的隔离阀,在事故时把 系统与室外隔离。
 - b)安全注入和安全壳喷淋泵电机房通风系统(DVS)

DVS 系统是"直流"式全新风系统,对安全注入和安全壳喷淋泵电机房进行通风。 DVS 系统提供最小换气次数为 5 次/时。

DVS 系统的设计是为了在设备维修和定期试验时,保持适当的环境条件,并保持电动机房的压力稍高于相应泵房的压力,以防电动机房被污染。即:防止放射性产物进入电动机房;在安全壳喷淋系统(EAS)和安注系统(RIS)运行期间,允许维修人员进入。

电站正常运行期间, DVS 系统不运行, 在 EAS 和 RIS 泵启动后手动启动运行。 DVS 系统就地控制。

c)核辅助厂房通风系统(DVN)

DVN 系统为直流式通风系统,连续运行。DVN 系统由送风子系统、正常排风子系统、碘排风子系统、排烟系统和排风烟囱等组成。

● 正常排风子系统

正常排风子系统由以下部件组成:四组并联的预过滤器;四组并联的高效空气粒子过滤器;三台50%冗余配置的风机,并联连接,并配置止回阀;配有平衡阀、隔离阀和防火阀的排风管道。

● 碘排风子系统

两台容量为 100%的冗余机组,并联连接,每个子系统的组成如下:两台电加热器;一组预过滤器;一组高效空气粒子过滤器;一组碘吸附器;一台配置有止回阀的风机;带有平衡阀、隔离阀和防火阀的排风管道。

正常运行期间,一台碘排风机组通过碘吸附器的旁通管路运行,第二台碘排风机组备用。在碘污染的情况下,由主控制室远距离执行切换至碘吸附器并启动相应的风机。

为防止核辅助厂房超压,按照以下顺序控制 DVN 系统风机的启动:

- 碘排风机启动:
- 一 正常排风机启动;
- 送风机启动。
- 排烟子系统

排烟子系统的组成:一台过滤器机组(预过滤器和高效空气粒子过滤器);两台 100% 容量并联连接的风机,并配置止回阀;来自电气房间并装有排烟阀的排烟管道。

• 排风烟囱

排风烟囱设在核辅助厂房的屋顶上,烟囱高出反应堆厂房屋顶至+62.30m 标高处。 在烟囱中设有监测放射性气体和记录废气排放水平的系统。

d) 外围设备间通风系统(DVW)

DVW 系统为安全壳装有贯穿件的所有区域进行排风,是连续运行的排风系统。

贯穿件房间的排风来自:安全壳泄漏;核辅助厂房转送的空气;电气厂房转送的空气;无组织渗透的空气。

DVW 系统组成如下:带有平衡阀、隔离阀和防火阀的排风管;一个正常排风子系统;一个碘排风子系统;与共用排风小室相连安装在屋顶的气密风管。

子系统配置如下:

• 正常排风子系统由一组预过滤器、一组高效空气粒子过滤器和配有止回阀的排风机组成。

• 碘排风子系统的组成: 两台电加热器; 一组预过滤器; 一组高效空气粒子过滤器; 一台碘吸附器: 两台 100%容量并联的排风机, 并配有止回阀。

正常工况下,碘排风子系统处于备用状态,由正常排风子系统排风,当探测到排风中放射性水平较高时,从正常通风子系统切换到碘排风子系统。

LOCA 事故后,碘排风系统连续运行,接到安注信号后,两台碘排风机中的一台立即自动启动。

为减少放射性物质向周围环境中的扩散,用于事故工况下的碘排风子系统的设计满足单一故障准则的要求,并接有应急电源。

e)安全壳连续通风系统(EVR)

反应堆正常运行时,需要由 EVR 系统冷却安全壳设备。

除设有独立通风的堆坑和控制棒驱动机构的热负荷外, EVR 系统所考虑热负荷主要来自反应堆厂房内的设备。为使混凝土内应力低于容许极限,混凝土的内外温差不得超过 40℃。在反应堆厂房内, EVR 系统作为一个再循环系统运行。系统总设计风量为150000m³/h·堆。

f) 安全壳空气净化系统(EVF)

安全壳空气净化系统的设计功能,是在反应堆厂房内部发生放射性污染时,减少空气中放射性污染物浓度,以便工作人员进入。

EVF 系统进风来自于 EVR(安全壳连续通风系统)送风,空气经高效空气粒子过滤器和碘吸附器进行净化。为了保护 EVF 高效空气粒子过滤器,进风来自 EVR 送风干管,使其能利用 EVR 系统的预过滤器。只有在工作人员进入安全壳期间或进入之前才启动 EVF 系统。

EVF 系统由控制室手动控制。

EVF 系统由两个并联设置容量为 50%冗余配置的净化回路组成,每个管路组成:一个气动隔离阀;一台电加热器;一台高效空气粒子过滤器;一台碘吸附器;两个防火阀(安装在碘吸附器上下游);一个手动平衡阀;一个静压箱。

当 EVF 系统运行时,两台风机中一台运行,一台备用,两台净化机组同时运行。

g)安全壳空气监测系统(ETY)

ETY 系统由以下四个子系统组成:

- 混合、取样子系统, LOCA 后作为安全壳内空气循环系统运行。
- 小扫气子系统是直流式系统,在反应堆正常运行期间工作,使排风经过预过滤器、高效空气粒子过滤器和碘吸附器的过滤,确保安全壳大气的净化。其功能为:降低安全

壳内空气放射性水平;在反应堆启动和正常运行期间,根据安全壳内空气压力的变化,维持安全壳内外压差低于最大值 0.006MPa;安全壳密封试验后,当安全壳内空气的相对压力低于 0.01 MPa 时,进行排气泄压。

- 安全壳试验子系统,使用压缩空气系统(SAT)给安全壳充气,做整体密封性检 查。
- 安全壳内空气物理监测子系统,连续监测安全壳内空气的温度和压力,用辐射防护监测系统(KRT)辐射监测设备测量安全壳内空气的放射性污染水平。
 - h) 安全壳换气通风系统(EBA)

每个机组的反应堆厂房中, EBA 系统设计成:

- —— 冷停堆期间,为在反应堆厂房内工作的维修人员提供适宜的环境温度。
- —— 冷停堆期间,尽可能快地减少反应堆厂房中裂变气体产物的浓度,以便允许 工作人员持续进入。
 - —— 机组停运期间,维持除氧废气分离罐(RPE 002 BA)处在轻微负压状态下。

EBA 系统是直流式通风系统。从反应堆厂房排出的空气经过核辅助厂房通风系统 (DVN)处理后通过烟囱向大气排放。本系统为安全壳提供至少每小时 1 次的换气次数。

1.2.3.3 主冷凝器真空系统(CVI)

CVI 系统的主要功能是保持冷凝器的真空度在正常运行所要求的水平。同时,把抽出的气体输送到 DVN 系统,或在启动时抽出冷凝器中的气体真接排入大气。该系统本身不具备放射性废气的贮存、处理功能。

当蒸汽发生器传热管破损时,一回路冷却剂从蒸汽发生器一次侧向二次侧泄漏,从 而造成 CVI 系统抽出的气体带有放射性。系统为此设置了放射性气体监测系统。

1.2.3.4 放射性废气的排放

(1) 放射性废气排放管理

与前述放射性液态流出物的排放管理相同,昌江核电厂放射性气载流出物的排放依据管理文件《放射性气体排放管理》的要求,在排放前经过申请、取样及分析,达到排放条件,经批准后排放。根据《放射性气体排放管理》,放射性气载流出物的排放条件如下:

- 1) TEG系统、ETY系统取样分析值满足放射性活度浓度控制值要求: 惰性气体比活度不大于180MBq/m³, ¹³¹I不大于3700Bq/m³; 当¹³¹I 测量分析结果比活度大于探测限, 必须使待排气体通过活性炭碘过滤器。
 - 2) 烟囱排放流量不低于7 m/s。

- 3) 在满足机组正常运行工况条件下,尽可能延长TEG衰变箱中放射性气体衰变时间。当TEG罐充满贮存衰变60天以上后,方可提出排放申请。如果废气量大,且不排放可能影响机组的正常运行或维修等特殊情况下,贮存时间可少于60天(但不得小于45天),并优先申请排放贮存衰变时间相对较长的TEG罐。 原则上对于ETY 取样分析后3天内必须排放,如果条件不满足的,3天后须重新申请。
- 4) 气象条件:根据厂区气象站气象数据,厂区气象铁塔第四层(70m)处风速大于1.5m/s,并且主厂区范围内无降水时进行排放。
 - 5) 不能有其他放射性气载流出物的批量排放。

(2) 放射性气载流出物排放量

放射性气载流出物排入环境的排放量分为放射性废气处理系统排放、反应堆厂房排风、核辅助厂房排风、以及二回路的排放四个途径分别估算。计算模式与技改前相同, 考虑的排放途径如下:

1) 废气处理系统

含氢废气来自 TEP、RCV、RCP 系统等,其中,TEP、RCV 系统的含氢废气是通过除盐器处理后再进入废气处理系统的,对碘的总去污因子取 100。废气处理系统废气释入环境的途径包括:来自压缩机泄漏、废气衰变箱的泄漏以及清扫释放。压缩机的泄漏率为废气处理流量的 0.1%;衰变箱的泄漏率为每天贮存气体的 0.01%;衰变箱的充满时间和衰变时间各为 30 天和 45 天。在计算时考虑了稳态、瞬态、冷停堆三种工况。

2) 反应堆厂房

反应堆厂房内放射性废气的排放主要包括冷停堆期间大流量清扫引起的释放和机组运行时小流量清扫引起的释放。反应堆厂房中冷却剂的泄漏估计为 66kg/h,泄漏的冷却剂中包含惰性气体和碘,惰性气体全部释放到厂房中,碘的气液分配因子取为 0.001。

每年有 180 小时由安全壳空气净化系统(EVF)以 20000m³/h 的流量进行内部过滤以及由安全壳内空气监测系统(ETY)以 1500m³/h 的流量以降低反应堆厂房中空气的放射性水平。这两个系统碘吸附器的去污因子为 10。

3) 核辅助厂房

核辅助厂房内的气态流出物是含氧废气,它是由于核辅助厂房内的某些系统和设备泄漏造成的,泄漏于核辅助厂房的冷却剂中的惰性气体 100%进入厂房大气中,对于碘由于存在热泄漏(>60°C)和冷泄漏(<60°C),则按不同的汽水分配因子的份额进入厂房大气中。汽水分配因子冷泄漏取为 10^4 ,热泄漏取为 10^3 。冷却剂泄漏率冷泄漏为 31kg/h,热泄漏为 2kg/h。

4) 二回路系统

在二回路中,蒸汽做功后在凝汽器中凝结为水,凝汽器抽气系统将不凝气体抽出排放,抽气系统将所有惰性气体抽走,即惰性气体的汽水分配因子为 1,对碘的汽水分配因子取 10^{-4} 。

计算参数中除了冷却剂中核素的比活度,其余参数与技改前相同。计算模式及参数 见附录 A。

5) 放射性气载流出物排放量设计值

根据法国电站的运行经验,气载的释放主要包括如下核素: Co-58、Co-60、Cs-134、Cs-137。气载粒子总量约为碘排放总量的 1/9,其中 Co 与 Cs 各占 50%。且在 Co 中,Co-58 占 60%,Co-60 占 40%;在 Cs 中,Cs-134 占 60%,Cs-137 占 40%。H-3、C-14 的排放量见 1.2.1.4、1.2.1.5 节。

根据上述模式及参数,计算得到现实、保守两种情况下的放射性气载流出物排放量,分别见表 1.2-21、表 1.2-22。将一台机组现实情况下的年排放量加上另一台机组保守情况下的年排放量作为两台机组的年排放量设计值,见表 1.2-23。

放射性气载流出物年排放量设计值汇总及技改前后年排放量设计	植对比贝下夷
- ルスカーコ. しまんカルココカナーコールス 里 レス レーロコール・シノス エメレス ロリカコ ナーコールス 里 レス レー	

气载	流出物	惰性气体 (Bq/a)	碘(Bq/a)	粒子(半衰期 ≥8d) (Bq/a)	碳-14 (Bq/a)	氚(Bq/a)
排放量	技改前	1.50E+14	1.25E+09	1.39E+08	5.42E+11	5.49E+12
设计值	技改后	1.90E+14	1.52E+09	1.67E+08	4.75E+11	7.47E+12
GB6249-	2011 控制值	7.72E+14	2.58E+10	6.44E+10	9.00E+11	1.93E+13

由上表可见,除 C-14 之外,各种类型核素的排放量均比技改前有所增加。上表中 技改前后的数据差异一方面是由于长燃料循环技改造成的,同时也有计算方法差异所造 成的影响。由上表可见,技改后,气载放射性流出物各类核素的年排放量设计值均满足 GB6249-2011 的控制值要求。

1.2.4 放射性固体废物管理系统及废物量

昌江核电厂1、2号机组的放射性固体废物处理系统(TES)由位于核辅助厂房(NX)内部分、废物处理辅助厂房(QS)和放射性固体废物暂存库(QT)三部分组成。

1.2.4.1 设计基准

固体废物处理系统(TES)无安全功能,属非核安全级(NC),设计基准如下:

- TES 系统处理四种放射性废物:
 - 蒸发浓缩液;

- 废离子交换树脂;
- 废过滤器芯:
- 杂项干废物。
- 一 TES 系统的处理和贮存能力:
 - TES 系统在 NX 厂房内的废物处理站设计成能收集、处理、整备和贮存两台机组运行和维修时产生的湿废物(浓缩液、废树脂和废过滤器芯),装桶站的处理能力为每 8 小时处理 4 桶废物;
 - QS厂房能够处理 4 台机组产生的杂项干废物,分拣、压实、打包装置的处理能力为每 8 小时可以处理 24 桶(200L 钢桶)废物,超级压实机和水泥固定装置每 8 小时处理 8 桶(400L 钢桶)废物。
 - QT 库的库容按 4 台机组运行 5 年产生的废物量进行设计。
- 根据废物性质处理固体废物,湿废物采用水泥固化或固定处理,杂项干废物采用压实和水泥固定处理:
 - 浓缩液、化学废液和废树脂固化在 400L 钢桶中。
 - 正常情况下,APG 系统产生的废树脂仅受轻微放射性污染,用除盐水将废树脂从除盐器冲排至移动式 APG 树脂贮槽,在NX厂房装入内衬有塑料薄膜的 200L 钢桶后,存放在固体废物暂存库的专门区域中进行衰变,若废树脂经衰变达到 GB27742-2011《可免于辐射防护监管的物料中放射性核素活度浓度》规定的清洁解控水平后,进行清洁解控。在异常情况下,APG 系统产生的废树脂排至 TES 系统废树脂贮槽待固化处理。
 - 表面剂量率高于 2mSv/h 的废滤芯用水泥固定在 400L 钢桶中;表面剂量率低于 2mSv/h 的废滤芯装入 200L 钢桶后,送到 QS 厂房进行烘干,待超级压实机建成后进行超级压实和水泥固定处理。
 - 表面剂量率>2mSv/h 的杂项干废物在产生地单独收集,在 NX 厂房水泥固 化装置进行水泥固定;表面剂量率≤2mSv/h 的杂项干废物在 QS 厂房分为可 压实干废物、浸湿的可压实干废物、可直接超级压实废物和不可压实废物 四类,进行烘干、分拣、压实和水泥固定处理。
- 一 为了减少操作人员所受辐射照射, TES 系统的监测和控制在位于铅玻璃后的控制台进行。
- 一常压贮槽考虑了足够的排气和溢流能力,以防贮槽出现超压或负压。浓缩液贮槽和废树脂贮槽的设备间设有滞留堰,以防止贮槽破损时废物外流。

固体废物处理系统(TES)主要设备参数见表 1.2-24。

1.2.4.2 系统组成

固体废物处理过程主要在废物处理站(位于 NX 厂房)和 QS 厂房内进行,处理包装完成后的废物桶运至 QT 库暂存。

(1) 废物处理站

在装桶站将湿废物装桶并处理。根据废物的特性,采取下列不同方法处理:

- 浓缩液、化学废液和废树脂分别经计量后加入 400L 钢桶,用桶内搅拌混合器与水泥、添加剂和水混合均匀:
- 表面剂量率>2mSv/h 的废过滤器芯子用水泥浆制备装置将水、水泥和添加剂制成的水泥浆固定在 400L 钢桶内。
- 表面剂量率>2mSv/h 的杂项干废物用水泥浆制备装置将水、水泥和添加剂制成的水泥浆固定在 400L 钢桶内。

装桶站分为5个工作站:

1站一容器讲出站

本站设有空的及装有废物的 400L 钢桶及其屏蔽容器装卸区,所有容器都在本站通过运输辊道(TES001CX)上的小车进出空气闸门间,已盛装废物的 400L 钢桶在这里暂存,然后送到 QT 库。本站设有一台用于吊运 400L 钢桶或装有 400L 钢桶的屏蔽容器的起重机。

2 站一空气闸门间

为防止放射性气溶胶扩散并保持装桶区负压,在装桶走廊与外界之间设有两道门 (屏蔽门 A 和屏蔽门 B)组成了一个空气闸门间。空气闸门间内设置的运输装置的起重 机与运输辊道 (TES002CX) 一起完成 400L 钢桶的转运。运输车和输送装置均采用远距 离控制。空气闸门间内的吊具可装卸 400L 钢桶屏蔽容器的盖子。2 站内设有表面剂量 率及桶表面污染检测装置,外表面剂量率>2mSv/h 的桶需装入屏蔽容器后再运往 1 站。

3站一废树脂、浓缩液装桶站

本站设有湿料加注工位和桶内搅拌工位,湿料加注工位用于向 400L 钢桶内加入计量好的废树脂、浓缩液或水泥固定用水泥浆,上游设备包括浓缩液计量装置、废树脂计量装置、减水剂计量装置和水泥浆制备装置等;桶内搅拌工位用于向装有浓缩液或废树脂的 400L 钢桶内加入石灰和水泥,并用桶内搅拌混合器搅拌均匀,上游设备包括石灰计量设备、水泥计量设备和水泥输送设备等。

固化浓缩液或废树脂时,先将经过计量装置计量的浓缩液或废树脂在湿料加注工位

加入 400L 钢桶, 然后加入减水剂; 再将 400L 钢桶用辊道移动到桶内搅拌工位, 然后将混合器浆叶降入 400L 钢桶, 启动混合器并不断加入石灰搅拌一段时间完成湿废物预处理, 再不断加入水泥直到搅拌均匀。

固定废过滤芯时,从 5 站运来的装有废过滤芯的 400L 钢桶定位在湿料加注工位,用水泥浆制备装置制成的水泥浆通过管道注入到 400L 钢桶中,可以通过振动台使 400L 钢桶内的水泥浆均匀、密实。

4 站-400L 钢桶取/封盖

本站设有 400L 钢桶取/封盖装置,用于对空的 400L 钢桶取盖和对装有初凝后的固化体或固定废物体的 400L 钢桶进行封盖。

5 站一废过滤器芯装桶站

当过滤器芯更换转运容器在废过滤器芯子输送通道上就位后,将废过滤器芯子经下降通道装入位于本站的 400L 钢桶内,然后把钢桶运往 3 站,注入水泥浆进行固定。

在废物处理、输送、冲洗等过程中产生的废液由 RPE 系统收集后送到 TEU 系统处理。

各装桶站的操作用设在控制间的监视器、摄像机控制系统和设在装桶站各处摄像机组成的视频监视系统监视并使用计算机在 TES 控制室进行远距离控制,为避免误操作或设备误动作造成放射性物质无控制释放,在装桶站操作控制程序中包括了一系列联锁保护措施。

放射性物料装桶时能保证将装桶站的防护门闭锁,措施如下:

操作控制是联锁的,即输送装置 B 从 2 站出发经屏蔽门 2 输送到 3 站之后,要把屏蔽门 2 关闭,如屏蔽门 2 不能关闭,则后面的一切操作全部不能进行;屏蔽门 1 和屏蔽门 2 都有手动驱动装置,能手动打开或关闭。

400L 钢桶废物包外表面剂量率在空气闸门间测量。水泥固化装置设有必要的密闭保护罩和设备排气处理装置,从废物的输送、加料、搅拌、放料过程均在相对密闭的条件下进行,避免了放射性气溶胶等放射性物质对废物桶外表面的污染;并且在水泥固化过程中可以用摄像头进行全程监视,只要没有观察到水泥浆溢出桶外,就不会发生表面污染。

400L 钢桶废物包特性(核素成分及活度、重量和表面污染水平)在 OT 库测量。

(2) 位于 OS 厂房的废物处理设施

本工程的 QS 厂房用于处理本工程两台机组产生的放射性干固体废物,并为水泥固化装置提供干水泥,QS 厂房内主要装有下列设备:

- 两桶干燥器;
- 分拣手套箱和初级压实机;
- 200L 钢桶封盖装置;
- 废物桶表面剂量率和表面污染检测装置;
- 超级压实机;
- 水泥固定装置;
- 液压剪切机;
- 400L 钢桶封盖装置:
- 混合配料设备:
- 桶、容器和料斗运输用起重机和车辆。
- QS 厂房按功能分为下述几部分:
- a) 干废物的分拣、烘干、压实和装桶

将由各系统收集来的被放射性污染的杂项干废物分为可压实干废物、浸湿的可压实干废物、可直接超级压实废物和不可压实废物四类,分别处理:

- 浸湿的可压实干废物先装入 200L 钢桶,用两桶干燥器烘干,然后作为可压实干废物处理。
- 可压实杂项干废物用初级压实机(TES001PQ)压入 200L 钢桶,待超级压实机建成以后,再经超级压实机(TES002PQ)压成饼状后装入 400L 钢桶。为了避免粉尘扩散,将压实机与废物处理辅助厂房通风系统(DVQ)的吸气管嘴相连,在压实装桶过程中产生的低放气溶胶由 DVQ 系统过滤后排出。
- 表面剂量率≤2mSv/h 的废过滤器芯装入 200L 钢桶送到 QS 厂房,用两桶干燥器先进行烘干,待超级压实机建成以后,经超级压实后放入 400L 钢桶:
- 可直接超级压实废物装入 200L 钢桶, 待超级压实机建成以后, 经超级压实形成金属饼放入 400L 钢桶;
 - 不可压实废物装入 400L 钢桶进行水泥固定处理。
 - b) 水泥灌浆固定

对装有超级压实形成的废物饼或不可压实废物的 400L 钢桶进行水泥灌浆固定,水泥、添加剂和水混合后形成水泥浆,在 400L 钢桶加入一定量的水泥浆并震动密实,封盖后送到钢桶废物包暂存区存放,约 7 天后送到 QT 库。

水泥固定废物体满足 EJ 1186-2005《放射性废物体和废物包的特性鉴定》的要求。 400L 钢桶符合 EJ1042-1996《低、中水平放射性固体废物包装容器 钢桶》的相关要求。

c) 干水泥贮存设备

干水泥在本厂房暂存,这部分设备包括水泥贮存、计量和输送设备,并配有必要的除尘设备和控制系统。干水泥经计量后加入移动式水泥料斗运到 NX 厂房。

干水泥贮存设备可以通过移动式水泥料斗为水泥固定设备提供干水泥。

d) 空金属桶贮存

空的 200L/400L 金属桶贮存在本厂房内, 用起重机和叉车搬运。

(3) 放射性固体废物暂存库(QT)

昌江核电厂的 QT 库用于暂存昌江核电厂 1、2、3、4 号机组在运行中产生并经处理和整备后的低、中放射性固体废物、轻微污染设备的 200L、400L 钢桶废物包。

贮存的低、中水平放射性废物在贮存一定年限(不超过5年)后,最终转运到规划中的低、中水平放射性固体废物区域处置场处置。

QT 库的容量按照 昌江核电共 4 台机组运行 5 年产生的废物量进行设计。库内废物的贮存以定型包装、分区贮存、监测管理、限期转运处置场为原则。贮存的低、中放射性废物再贮存一定年限(不超过 5 年)后,最终转运到规划中的低、中水平放射性固体废物处置场处置。QT 库内设有钢桶内核素检测装置,用于检测各废物桶内的核素。QT 废物贮存量、贮存方式及表面剂量率要求见表 1.2-28。

暂存库主体为单层,分为贮存区、人员工作区和辅助设施区。贮存区分为"废物桶贮存区"和"贮存室"。"废物桶贮存区",用于贮存表面剂量率≤2mSv/h 的 200L、400L 废物钢桶及轻微污染设备。"贮存室"用于贮存表面剂量率>2mSv/h 的水泥固化废物钢桶,贮存室由混凝土墙分隔的贮存单元组成。每个贮存单元能够容纳 3 个垂直码放的 400L 金属桶,上方覆有防护盖板。QT 库内设有一台双梁远距离数控起重机,配有无动力抓具,用于吊运废物桶。

(4) 设计特点

TES 系统所有操作均为手动或就地远距离控制操作,并在电视监视下进行,许多远距离控制的顺序都有相应的连锁。所有与浓缩液和废树脂接触的设备用不锈钢制造。

放射性固体废物处理系统厂房的设备布置使得操作人员受到的照射减至最少,设计特点如下:

- 一 高放射性活度的设备布置在带屏蔽的设备间内;
- 一 中、低活度设备的分组布置, 使操作人员讲入检查和维修时所受剂量减至最少:
- 一 废物桶的装卸和贮存均在带屏蔽的固体废物区内进行。
- 一 从过滤器隔间取出过滤器芯子是用带屏蔽的转运容器进行的。

一 厂房布置保证了放射性固体废物处理系统可以进行遥控操作。

1.2.4.3 系统运行

(1) 废树脂的处理

用 SED 系统的除盐水将除盐器中的废树脂冲出,并通过总管送到两个废树脂贮槽中的任何一个。多余的冲排水可通过贮槽的溢流管排出。输送废树脂结束后,要重新建立水的覆盖层,使废树脂贮存在水面下。废树脂的装桶、固化过程如下(在 3 站):

- 将 400L 钢桶移动到湿料加注工位;
- 打开废树脂贮槽出口阀和废树脂计量装置的进口阀,计量装置开始进料:
- 当计量装置内的废树脂达到所需的量时,关闭计量装置进口阀,对废树脂进行脱水,将脱除水泵送到浓缩液计量槽(TES502BA)贮备复用,称量脱水后树脂的重量;如果第一次加入的树脂量不足,则重复加入废树脂和水的混合物并进行脱水直至计量装置内的脱水树脂达到要求的重量;
 - 将计量装置内的废树脂加入到 400L 钢桶中;
 - 按配方要求的量加入补充水:
 - 将 400L 钢桶移动到桶内混合器工位;
 - 将桶内搅拌桨下降到 400L 钢桶中, 启动桶内混合器;
 - 将要求重量的石灰加到 400L 钢桶中:
 - 一段时间后将要求重量的水泥和添加剂连续加到 400L 钢桶中;
 - 直至混合均匀后,停止混合器,提升搅拌桨:
 - 将 400L 钢桶运至 4 站进行封盖。

冲排水由核岛疏水排气系统(RPE)的工艺排水管收集。

(2) 浓缩液(或化学废液)的处理

先将输送浓缩液的管道和接收贮槽加热,使温度自动地控制在预定的范围内,这时才允许 TEU 系统向 TES 系统输送浓缩液。浓缩液用泵输送,由浓缩液贮槽接收。浓缩液的装桶、固化过程如下(在3站):

- 将 400L 钢桶移动到湿料加注工位:
- 打开浓缩液贮槽出口阀和浓缩液计量装置的进口阀,计量装置开始进料;
- 当计量装置内的浓缩液达到所需的量时,关闭计量装置进口阀,称量浓缩液的 重量;
 - 将计量装置内的浓缩液加入到 400L 钢桶中;
 - 将 400L 钢桶移动到桶内混合器工位;

- 将桶内搅拌桨下降到 400L 钢桶中, 启动桶内混合器:
- 将要求重量的石灰加到 400L 钢桶中;
- 一段时间后将要求重量的水泥和添加剂连续加到 400L 钢桶中;
- 直至混合均匀后,停止混合器,提升搅拌桨:
- 用振动台将 400L 钢桶内的湿混料震动均匀、密实;
- 一 将 400L 钢桶运至 4 站进行封盖。

(3) 废过滤器芯子的装卸与固定

利用吊车将过滤器室的密封盖板移走,并置于房间楼板上,换上专用盖板,打开过滤器顶盖。这些操作均由操作人员手动和遥控进行。

用吊车将过滤器芯子更换转运容器吊至过滤器室正上方。用过滤器芯子更换转容器 的升降装置将吊具下降到过滤器室里面,将过滤器芯子吊篮提起,并将它吊入过滤器芯 子更换转容器内。

关闭过滤器芯子更换转容器底部滑板,将过滤器芯子更换转容器运至 5 站的废过滤器芯子输送通道上,在输送通道正上方定位后,将过滤器芯子下降并放入已就位于该站的 400L 钢桶内。一个聚乙烯塑料袋随吊具一起上下,以防止污染物滴落或飞溅到过滤器小室、铅罐、输送通道或地板上面。

(4) 废过滤器芯子的输送

将已在 5 站装入废过滤器芯子的 400L 钢桶移至 3 站湿料加注工位,加入用水泥浆制备装置制备的湿混料,再用振动台将 400L 钢桶内的湿混料震动均匀、密实,再送到 4 站封盖。

(5) 水泥固化装置内桶的输送

在装桶操作期间,人员通常不能进入装桶站,用运输车将空的 400L 钢桶和屏蔽容器运进装桶站空气闸门间,然后用输送装置把空的 400L 钢桶送到各站。如果 400L 钢桶的表面剂量率≤2mSv/h,可以直接运到 1 站;如果桶的表面剂量率>2mSv/h,则需将桶装入屏蔽容器再运到 1 站。

空气闸门间的两个门为相互联锁的,不能同时开,只能同时关,能够一开一关,这样可防止装桶站内的放射性气体外溢。

运输车和输送装置的移动是在工作站的控制台上操作的,并能按程序自动停止在各个预定的工作站。

从核辅助厂房装桶站送出的带有或不带有屏蔽容器的 400L 钢桶废物包,要求其外表面剂量率≤2mSv/h。

(6) 杂项干废物处理

表面剂量率>2mSv/h 的杂项干废物在产生地单独收集,在NX厂房水泥固化装置进行水泥固定;表面剂量率≤2mSv/h 的杂项干废物装入塑料袋运送到QS厂房进行处理,将由各系统收集、分拣的被放射性污染的杂项干废物分为可压实干废物、浸湿的可压实干废物、可直接超级压实废物和不可压实废物四类,通过在产生地的预分拣和在本厂房手套箱的再次分拣来实现,各类干废物的处理方法如下:

- 浸湿的可压实干废物先装入 200L 钢桶, 用辊道送入用两桶干燥器进行烘干, 然后作为可压实干废物处理;
- 可压实干废物用初级压实机(8~20t)压实在 200L 钢桶内并封盖,待超级压实机建成后,将 200L 钢桶用超级压实机(~2000t)压成圆饼后装入 400L 钢桶内,通常一桶装三个圆饼。然后向桶内注入一定量的湿混料并振实后封盖。可压实干废物的平均压实因子为 9,包括预压因子。
- 表面剂量率≤2mSv/h 的废过滤器芯在 NX 厂房装入 200L 钢桶, 然后送到 QS 厂房, 用两桶干燥器先进行烘干, 待超级压实机建成后, 作为可直接超级压实废物处理:
- 可直接超级压实废物装入 200L 钢桶进行超级压实,超级压实产生的桶饼装入 400L 钢桶进行水泥固定和封盖。
 - 不可压实废物装入 400L 钢桶,进行水泥固定处理。

(7) APG 废树脂装桶

APG 系统除盐器下游设有一个移动式 APG 树脂贮槽(TES004BA)。正常情况下,APG 系统产生的废树脂仅受轻微放射性污染,可将其通过临时软管用水力输送进入TES004BA。APG 废树脂槽有效容积为 1.58m³,APG 系统的 8 个除盐床树脂容量均为 1.5m³。贮槽边进树脂边通过容器下部的排水管排水,接收结束后,再经过一段时间,沥出所有表面水分后,将 APG 废树脂装入内衬有塑料薄膜的 200L 钢桶中;在异常情况下,APG 系统产生的废树脂排至废树脂贮槽(TES002BA 或 TES003BA),通过水泥固 化装置固化在 400L 钢桶中。

相关系统冲排除盐器废树脂的水、冲洗废树脂输送管道的水、冲洗贮槽和计量槽的水以及反冲滤网的水均经核岛疏水排气系统(RPE)送往TEU系统处理。贮槽内的废气由RPE系统收集。

1.2.4.4 废物最小化

固体废物处理系统在推进废物最小化方面采取了如下措施:

(1) 源头控制方面

对核岛内 16"以下管道法兰密封含银垫片进行替换,从源头上减少 Ag-110m 对工艺系统和设备的污染及对排放废液剂量率的贡献。

采用高交换容量的树脂以减少废树脂的产生量。

(2) 合理分类

废过滤器芯根据放射性水平的不同,分别进行处理,表面剂量率>2mSv/h 的废过滤器芯装入 400L 钢桶进行水泥固定;表面剂量率<2mSv/h 的废过滤器芯送到 QS 厂房进行烘干、超级压实和水泥固定;通风系统的废过滤器芯表面剂量率水平很低,大部分核素是短寿命的,送到 QT 库的专门区域进行贮存衰变。

废树脂按放射性水平分类收集,较高放射性水平的废树脂在废树脂贮槽中贮存衰变一段时间后再进行水泥固化。蒸汽发生器排污系统(APG)除盐床产生的废树脂一般仅受轻微放射性污染,装入内衬有塑料薄膜的 200L 钢桶中,送到固体废物暂存库(QT)的专门区域进行贮存衰变。若废树脂经衰变达到清洁解控水平后,进行清洁解控。

表面剂量率>2mSv/h 的杂项干废物在产生地单独收集,在 NX 厂房水泥固化装置进行水泥固化;表面剂量率≤2mSv/h 的杂项干废物在 QS 厂房分为可压实杂项干废物、浸湿的可压实杂项干废物、可直接超级压实废物和不可压实废物四类,并根据废物可压实与否分别进行处理。

(3) 改进处理工艺

对含有 Ag-110m 的 TES 系统废树脂贮存槽排出的工艺废水采用蒸发处理方法,以减少废树脂的产生量。

TES 系统拟采用 400L 钢桶作为废物包装容器;采用桶外混合器的水泥固化装置; 改进水泥固化配方,以减小废物的增容比和最终的废物包产生量。

表面剂量率很低的大尺寸废物暂时不作为放射性废物处理,将其放在固体废物处理 及贮存设施(QT)的专门区域进行贮存衰变,并在贮存一定年限后进行清洁解控。

在 QS 厂房中,将浸湿的可压实杂项干废物先进行烘干,然后作为可压实杂项干废物处理:可压实杂项干废物进行初级压实、超级压实和水泥固定处理。

本工程废物最小化的设计目标是: 1、2 号机组产生的 200L 钢桶装可压实废物桶用超级压实处理,每年每台机组产生的废物包预期值为 54.9m³。

1.2.4.5 废物最终处置

废物包从废物暂存库(QT)送到规划中的低、中放废物区域处置场处置,放射性废物厂外运输将遵守GB11806-2004《放射性物质安全运输规程》。

1.2.4.6 放射性固体废物的源项

(1) 废树脂

废树脂来源于下列系统的除盐器:

- 化学和容积控制系统(RCV)
- 硼回收系统(TEP)
- 蒸汽发生器排污系统(APG)
- 反应堆换料水池和乏燃料水池的冷却和处理系统(PTR)
- 废液处理系统(TEU)

这些废树脂按其放射性浓度可分为三类:

- 一 化容系统、反应堆换料水池和乏燃料水池的冷却和处理系统放射性浓度较高的 废树脂:
- 一 废液处理系统和硼回收系统的中等放射性浓度的废树脂:
- 蒸汽发生器排污系统的低放射性浓度的废树脂。两台机组每年的废树脂产生量见表 1.2-25, 活度值见表 1.2-26。

(2) 蒸发浓缩液

浓缩液是直接从废液处理系统和硼回收系统的蒸发器收集来的。它主要含硼酸钠、硼酸或其它化合物的水溶液。两台机组每年的浓缩液产生量见表 1.2-25, 活度值见表 1.2-26。

(3) 废过滤器芯子

电站内各系统的过滤器用来保持水质以及去除放射性裂变、腐蚀产物和溶液中的悬浮颗粒。

装有这些过滤器的系统主要有:

- 一 蒸汽发生器排污系统 (APG):
- 一 反应堆换料水池和乏燃料水池的冷却和处理系统(PTR);
- 一 化学和容积控制系统 (RCV):
- 一 硼回收系统 (TEP):
- 一 废液处理系统(TEU)。

废过滤芯的产生量见表 1.2-25, 放射性活度值见表 1.2-27。

(4) 各种干固体废物

核电厂内的其他被放射性污染的各种干固体废物(如布、纸、塑料及废的设备零部件等),根据大亚湾核电站和岭澳一期的运行经验反馈,两台机组每年产量约280m³(压

缩前),其中 85%为可压缩废物,15%为不可压缩废物。它们在产生地分类收集在不同颜色的塑料袋内送到 QS 厂房压缩装桶或装桶水泥固定。一般来说干固体废物的放射性水平很低。产生量见表1.2-25。

1.2.5 放射性流出物监测系统

昌江核电厂1、2号机组燃料管理策略改变后,废液及废气的排放途径不发生改变, 因此本次技改不改变原有监测系统,原有监测系统的设置情况如下。

1.2.5.1 气载放射性流出物监测系统

根据通风工艺设计,除了在异常工况下向环境排放的气体经二回路蒸汽安全阀和卸压排放管直接向环境排放外,其余全部经过烟囱排至大气,其来源主要有核岛厂房的通风、废气处理系统排气、安全壳扫气及停堆期间安全壳换气等途径。因此,气载放射性流出物监测将主要集中于烟囱中气体排放监测。气载放射性流出物监测系统由烟囱惰性气体、气溶胶、碘监测道和流出物取样系统组成。

(1) 烟囱放射性惰性气体监测

烟囱放射性惰性气体监测分为高量程惰性气体 β 活度监测道(1,2KRT021MA)和低量程惰性气体 β 活度监测道(1,2KRT017MA),可以连续监测烟囱中惰性气体的活度,具有显示、记录打印和报警功能。它们是事故后监测通道,属安全 1E 级设备,具有冗余、仪表量程宽等特点。惰性气体连续监测仪按照事故后监测系统(PAMS)的要求进行设计,包括:

- 系统设计为冗余监测, 冗余设备之间进行实体隔离和电气隔离;
- 采用应急电源供电;
- 对设备的输入输出信号进行信号保护;
- 对设备进行预先的质量鉴定,确保设备在事故后环境条件及地震条件下能保持正常运行。

(2) 烟囱气溶胶和放射性碘监测

气溶胶连续监测道(1,2KRT016MA)及放射性碘连续监测道(1,2KRT020MA)进行气溶胶和放射性碘活度连续监测,具有显示、记录打印和报警功能。

(3) 气载放射性流出物取样测量

气载放射性流出物取样系统包括: ¹⁴C 和 ³H 连续取样回路; 气溶胶和放射性碘连续取样回路; 放射性惰性气体取样回路, 取得的样品送厂区实验室进行放射性核素测量分析。

考虑到安全壳换气通风系统(EBA)是气载放射性流出物的总要组成部分,KRT系

统设计了停堆期间安全壳空气β活度监测道——1、2KRT041MA,监测安全壳换气通风系统(EBA)空气活度的变化,当空气活度超出二级报警阈值后发出隔离信号,自动启动隔离装置,隔离安全壳换气通风系统(EBA)和核岛疏水排气系统(RPE)。

1.2.5.2 放射性液态流出物监测系统

本工程所有放射性液体都采用约定性批排放(槽式排放),将要排放的核岛和常规岛废液先分别注入废液排放贮槽。经对贮槽废液取样,实验室定量分析合格后,再排入大海。液态流出物监测系统包括贮槽废液取样、液态流出物连续监测道和废液取样站。

(1) 贮罐废液连续监测

液态流出物监测道编号为 0KRT901MA, 0KRT902MA, 使用两台低放液体活度监测仪, 分别监测 TER 贮罐和 SEL 贮罐排放废液的放射性活度浓度。其目的是: 验证实验室测定结果及核实被测贮罐废液是否完全排空。当所测废液放射性活度超过预定阈值时, 监测仪给出信号触发相应废液排放管路中的隔离阀关闭并发出报警。

(2) 贮罐废液取样测量

废液罐中废液排放前,需从排放罐中采集样品并送至厂区实验室(AL)进行测量。测量结果满足排放限值要求和其它排放条件时,才可排放。样品分析测量项目是: 总 α 、总 β 、 γ 谱分析、 H^3 、 C^{14} 及 90 Sr 的定期测量分析。

表 1.2-1 堆芯裂变产物积存量

放射性核素	堆芯积存量(10 ⁸ GBq)
Kr-83m	2.99E+00
Kr-85	2.16E-01
Kr-85m	6.63E+00
Kr-87	1.36E+01
Kr-88	1.92E+01
Xe-131m	2.57E-01
Xe-133	4.00E+01
Xe-133m	1.23E+00
Xe-135	1.40E+01
Xe-135m	8.13E+00
Xe-138	3.73E+01
I-131	1.90E+01
I-132	2.78E+01
I-133	4.03E+01
I-134	4.62E+01
I-135	3.81E+01

表 1.2-2 一回路稳态运行和瞬态工况下裂变产物比活度(GBq/t)

表 1.2-2 一凹路稳态丝1 种膦态工作下发文厂物记档及(GBQ/t)						
工况	37GBq/t I-131 当量		4.44GBq/t I-131 当量		0.55GBq/t I-131 当量	
核素	稳态	瞬态	稳态	瞬态	稳态	瞬态
Kr-85m	4.62E+01	1.10E+02	5.52E+00	1.31E+01	6.95E-01	1.65E+00
Kr-85	1.91E+00	1.91E+00	2.23E-01	2.23E-01	2.80E-02	2.80E-02
Kr-87	7.33E+01	1.72E+02	8.83E+00	2.07E+01	1.11E+00	2.60E+00
Kr -88	1.15E+02	2.62E+02	1.38E+01	3.14E+01	1.74E+00	3.97E+00
Xe-133m	1.89E+01	4.20E+01	2.22E+00	4.92E+00	2.62E-01	5.83E-01
Xe-133	5.75E+02	1.09E+03	6.72E+01	1.27E+02	7.98E+00	1.51E+01
Xe-135	3.54E+02	4.77E+02	4.19E+01	5.65E+01	5.09E+00	6.86E+00
Xe-138	1.34E+02	3.80E+02	1.64E+01	4.65E+01	2.09E+00	5.96E+00
I-131	2.57E+01	6.68E+02	3.01E+00	7.82E+01	3.55E-01	9.21E+00
I-132	1.88E+01	2.41E+02	2.60E+00	3.33E+01	4.04E-01	5.17E+00
I-133	3.56E+01	2.85E+02	4.35E+00	3.48E+01	5.60E-01	4.48E+00
I-134	3.61E+00	8.07E+01	1.05E+00	2.34E+01	2.75E-01	6.14E+00
I-135	1.66E+01	1.39E+02	2.31E+00	1.93E+01	3.62E-01	3.03E+00
Cs-134	3.34E+00	5.18E+02	3.78E-01	5.87E+01	3.54E-02	5.50E+00
Cs-136	1.01E+00	6.01E+01	1.17E-01	6.96E+00	1.29E-02	7.67E-01
Cs-137	2.60E+00	3.46E+02	3.00E-01	4.00E+01	3.43E-02	4.57E+00

表 1.2-3 二回路流体中的裂变产物比活度

(37GBq/t I-131 归一化当量运行期间)

	稳态(GBq/t)	瞬态(GBq/t)		
核素	水中的活度	蒸汽中活度	水中的活度	蒸汽中活度	
Kr-85m	0.00E+00	8.73E-04	0.00E+00	8.83E-02	
Kr-85	0.00E+00	3.61E-05	0.00E+00	2.45E-03	
Kr-87	0.00E+00	1.39E-03	0.00E+00	1.71E-01	
Kr-88	0.00E+00	2.17E-03	0.00E+00	2.30E-01	
Xe-133	0.00E+00	1.09E-02	0.00E+00	8.50E-01	
Xe-135	0.00E+00	6.69E-03	0.00E+00	4.94E-01	
Xe-138	0.00E+00	2.53E-03	0.00E+00	3.61E-01	
I-131	6.16E-02	6.16E-04	1.37E-01	1.37E-03	
I-132	2.42E-02	2.42E-04	9.68E-02	9.68E-04	
I-133	7.85E-02	7.85E-04	1.15E-01	1.15E-03	
I-134	2.64E-03	2.64E-05	3.47E-02	3.47E-04	
I-135	3.07E-02	3.07E-04	5.65E-02	5.65E-04	
Cs-134	8.13E-03	2.03E-05	6.68E-02	1.67E-04	
Cs-136	2.44E-03	6.11E-06	9.27E-03	2.32E-05	
Cs-137	6.33E-03	1.58E-05	4.55E-02	1.14E-04	

表 1.2-4(1/5) TEP 系统主要设备特性

		水 1.2-4(1/3) 111 水池工文以	4 14 177	
贮槽名称 特 性	前贮槽 9TEP001BA/008BA	中间贮槽 9TEP002BA/003BA/004BA	蒸馏液监测槽 9TEP005BA/006BA	浓缩液监测槽 9TEP007BA/016BA
数量(个)	2	3	2	2
类型与特点	覆盖氮气	标准	薄膜,浮顶	薄膜,浮顶
有效容积(m³)	75	350	70	10
介质	含氢反应堆冷却剂	除气后的反应堆冷却剂	蒸馏液	硼酸溶液
工作压力(MPa)(绝压)	0.34+静压头	0.105+静压头	常压	常压
工作温度(⁰C)	≤70	≤60	≤50	≤50
结构材料	不锈钢	不锈钢	不锈钢	不锈钢
核安全等级	3	NC	NC	NC
抗震类别	1I	NO	NO	NO

表 1.2-4(2/5) TEP 系统主要设备特性

	—————————————————————————————————————					
泵的名称	前贮槽泵 1TEP001PO	除气塔疏水泵 1TEP003PO	蒸发器供料泵 9TEP	输送和混合 泵 9TEP	蒸馏液泵 9TEP	浓缩液泵
特性	2TEP002PO	2TEP004PO	005/006PO	007PO	012/013PO	9TEP 014PO
数量(个)	2	2	2	1	2	1
额定流量(m³/h)	28.7	28.7	5	100	27.2	10
类型	离心式屏蔽泵	离心式屏蔽泵	离心泵	离心泵	离心泵	离心泵
介质	含氢的反应堆冷 却剂	除气后的反应 堆冷却剂	除气后的反应 堆冷却剂	除气后的反 应堆冷却剂	蒸馏液	硼酸溶液
额定流量下的扬程 (m 水柱)	~106	~55	~50	~50	~60	~30
吸入口最高温度 (⁰ C)	60	155	50	50	50	50
结构材料	不锈钢	不锈钢	不锈钢	不锈钢	不锈钢	不锈钢
核安全等级	3	3	NC	NC	NC	NC
抗震类别	11	11	NO	NO	NO	NO

表 1.2-4(3/5) TEP 系统主要设备特性

除气塔(9TEP001/002DZ)

蒸发器(9TEP001/002EV)

特性	设备
数量 (个)	2
介质	含氢的反应堆冷却剂
处理能力(m³/h)	27.2
除气系数	10 ⁶
设计压力(MPa)(绝压)	0.55/0.565
材料	不锈钢
核安全等级	3
抗震类别	11

特性	设备
数量(个)	2
生产能力(m³/h)	3.5
流体名称	反应堆冷却剂
浓缩液硼浓度(ppm)	7000~7700
蒸馏液硼浓度(ppm)	≤ 5ppm
工作温度(⁰ C)	~109
除氧系数	100
净化系数	$\sim \! 10^{3}$
材料	不锈钢
核安全等级	NC
抗震类别	NO

表 1.2-4(4/5) TEP 系统主要设备特性

过滤器名称 特 性	除盐预过滤器 9TEP001FI/002FI	树脂滞留过滤器 9TEP003FI/004FI	浓缩液过滤器 9TEP005FI	树脂滞留过滤器 9TEP006FI
数量(个)	2	2	1	1
额定流量(m³/h)	27.2	27.2	10	27.2
介质	含氢的反应堆冷却剂	含氢的反应堆冷却剂	硼酸溶液	含氢的反应堆冷却剂
过滤粒度 (微米)	5	25	5	25
过滤介质	纤维制品	纤维制品	纤维制品	纤维制品
过滤效率(%)	98	98	98	98
允许压力(MPa)(绝压)	1.69	1.69	1.58	1.58
工作温度(⁰ C)	≤60	≤60	≤60	≤60
结构材料	不锈钢	不锈钢	不锈钢	不锈钢
核安全等级	3	3	NC	NC
抗震类别	11	1I	NO	NO

表 1.2-4(5/5) TEP 系统主要设备特性

除盐器名称 特 性	阳床除盐器 9TEP001DE/002DE	混床除盐器 9TEP003DE/004DE	阴床除盐器 9TEP005DE/006DE /007DE
数量 (个)	2	2	2
正常流量 (m³/h)	27.2	27.2	27.2
类型	阳床	混床	阴床
介质	含氢的反应堆冷却剂	含氢的反应堆冷却剂	含氢的反应堆冷却剂
允许压力(MPa)(绝压)	1.6	1.6	1.5
工作温度(℃)	≤60	≤60	≤60
树脂容量(m³)	1.5	1.5	1.5
材料	不锈钢	不锈钢	不锈钢
核安全等级	3	3	3
抗震类别	1I	1I	1I

表 1.2-5(1/4) TEU 系统主要设备特性

表 1.2-5(1/4) TEU 系统主要设备特性	
工艺排水接收槽(9TEU001/002BA)	
数量	2
型式	立式圆筒
有效容积,m ³	35
工作压力,MPa(表压)(槽体顶部)	0.005
最高工作温度,℃	50
主要材料	不锈钢
地面排水接收槽(9TEU003/004BA, 012/013BA)	
数量	$2\times20\text{m}^3/2\times40\text{m}^3$
型式	立式圆筒
工作压力, MPa(表压)(槽体顶部)	大气压
最高工作温度,℃	50
主要材料	不锈钢
化学排水接收槽(9TEU005/006BA/007BA)	
数量	3
型式	立式圆筒
有效容积,m ³	50
工作压力,MPa(表压)(槽体顶部)	大气压
最高工作温度,℃	50
主要材料	不锈钢
化学试剂槽(9TEU011BA)	
数量	1
型式	立式圆筒
有效容积,m ³	0.2
工作压力,MPa(表压)(槽体顶部)	大气压
最高工作温度,℃	常温
主要材料	不锈钢
监测槽(9TEU009/010BA)	
数量	2
型式	立式圆筒
有效容积,m ³	35
工作压力,MPa(表压)(槽体顶部)	大气压
最高工作温度,℃	50
主要材料	不锈钢
浓缩液槽(9TEU020BA)	
数量	1
型式	立式圆筒
有效容积,L	3
工作压力,MPa(表压)(槽体顶部)	大气压
最高工作温度,℃	常温
主要材料	不锈钢

表 1.2-5(2/4) TEU 系统主要设备特性

表 1.2-5(2/4) TEU 系统主要设备特性	
除盐器(9TEU001/002DE)	
数量	2
型式	立式圆筒
树脂装量,m ³	1.5
流量,m³/h	10
最大允许压降,MPa	0.15
最高工作压力,MPa(表压)	1
最高工作温度,℃	50
主要材料	不锈钢
蒸发器预过滤器(9TEU001FI)	
数量	1
型式	滤芯式
流量,m³/h	4
最大允许压降,MPa	0.25
最高工作压力,MPa(表压)	0.65
最高工作温度,℃	70
过滤粒度,μm	100
过滤效率,%	98
主要材料	不锈钢
直接排放过滤器(9TEU002/012FI)	
数量	2
型式	滤芯式
流量,m³/h	27.2
最大允许压降,MPa	0.25
最高工作压力,MPa(表压)	1.05
最高工作温度,℃	70
过滤粒度,μm	5
过滤效率,%	98
主要材料	不锈钢
除盐预过滤器(9TEU004FI)	
数量	1
型式	滤芯式
流量,m³/h	10
最大允许压降,MPa	0.25
最高工作压力,MPa(表压)	1.05
最高工作温度,℃	70
过滤粒度,μm	5
过滤效率,%	98
主要材料	不锈钢

表 1.2-5(3/4) TEU 系统主要设备特性

表 1.2-5(3/4) TEU 系统主要设备特性	
树脂滞留过滤器 (9TEU005FI)	
数量	1
型式	滤芯式
流量,m³/h	10
最大允许压降,MPa	0.25
最高工作压力,MPa(表压)	1.05
最高工作温度,℃	70
过滤粒度,μm	25
过滤效率,%	98
主要材料	不锈钢
工艺排水泵(9TEU001PO)	
数量	1
型式	离心泵
流量,m³/h	14
扬程, m (水柱)	103
最高工作温度,℃	70
主要材料	不锈钢
地面排水泵(9TEU002PO)	
数量	2
型式	离心泵
流量,m³/h	27
扬程, m(水柱)	87
最高工作温度,℃	70
主要材料	不锈钢
化学排水泵(9TEU003PO)	
数量	1
型式	离心式
流量,m ³ /h	27
扬程, m(水柱)	87
最高工作温度,℃	70
主要材料	不锈钢
蒸发器供料泵(9TEU05PO)	
数量	1
型式	离心泵
流量, m3/h	5
扬程, m(水柱)	56
最高工作温度,℃	70
主要材料	不锈钢

表 1.2-5(4/4) TEU 系统主要设备特性

数量型式 流量、m³/h 50 扬程, m(水柱) 長高工作温度、で 主要材料 化学式剂泵(9TEU008PO) 数量型式 流量、Lh 最高工作温度、で 主要材料 破泵(9TEU010PO) 数量型式 流量、Lh 最高工作温度、で 主要材料 酸泵(9TEU00PO) 数量型式 流量、Lh 最高工作温度、で 主要材料 しきまりに 表高工作温度、で 主要材料 で主要材料 でも変材料 でも変材料 でも変材料 でも変材料 でも変材料 でも変材料 でも変材料 でも変材料 でもののでは、した 表高工作温度、で 主要材料 でも変材料 でいますがして、するのでは、できるのできるのでは、できるのできるのできるのできるのできる。できるのできるのできる。できるのできるのできるのできる。できるのできるのできるのできるのできる。できるのできるのできるのできるのできるのできるのできる。できるのできるのできるのできるのできるのできるのできるのできるのできるのできるの	衣 1.2-3(4/4) IEU 系统主要议备特性	
型式 流量、m³/h 扬程、m(水柱) 最高工作温度、で 主要材料 化学式剂泵(9TEU008PO) 数量 型式 流量、L/h 最高工作温度、で 主要材料 が聚(9TEU010PO) 数量 型式 流量、L/h 最高工作温度、で 主要材料 を変えが対対 を変えのでは、した は要な材料 を変えのでは、した は要な材料 を変えのでは、した は要な材料 を変えのでは、した は要な材料 を変えのでは、した は要な材料 を変えのでは、した は要な材料 を変えのでは、した は要なが、した はないないないないないないないないないないないないないないないないないないない	废液排放泵(9TEU008PO)	
 流量、m³/h 扬程、m(水柱) 最高工作温度、で 主要材料 不锈钢 化学试剂泵(9TEU008PO) 数量 型式 流量、L/h 最高工作温度、で 主要材料 机量泵 流量、L/h 最高工作温度、で 主要材料 1 型式 流量、L/h 最高工作温度、で 主要材料 160 最高工作温度、で 主要材料 不锈钢 酸泵(9TEU00PO) 数量 型式 流量、L/h 最高工作温度、で 主要材料 160 最高工作温度、で 主要材料 不锈钢 浓缩液泵(9TEU020PO) 数量 型式 高心泵 流量、L/h 5 5 40 量型式 高心泵 流量、L/h 5 5 40 最高工作温度、で 108 主要材料 素发器(9TEU001EV) 数量 直 处理能力、t/h 工作压力、MPa(表压) 0.02 工作温度、で 108 	数量	1
扬程, m(水柱)	型式	离心泵
最高工作温度,で 主要材料 70 不锈钢 70 不锈钢 70 不锈钢 70 不锈钢 70 数量 1 型式 計量泵	流量,m³/h	50
主要材料	扬程, m(水柱)	45
化学试剂泵(9TEU008PO) 数量 型式 计量泵 流量、L/h 最高工作温度、で 95 主要材料 76%例 破泵(9TEU010PO) 数量 1 型式 计量泵 流量、L/h 160 最高工作温度、で 40 主要材料 76%例 酸泵(9TEU009PO) 数量 1 型式 计量泵 流量、L/h 160 最高工作温度、で 40 主要材料 160 最高工作温度、で 40 主要材料 76%例 液泵(9TEU009PO) 数量 1 型式 160 最高工作温度、で 40 主要材料 76%例 浓缩液泵(9TEU020PO) 数量 1 型式 160 最高工作温度、で 40 主要材料 76%例 蒸发器(9TEU020PO) 数量 1 型式 高心泵 流量、L/h 5 扬程、m (水柱) 5 扬程、m (水柱) 40 最高工作温度、で 108 素发器(9TEU001EV) 数量 1 处理核力、t/h 3.5 工作压力、MPa(表压) 0.02 工作温度、で 108	最高工作温度,℃	70
数量	主要材料	不锈钢
型式 流量, L/h 最高工作温度,で 主要材料	化学试剂泵(9TEU008PO)	
 流量、L/h 最高工作温度、℃ 主要材料 破泵(9TEU010PO) 数量 型式 流量、L/h 最高工作温度、℃ 主要材料 砂泵(9TEU009PO) 数量 型式 流量、L/h 最高工作温度、℃ 主要材料 形量泵 流量、L/h 最高工作温度、℃ 主要材料 浓缩液泵(9TEU009PO) 数量 型式 流高上作温度、℃ 主要材料 水缩液泵(9TEU020PO) 数量 型式 高心泵 流量、L/h 场程、m (水柱) 最高工作温度、℃ 主要材料 不锈钢 蒸发器(9TEU001EV) 数量 处理能力、t/h 工作压力、MPa(表压) 108 工作温度、℃ 108 	数量	1
最高工作温度, ℃ 主要材料	型式	计量泵
主要材料	流量,L/h	160
職案(OTEU010PO) 数量 型式 流量, L/h 最高工作温度, ℃ 主要材料	最高工作温度,℃	95
数量 型式 流量, L/h 最高工作温度, ℃ 主要材料 形泵(9TEU009PO) 数量 型式 流量, L/h 最高工作温度, ℃ 主要材料 浓缩液泵(9TEU020PO) 数量 型式 流量, L/h 最高工作温度, ℃ 主要材料 水缩液泵(9TEU020PO) 数量 型式 高心泵 流量, L/h 易高工作温度, ℃ 表替科 整型式 高心泵 流量, L/h 108 是要材料 素发器(9TEU020PO) 数量	主要材料	不锈钢
数量 型式 流量, L/h 最高工作温度, ℃ 主要材料 形泵(9TEU009PO) 数量 型式 流量, L/h 最高工作温度, ℃ 主要材料 浓缩液泵(9TEU020PO) 数量 型式 流量, L/h 最高工作温度, ℃ 主要材料 水缩液泵(9TEU020PO) 数量 型式 高心泵 流量, L/h 易高工作温度, ℃ 表替科 整型式 高心泵 流量, L/h 108 是要材料 素发器(9TEU020PO) 数量	碱泵(9TEU010PO)	
 流量、L/h 最高工作温度、℃ 主要材料 酸泵(9TEU009PO) 数量 型式 流量、L/h 最高工作温度、℃ 主要材料 浓缩液泵(9TEU020PO) 数量 型式 流量、L/h 表高工作温度、℃ 主要材料 水缩液泵(9TEU020PO) 数量 型式 流量、L/h 扬程、m (水柱) 最高工作温度、℃ 主要材料 素次器(9TEU020PO) 数量 型式 病心泵 流量、L/h 表面工作温度、℃ 108 蒸发器(9TEU001EV) 数量 处理能力、t/h 3.5 工作压力、MPa(表压) 工作温度、℃ 108 	数量	1
最高工作温度, ℃ 主要材料	型式	计量泵
主要材料 不锈钢 酸泵(9TEU009PO) 数量 1 型式 计量泵 流量, L/h 160 最高工作温度, ℃ 40 主要材料 不锈钢 浓缩液泵(9TEU020PO) 数量 1 型式 离心泵 流量, L/h 5 扬程, m (水柱) 40 最高工作温度, ℃ 108 素发器(9TEU001EV) 数量 1 处理能力, t/h 3.5 工作压力, MPa(表压) 108	流量,L/h	160
酸泵(9TEU009PO) 数量 型式 流量, L/h 最高工作温度, ℃ 主要材料	最高工作温度,℃	40
数量 型式	主要材料	不锈钢
型式 流量, L/h 最高工作温度, ℃ 主要材料 浓缩液泵(9TEU020PO) 数量 型式 离心泵 流量, L/h 扬程, m (水柱) 最高工作温度, ℃ 主要材料 蒸发器(9TEU001EV) 数量	酸泵(9TEU009PO)	
 流量, L/h 最高工作温度, ℃ 主要材料 浓缩液泵(9TEU020PO) 数量 型式 高心泵 流量, L/h 扬程, m (水柱) 最高工作温度, ℃ 主要材料 蒸发器(9TEU001EV) 数量 处理能力, t/h 工作压力, MPa(表压) 工作温度, ℃ 108 	数量	1
最高工作温度, ℃ 主要材料 不锈钢 浓缩液泵(9TEU020PO) 数量 1 型式 离心泵 流量, L/h 5 扬程, m (水柱) 40 最高工作温度, ℃ 108 主要材料 不锈钢 蒸发器(9TEU001EV) 数量 1 处理能力, t/h 3.5 工作压力, MPa(表压) 0.02 工作温度, ℃ 108	型式	计量泵
主要材料 不锈钢 浓缩液泵(9TEU020PO) 数量 1 型式 离心泵 流量, L/h 扬程, m (水柱) 最高工作温度, ℃ 主要材料 蒸发器(9TEU001EV) 数量 处理能力, t/h 工作压力, MPa(表压) 工作温度, ℃ 108	流量,L/h	160
 浓缩液泵(9TEU020PO) 数量 型式 高心泵 流量, L/h 扬程, m (水柱) 最高工作温度, ℃ 主要材料 蒸发器(9TEU001EV) 数量 处理能力, t/h 工作压力, MPa(表压) 工作温度, ℃ 108 	最高工作温度,℃	40
数量 型式 流量, L/h	主要材料	不锈钢
型式 流量, L/h	浓缩液泵(9TEU020PO)	
 流量, L/h 扬程, m (水柱) 最高工作温度, ℃ 主要材料 蒸发器(9TEU001EV) 数量 处理能力, t/h 工作压力, MPa(表压) 工作温度, ℃ 5 40 108 不锈钢 	数量	1
 扬程,m(水柱) 最高工作温度,℃ 主要材料 蒸发器(9TEU001EV) 数量 处理能力,t/h 工作压力,MPa(表压) 工作温度,℃ 40 108 不锈钢 不锈钢 	型式	离心泵
最高工作温度, ℃ 108 主要材料 不锈钢 蒸发器(9TEU001EV) 数量 1 处理能力, t/h 3.5 工作压力, MPa(表压) 0.02 工作温度, ℃ 108	流量,L/h	5
主要材料 不锈钢 蒸发器(9TEU001EV) 数量 1 处理能力, t/h 3.5 工作压力, MPa(表压) 0.02 工作温度, ℃ 108	扬程,m(水柱)	40
蒸发器(9TEU001EV) 数量 1 处理能力, t/h 3.5 工作压力, MPa(表压) 0.02 工作温度, ℃ 108	最高工作温度,℃	108
数量	主要材料	不锈钢
处理能力, t/h 3.5 工作压力, MPa(表压) 0.02 工作温度, ℃ 108	蒸发器(9TEU001EV)	
工作压力,MPa(表压) 0.02 工作温度,℃ 108	数量	1
工作温度, ℃ 108	处理能力,t/h	3.5
	工作压力,MPa(表压)	0.02
主要材料 不锈钢	工作温度,℃	108
22/4/1	主要材料	不锈钢

表 1.2-6 TER 系统主要设备特性

废液排放贮槽(0TER001/002/003BA)	
数量	3
型式	立式圆筒
有效容积,m ³	500
工作压力, MPa(表压)	大气压
最高工作温度,℃	60
主要材料	碳钢
排放泵(0TER001/002/003PO)	
数量	3
型式	离心泵
流量,m³/h	220
扬程, m(水柱)	50
最高工作温度,℃	60
主要材料	不锈钢
地坑泵(0TER004/005/006/007PO)	
数量	4
型式	地坑潜水泵
流量,m³/h	10
扬程, m(水柱)	32
最高工作温度,℃	70
主要材料	不锈钢

表 1.2-7(1/2) SRE 系统主要设备特性

表 1.2-7(1/2) SRE 系统主要设备特性	E
废水贮槽(0SRE001BA)	
数量	1
型式	卧式立方体
有效容积,m ³	20
工作压力,MPa(表压)	大气压
最高工作温度,℃	50
主要材料	碳钢
排水泵(0SRE001PO)	
数量	1
型式	离心泵
流量,m³/h	10
扬程,m(水柱)	67
最高工作温度,℃	50
主要材料	碳钢
地坑泵(0SRE008PO)	
数量	1
型式	地坑潜水泵
流量,m³/h	5
扬程,m(水柱)	36
最高工作温度,℃	50
主要材料	不锈钢
过滤器(0SRE001FI)	
数量	1
型式	滤芯式
流量,m³/h	10
最大允许压降,MPa	0.25
最高工作温度,℃	50
过滤粒度,μm	5
过滤效率,%	98
主要材料	不锈钢
机械去污水疏水箱(0SRE201BA)	
数量	1
型式	卧式圆筒
有效容积,m ³	20
工作压力,MPa(表压)	大气压
最高工作温度,℃	70
主要材料	不锈钢
化学去污水疏水箱(0SRE202BA)	
数量	1
型式	立式圆筒
有效容积,m³	12
工作压力,MPa(表压)	大气压
最高工作温度,℃	70
L	1

表 1.2-7(2/2) SRE 系统主要设备特性

衣 1.2-/(2/2) SRE 系统主要议备行性	
厂区试验室疏水箱(0SRE203BA)	
数量	1
型式	立式圆筒
有效容积,m3	2.3
工作压力,MPa(表压)	大气压
最高工作温度,℃	70
主要材料	不锈钢
放射性洗衣房疏水箱(0SRE301/302BA)	
数量	2
型式	卧式立方体
有效容积,m3	21.6
工作压力,MPa(表压)	大气压
最高工作温度,℃	50
主要材料	不锈钢
洗衣废水排水泵(0SRE601/602PO)	
数量	2
型式	离心泵
流量,m3/h	10
扬程,m(水柱)	67
最高工作温度,℃	50
主要材料	不锈钢
排水泵(0SRE201/202/203PO)	
数量	3
型式	离心泵
流量,m3/h	5
扬程,m(水柱)	60
最高工作温度,℃	70
主要材料	不锈钢
地坑泵(0SRE301/302/303/306/307PO)	. 93.114
数量	5
型式	地坑潜水泵
流量,m3/h	5
扬程,m(水柱)	36
最高工作温度,℃	50
主要材料	不锈钢
エメガロ	1 . N3 M3

表 1.2-8 RPE 系统主要设备特性

设备名称	设备编号	主要参数		主要材料
后 京 按 必 却 刘 <i>京</i> 录 统	1RPE 001BA	全容积: 5m³	设计压力: 0.2MPa	不锈钢
反应堆冷却剂疏水箱	2RPE 001BA	全容积: 5m³	设计压力: 0.2MPa	不锈钢
疏水含氧废气罐	1RPE 002BA	全容积: 0.24m³	设计压力: 0.02MPa	不锈钢
则小 百 乳 及	2RPE 002BA	全容积: 0.24m³	设计压力: 0.02MPa	不锈钢

表 1.2-9 化学和容积控制系统(RCV)定量设计基准

农 1.2-7 化子和谷松红刷汞机(NCV)产量以1 委任				
设计参数	单 位	参数值		
下泄流量:				
—— 正常	m ³ /h	13.6		
—— 最大	m ³ /h	27.2		
上充流量(不包括密封水):				
—— 正常	m ³ /h	11.36		
—— 最大	m ³ /h	24.96		
反应堆冷却剂下泄流进入 RCV 系统的温度	$^{\circ}\!\mathbb{C}$	293.3		
上充流进入反应堆冷却剂系统(RCP)的温度:				
—— 正常流量时	$^{\circ}\!\mathbb{C}$	268.4		
—— 最大流量时	$^{\circ}\!\mathbb{C}$	235		
每台上充泵旁路流量	m ³ /h	13.6		
反应堆冷却剂系统水压试验所需的最大压力	MPa	22.9		

表 1.2-10(1/2) RCV 系统主要设备特性

设备	参数			
容积控制箱(1/2RCV002BA)				
数量	2			
容积,m ³	8.1			
设计压力,MPa (表压)	0.52			
设计温度,℃	110			
材料	奥氏体不锈钢			
混合床除盐器				
(1/2RCV001DE, 1/2RCV002DE)				
数量	4			
设计压力,MPa (表压)	1.38			
设计温度,℃	110			
流量, m³/h:				
一 正常	13.6			
- 最大	27.2			
树脂体积(每台),m³	0.93			
材料	奥氏体不锈钢			
阳床除盐器 (1/2RCV003DE)				
数量	2			
设计压力,MPa(表压)	1.38			
设计温度,℃	110			
最大流量,m ³ /h:	13.6			
树脂体积,m ³	0.46			
材料	奥氏体不锈钢			

表 1.2-10(2/2) RCV 系统主要设备特性

设 备	✓ 系统主要设备特性 参 数
反应堆冷却剂过滤器	
(1/2RCV001FI, 1/2RCV002FI)	
数量	4
设计压力,MPa(表压)	1.38
设计温度,℃	110
流量,m³/h:	
—— 正常	13.6
—— 最大	27.2
颗粒滞留率	5μm 颗粒达 98%
材料(容器)	奥氏体不锈钢
密封水注入过滤器	
(1/2RCV003FI, 1/2RCV004FI)	
数量	4
设计压力,MPa(表压)	20.5
设计温度,℃	110
流量, m³/h:	
—— 正常	3.6
—— 最大	9
颗粒滞留率	5μm 颗粒达 98%
材料(容器)	奥氏体不锈钢
密封水返回过滤器(1/2RCV005FI)	
数量	2
设计压力,MPa(表压)	1.03
设计温度,℃	110
流量, m3/h:	
—— 正常	2.1
—— 最大	17
颗粒滞留率	5μm 颗粒达 98%
材料(容器)	奥氏体不锈钢

表 1.2-11(1/3) PTR 系统主要设备特性

	W12 1(10)11 WART YOUR A				
服务区域	乏燃料水池			反应堆	连换料水池
水泵名称	冷却回路用泵	撇沫回路用泵	传水泵	撇沫回路用泵	过滤回路用泵
水泵编号	1/2PTR001PO, 1/2PTR002PO	1/2PTR003PO	1/2PTR006PO	1/2PTR004PO	1/2PTR005PO
数量(台)	4	2	2	2	2
额定流量 (m³/h)	300, 360	5	30/60/85	6	100
扬程 (MPa)	0.56, 0.50	0.32	0.16/0.14/0.12	0.20	0.42
工作介质	含硼水	含硼水	含硼水	含硼水	含硼水
主要材料	不锈钢	不锈钢	不锈钢	不锈钢	不锈钢
配套电机额定功率 (KW)	90	4	22	4	22

表 1.2-11(2/3) PTR 系统主要设备特性

	()	
冷却水热交换器		
1/2PTR001RF	売 侧	管 侧
1/2PTR 002RF		
连接系统	RRI	PTR
额定流量 (m³/h)	370	300
入口温度(℃)	35	54.44
换热量(MW)	4.474	4.474
材料	碳钢	不锈钢

换料水箱 1/2PTR001BA	
有效容积 (m³)	1760
总容积 (m³)	1916
最高工作温度 (℃)	60
最大压力,MPa(水箱顶部)	大气压力
外径 (mm)	11800
高度 (mm)	20866
材料	不锈钢

除盐器 1/2PTR001DE	
额定流量 (m³/h)	60
最高工作温度 (℃)	60
最高工作压力(表压) (MPa)	0.8
树脂体积 (m³)	1.5
材料	不锈钢

表 1.2-11(3/3) PTR 系统主要设备特性

	农 1.2-11(5/5) I I K 示机王安汉雷村庄				
过滤器名称	乏燃料水池	乏燃料水池	反应堆换料	乏燃料水池	
	过滤器	过滤器	水池过滤器	撇沫过滤器	
过滤器编号	1/2PTR001FI	1/2PTR002FI	9PTR003/004FI	1/2PTR005FI	
额定流量(m³/h)	60	60	50	5	
最大工作压力	0.75	0.75	0.75	0.25	
(MPa)	0.75	0.75	0.75	0.35	
设计温度	0.0	00	00	00	
(℃)	80	80	80	80	
过滤精度	5	25	5	5	
(µm)	3	25	3	3	
过滤效率	98	98	98	98	
(%)	98	98	98	98	
截污容量	2750	2400	2750	400	
(g)	3750	3400	3750	400	
材料	不锈钢	不锈钢	不锈钢	不锈钢	

表 1.2-12 APG 系统主要设备特性

非再生热交换器 1/2APG001RF	売侧	管侧
连接的系统	RRI	APG
最大流量(t/h)	128.7	25
最大进口压力(MPa)表压	1.1	8.5
最高进口温度(℃)	35	291
最高出口温度(℃)	83.3	56
再生热交换器 1,2APG002RF	売侧	管侧
连接的系统	CEX	APG
最大流量(t/h)	147.5	59
最大进口压力(MPa)表压	2.5	8.5
最高进口温度(℃)	49.1	291
最高出口温度(℃)	149.1	56

除盐器	1/2APG00DE 1/2APG002DE	1/2APG003DE 1/2APG004DE
树脂类型	阳床	混合床
最大流量(m³/h)	35	35
运行压力(MPa)表压	1.4	1.4
最高温度(℃)	60	60
设计温度(℃)	80	80

过滤器	1/2APG001FI, 1/2APG002FI	1/2APG003FI
最大流量(t/h)	70	70
运行压力(MPa)表压	1.4	1.4
最高温度(℃)	60	60
设计温度(℃)	80	80
过滤粒度(μm)	5	25
过滤效率(%)	98	98
滞留能力(kg)	3.75	3.40

表 1.2-13 SEL 系统主要设备特性

农11210 0220 次元工文公田市正	
废液排放贮槽(0SEL004/005/006BA)	
数量	3
型式	立式圆筒
有效容积,m ³	500
工作压力,MPa(表压)	大气压
最高工作温度,℃	60
主要材料	碳钢
排水泵(0SEL008/009/0010PO)	
数量	3
型式	卧式离心泵
流量,m³/h	220
扬程,m(水柱)	50
最高工作温度,℃	60
主要材料	不锈钢
地坑泵(0SEL011/012PO)	
数量	1
型式	地坑潜水泵
流量,m³/h	10
扬程,m(水柱)	32
最高工作温度,℃	70
主要材料	不锈钢

表 1.2-14 本项目单台机组正常运行状态下放射性液态流出物排放量(GBq/a)(现实情况)

核素	硼回收系统	废液处理系统	二回路系统	总计
Sr-89	1.37E-05	1.75E-02	2.76E-04	1.78E-02
Sr-90	2.48E-07	2.94E-04	4.56E-06	2.99E-04
Y-90	5.12E-10	2.48E-06	5.23E-08	2.53E-06
Y-91	6.22E-07	7.85E-04	1.24E-05	7.98E-04
Sr-91	4.13E-16	5.67E-09	6.81E-10	6.35E-09
Sr-92	4.68E-46	2.86E-28	8.33E-27	8.61E-27
Zr-95	1.28E-06	1.61E-03	2.53E-05	1.63E-03
Nb-95	6.97E-07	9.20E-04	1.46E-05	9.35E-04
Mo-99	9.64E-06	4.48E-02	9.36E-04	4.58E-02
Tc-99m	4.96E-24	1.88E-14	7.88E-15	2.67E-14
Ru-103	1.61E-06	2.09E-03	3.32E-05	2.13E-03
Ru-106	3.50E-07	4.19E-04	6.51E-06	4.25E-04
Te-131m	1.21E-09	2.89E-05	8.61E-07	2.97E-05
Te-131	3.62E-271	3.57E-174	2.78E-154	2.78E-154
Te-132	8.33E-07	3.19E-03	6.38E-05	3.25E-03
Te-134	1.36E-163	2.40E-104	2.62E-93	2.62E-93
I-131	2.60E-02	3.15E+00	1.03E-01	3.28E+00
I-132	1.67E-50	2.81E-31	5.34E-29	5.37E-29
I-133	2.24E-07	3.95E-03	3.02E-04	4.26E-03
I-134	3.36E-129	1.56E-82	7.05E-74	7.05E-74
I-135	3.81E-19	7.66E-11	4.64E-11	1.23E-10
Cs-134	5.67E-02	7.50E-01	1.14E-02	8.18E-01
Cs-136	3.58E-03	1.61E-01	2.64E-03	1.67E-01
Cs-137	4.78E-02	7.31E-01	1.12E-02	7.90E-01
Ba-140	2.14E-05	3.40E-02	5.63E-04	3.46E-02
La-140	2.25E-09	2.49E-05	6.30E-07	2.56E-05
Ce-141	1.57E-06	2.09E-03	3.32E-05	2.12E-03
Ce-143	1.10E-08	1.99E-04	5.60E-06	2.05E-04
Pr-143	4.20E-07	6.57E-04	1.08E-05	6.68E-04
Ce-144	7.46E-07	8.96E-04	1.39E-05	9.10E-04
Pr-144	0.00E+00	1.18E-254	7.34E-225	7.34E-225
Cr-51	1.41E-03	2.17E-01	2.95E-03	2.22E-01
Mn-54	5.13E-03	2.40E-02	1.21E-04	2.93E-02
Fe-59	1.60E-04	1.80E-02	1.86E-04	1.84E-02
Co-58	1.37E-02	2.68E+00	1.07E-02	2.70E+00
Co-60	1.88E-03	9.90E-01	1.46E-02	1.01E+00
Ag-110m	1.29E-02	3.22E-01	4.39E-03	3.39E-01
Sb-124	1.77E-03	2.66E-01	1.33E-03	2.69E-01
总计	1.71E-01	9.41E+00	1.65E-01	9.75E+00
H-3				3.54E+04
C-14				1.58E+01

表 1.2-15 本项目单台机组正常运行状态下放射性液态流出物排放量(GBq/a)(保守情况)

核素	硼回收系统	废液处理系统	二回路系统	总计
Sr-89	2.75E-04	3.57E-02	1.52E-02	5.12E-02
Sr-90	5.20E-06	6.21E-04	2.65E-04	8.91E-04
Y-90	1.13E-08	5.49E-06	3.20E-06	8.69E-06
Y-91	1.29E-05	1.65E-03	7.06E-04	2.36E-03
Sr-91	2.17E-15	4.96E-09	7.46E-09	1.24E-08
Sr-92	1.50E-45	2.04E-28	4.05E-26	4.07E-26
Zr-95	1.89E-05	2.62E-03	9.93E-04	3.63E-03
Nb-95	1.51E-05	2.00E-03	8.76E-04	2.89E-03
Mo-99	3.57E-05	3.38E-02	5.93E-03	3.97E-02
Tc-99m	2.36E-23	1.58E-14	7.49E-14	9.07E-14
Ru-103	1.77E-05	2.79E-03	9.32E-04	3.74E-03
Ru-106	6.84E-06	8.46E-04	3.48E-04	1.20E-03
Te-131m	8.47E-09	2.93E-05	1.40E-05	4.32E-05
Te-131	9.30E-271	2.37E-174	8.28E-154	8.28E-154
Te-132	1.08E-05	4.74E-03	2.18E-03	6.93E-03
Te-134	3.59E-163	1.61E-104	8.28E-93	8.28E-93
I-131	5.88E-01	7.17E+00	5.09E+00	1.28E+01
I-132	2.52E-49	4.64E-31	1.70E-27	1.70E-27
I-133	4.49E-06	8.06E-03	1.31E-02	2.11E-02
I-134	1.83E-128	1.39E-82	6.49E-73	6.49E-73
I-135	5.67E-18	1.25E-10	1.45E-09	1.58E-09
Cs-134	1.65E+00	2.39E+00	9.36E-01	4.98E+00
Cs-136	8.74E-02	4.01E-01	1.79E-01	6.67E-01
Cs-137	1.12E+00	1.89E+00	7.35E-01	3.75E+00
Ba-140	3.66E-04	6.18E-02	2.61E-02	8.82E-02
La-140	4.60E-08	5.19E-05	3.55E-05	8.74E-05
Ce-141	1.75E-05	2.81E-03	9.52E-04	3.78E-03
Ce-143	3.51E-08	1.42E-04	2.69E-05	1.69E-04
Pr-143	9.03E-06	1.42E-03	6.43E-04	2.07E-03
Ce-144	1.42E-05	1.75E-03	7.25E-04	2.49E-03
Pr-144	0.00E+00	2.44E-254	4.10E-223	4.10E-223
Cr-51	1.50E-03	2.84E-01	9.22E-03	2.95E-01
Mn-54	5.13E-03	5.87E-01	3.38E-04	5.92E-01
Fe-59	1.66E-04	2.97E-02	5.53E-04	3.05E-02
Co-58	1.40E-02	3.62E+00	3.10E-02	3.67E+00
Co-60	2.37E-03	7.00E-01	4.03E-02	7.42E-01
Ag-110m	1.44E-02	3.12E-01	1.23E-02	3.39E-01
Sb-124	1.82E-03	4.03E-01	4.06E-03	4.09E-01
总计	3.49E+00	1.79E+01	7.10E+00	2.85E+01
H-3				3.93E+04
C-14				1.91E+01

表 1.2-16 本项目两台机组正常运行状态下放射性液态流出物排放量(GBq/a)(现实情况+保守情况)

核素	硼回收系统	废液处理系统	二回路系统	总计
Sr-89	2.89E-04	5.32E-02	1.55E-02	6.90E-02
Sr-90	5.45E-06	9.15E-04	2.70E-04	1.19E-03
Y-90	1.18E-08	7.97E-06	3.25E-06	1.12E-05
Y-91	1.35E-05	2.44E-03	7.18E - 04	3.16E-03
Sr-91	2.58E-15	1.06E-08	8.14E-09	1.88E-08
Sr-92	1.97E-45	4.90E-28	4.88E-26	4.93E-26
Zr-95	2.02E-05	4.23E-03	1.02E-03	5.26E-03
Nb-95	1.58E-05	2.92E-03	8.91E-04	3.83E-03
Mo-99	4.53E-05	7.86E-02	6.87E-03	8.55E-02
Tc-99m	2.86E-23	3.46E-14	8.28E-14	1.17E-13
Ru-103	1.93E-05	4.88E-03	9.65E-04	5.87E-03
Ru-106	7.19E-06	1.27E-03	3.55E-04	1.63E-03
Te-131m	9.68E-09	5.82E-05	1.49E-05	7.29E-05
Te-131	1.29E-270	5.94E-174	1.11E-153	1.11E-153
Te-132	1.16E-05	7.93E-03	2.24E-03	1.02E-02
Te-134	4.95E-163	4.01E-104	1.09E-92	1.09E-92
I-131	6.14E-01	1.03E+01	5.19E+00	1.61E+01
I-132	2.69E-49	7.45E-31	1.75E-27	1.75E-27
I-133	4.71E-06	1.20E-02	1.34E-02	2.54E-02
I-134	2.17E-128	2.95E-82	7.20E-73	7.20E-73
I-135	6.05E-18	2.02E-10	1.50E-09	1.70E-09
Cs-134	1.71E+00	3.14E+00	9.47E-01	5.80E+00
Cs-136	9.10E-02	5.62E-01	1.82E-01	8.34E-01
Cs-137	1.17E+00	2.62E+00	7.46E-01	4.54E+00
Ba-140	3.87E-04	9.58E-02	2.67E-02	1.23E-01
La-140	4.83E-08	7.68E-05	3.61E-05	1.13E-04
Ce-141	1.91E-05	4.90E-03	9.85E-04	5.90E-03
Ce-143	4.61E-08	3.41E-04	3.25E-05	3.74E-04
Pr-143	9.45E-06	2.08E-03	6.54E-04	2.74E-03
Ce-144	1.49E-05	2.65E-03	7.39E-04	3.40E-03
Pr-144	0.00E+00	3.62E-254	4.17E-223	4.17E-223
Cr-51	2.91E-03	5.01E-01	1.22E-02	5.17E-01
Mn-54	1.03E-02	6.11E-01	4.59E-04	6.21E-01
Fe-59	3.26E-04	4.77E-02	7.39E-04	4.89E-02
Co-58	2.77E-02	6.30E+00	4.17E-02	6.37E+00
Co-60	4.25E-03	1.69E+00	5.49E-02	1.75E+00
Ag-110m	2.73E-02	6.34E-01	1.67E-02	6.78E-01
Sb-124	3.59E-03	6.69E-01	5.39E-03	6.78E-01
总计	3.66E+00	2.73E+01	7.27E+00	3.83E+01
H-3				7.47E+04
C-14				3.49E+01

表 1.2-17(1/2) TEG 含氢废气的来源

序号	来源	设备名称	设备编号
1	氮气覆盖的贮槽排气	<1>稳压器卸压箱	RCP002BA
		<2>前贮槽	TEP001BA, 008BA
		<3>容积控制箱	RCV002BA
		<4>反应堆冷却剂疏水箱	RPE001BA
2	硼回收系统除气装置	排气冷凝器	TEP001CS, 002CS

表 1.2-17 (2/2) TEG 含氧废气的来源

		次 1.2-1/ (2/2) IEG 百氧	4441444
序号	来源	设备名称	设备编号
1	常压贮槽的排气	<1>中间贮槽	TEP002BA, 003BA, 004BA
		<2>工艺排水接收槽	TEU001BA, 002BA
		<3>废树脂贮槽	TES002BA, 003BA
		<4>疏水含氧废气罐	RPE002BA
2	TEP 系统蒸发排气	蒸馏液冷凝器	TEP003CS, 004CS
3	TEP 系统除气塔生产 状态(状态五)前的 排气	排气冷凝器	TEP001CS, 002CS
4	氮气覆盖的贮槽的排 气(不含氢气)	硼酸贮存槽	REA003BA, 004BA
5	过滤器更换过滤器芯 子时的排气	<1>TEP 系统的过滤器	TEP001FI, 002FI, 003FI, 004FI, 005FI, 006FI,
) h3 H334F (<2>RCV 系统的过滤器	RCV001FI, 002FI, 005FI,
		<3>TEU 系统的过滤器	TEU001FI, 004FI, 005FI
6	除盐器更换树脂时的 排气	<1>TEP 系统的除盐器	TEP001DE, 002DE, 003DE, 004DE, 005DE,
	11F T	<2> RCV 系统的除盐器	006DE, 007DE
		<3>TEU 系统的除盐器	RCV001DE, 002DE, 003DE
			TEU001DE, 002DE
7	反应堆启动时,RCV	<1>下泄热交换器	RCV002RF
	系统设备排气 (经 RPE 管道视镜	<2>密封水热交换器	RCV003VF
	029IC, 030IC)		

表 1.2-18TEG 含氢废气子系统主要工艺设备参数

——缓冲罐(001BA)	
数量 1	1台
型式	卧式,圆筒型
容积 5	5 m 3
设计压力 0	0.7MPa(表压)
设计温度 5	50℃
主要材料	不锈钢
——含氢废气压缩机(001,002CO)	
数量 2	2 台
型式	隔膜压缩机
设计流量 3	38m³ (STP)/h·台
设计压力 0	0.7MPa(表压)
设计温度 2	200°C
主要材料	不锈钢和碳钢
——压缩气体冷却器(001,002RF)	
数量 2	2 台
型式	卧式套管
气体额定流量 3	38m³(STP)/h·台
入口气体压力(内管) 0	0.7MPa(表压)
入口设冷水压力(外管) 1	1.2MPa(表压)
出口气体温度 5	50℃
主要材料	不锈钢
——衰变箱(002,003,004,005,006,007BA)	
数量 6	6 台
型式	立式圆筒型
容积 1	18m³/台
设计压力 0	0.7MPa(表压)
设计温度 5	50℃
主要材料	碳钢

表 1.2-19 TEG 含氧废气子系统主要工艺设备参数

衣 1.2-19 LEG 含氧废气丁系统王安工乙ర备参数					
——电加热器(001,002RS)					
数量	2 台				
额定流量	2000m³(STP)/h·台				
气体出口最高温度	70℃				
主要材料	不锈钢				
——碘吸附器(001,002PI)					
数量	2 台				
额定流量	2000m³(STP)/h·台				
去污因子(分子碘)	>5000				
主要材料	碳钢				
——排气风机(001,002ZV)					
数量	2 台				
类型	离心式				
额定流量	2000m³(STP)/h·台				
静压(20℃)	5800Pa				
主要材料	碳钢				

表 1.2-20 厂房通风系统送、排风量表

序	系统名称与系统标识	正常送风	量(m³/h)	正常排风	量 (m³/h)	碘排风量	(m^3/h)	排 豆 签 吹 上 的 计 速 一 净 化 沿 夕 夕 秒	
号		机组1	机组2	机组1	机组 2	机组1	机组2	排风管路上的过滤、净化设备名称	
1.	核燃料厂房通风系统(DVK)	32100	32235	34865	35045	3600	3600	正常排风:两台预过滤器,两台高效空气粒子过滤器(互为备用)。	
		全	新风	DVN	烟囱	DVN	烟囱	低流量排风:一台预过滤器,一台高效空气粒子 过滤器	
2.	安全注入和安全壳喷淋泵电机	14120	14120	13200	13200	0	0	无	
	房通风系统(DVS)	全	新风	直排	室外			(只有一台进风预过滤器)	
3.	核辅助厂房通风系统(DVN)	21	0000	216	5000	288	800	正常排风:四台并联的预过滤器,四台并联的高效空气粒子过滤器(三用一备)。	
		全	新风	DVN	烟囱	DVN	烟囱	碘排风:一台预过滤器,一台高效空气粒子过滤器,一台碘吸附器(另有一套备用)。	
4.	安全壳环廊房间通风系统	无送风,	只有排风	12000	12000	12000	12000	正常排风:一台预过滤器,一台高效过滤器。	
	(DVW)			DVN	DVN 烟囱		烟囱	碘排风: 一台预过滤器,一台高效过滤器,一台 碘吸附器。	
5.	安全壳空气净化系统(EVF)	20000	20000	0	0	0	0	无(只有四台进风高效空气粒子过滤器,碘吸附 器两台,并联使用,无备用,EVF系统为闭式空	
		从 E	VR 引入	安全壳口	内部循环			气循环系统)。	
6.	安全壳内空气监测系统(ETY)	1500	1500	1500	1500		为 85~119 ³ /h	正常排风:一台预过滤器,一台高效空气粒子过滤器,一台碘吸附器。无备用。	
		从 D'	VK 引入	DVN	「烟囱	复合后循环		· 心	
7.	安全壳换气通风系统(EBA)	50000	53000	53000	53000	1号或2号机组碘污		冷停堆期间,EBA 通风换气正常运行。在有碘污	
		从 D'	VN引入	排入 D'	VN 系统	染: 288	800m ³ /h	染的情况下,EBA排风经过 DVN 系统碘吸附器。	

表 1.2-21 本项目单台机组正常运行状态下放射性气载流出物排放量(GBq/a)(现实情况)

K 1.2-21 7-7		1 N 1 1 N 1		11/4/1 <u>2</u> (024/11)	(1/0/1/11/0/07
核素	废气处理系 统	反应堆厂房 通风系统	核辅助厂房 通风系统	二回路系统	总量
K-85m	1.01E+00	2.97E+00	1.77E+02	3.22E+01	2.13E+02
Kr-85	8.29E+01	1.42E+01	7.14E+00	1.30E+00	1.06E+02
Kr-87	1.57E+00	1.36E+00	2.83E+02	5.13E+01	3.37E+02
Kr-88	2.45E+00	4.73E+00	4.44E+02	8.05E+01	5.31E+02
Xe-133m	1.22E+00	1.26E+01	6.68E+01	1.21E+01	9.28E+01
Xe-133	1.04E+02	8.17E+02	2.04E+03	3.69E+02	3.32E+03
Xe-135	6.21E+00	4.40E+01	1.30E+03	2.35E+02	1.58E+03
Xe-138	3.24E+00	5.68E-01	5.33E+02	9.67E+01	6.33E+02
惰性气体 总量	2.03E+02	8.97E+02	4.84E+03	8.79E+02	6.82E+03
I-131	4.17E-02	6.48E-05	1.40E-04	2.13E-03	4.40E-02
I-132	1.50E-03	4.06E-05	1.59E-04	1.31E-03	3.01E-03
I-133	1.44E-03	9.45E-05	2.21E-04	3.10E-03	4.86E-03
I-134	1.77E-03	1.59E-05	1.08E-04	5.08E-04	2.40E-03
I-135	9.01E-04	5.17E-05	1.43E-04	1.68E-03	2.78E-03
总碘	4.73E-02	2.67E-04	7.71E-04	8.74E-03	5.71E-02
Co-58					1.90E-03
Co-60					1.27E-03
Cs-134					1.90E-03
Cs-137					1.27E-03
气溶胶 总量					6.34E-03
Н-3					3.54E+03
C-14					2.15E+02

表 1.2-22 本项目单台机组正常运行状态下放射性气载流出物排放量(GBq/a)(保守情况)

70 112 22 7	及1.2-22 平项日平日机组工带运行状态下放别住(我抓山初升放重(GDQ/a)(床勺情见)						
核素	废气处理系统	反应堆厂房 通风系统	核辅助厂房 通风系统	二回路系统	总量		
K-85m	2.10E+01	6.19E+01	3.69E+03	1.86E+03	5.64E+03		
Kr-85	1.76E+03	3.03E+02	1.52E+02	7.68E+01	2.30E+03		
Kr-87	3.25E+01	2.81E+01	5.87E+03	2.95E+03	8.88E+03		
Kr-88	5.08E+01	9.80E+01	9.20E+03	4.63E+03	1.40E+04		
Xe-133m	2.74E+01	2.85E+02	1.50E+03	7.60E+02	2.58E+03		
Xe-133	2.34E+03	1.84E+04	4.57E+04	2.31E+04	8.96E+04		
Xe-135	1.35E+02	9.58E+02	2.82E+04	1.42E+04	4.36E+04		
Xe-138	6.53E+01	1.15E+01	1.08E+04	5.39E+03	1.62E+04		
惰性气体总 量	4.44E+03	2.01E+04	1.05E+05	5.30E+04	1.83E+05		
I-131	9.43E-01	1.46E-03	3.16E-03	1.34E-01	1.08E+00		
I-132	2.27E-02	6.12E-04	2.40E-03	5.32E-02	7.88E-02		
I-133	2.89E-02	1.89E-03	4.42E-03	1.72E-01	2.07E-01		
I-134	9.61E-03	8.64E-05	5.90E-04	5.93E-03	1.62E-02		
I-135	1.34E-02	7.70E-04	2.13E-03	6.74E-02	8.37E-02		
总碘	1.02E+00	4.83E-03	1.27E-02	4.32E-01	1.47E+00		
Co-58					4.83E-02		
Co-60					3.22E-02		
Cs-134					4.83E-02		
Cs-137					3.22E-02		
气溶胶 总量					1.61E-01		
Н-3					3.93E+03		
C-14					2.60E+02		

表 1.2-23 本项目两台机组正常运行状态下放射性气载流出物排放量(GBq/a)(现实情况+保守情况)

<u> </u>		11 1八心 1 1从别 庄		E(GDq/a八 观头	HOL W 1 HO
核素	废处理系统	反应堆厂房 通风系统	核辅助厂房 通风系统	二回路系统	总量
K-85m	2.20E+01	6.49E+01	3.87E+03	1.89E+03	5.85E+03
Kr-85	1.84E+03	3.17E+02	1.59E+02	7.81E+01	2.41E+03
Kr-87	3.41E+01	2.95E+01	6.15E+03	3.00E+03	9.22E+03
Kr-88	5.33E+01	1.03E+02	9.64E+03	4.71E+03	1.45E+04
Xe-133m	2.86E+01	2.98E+02	1.57E+03	7.72E+02	2.67E+03
Xe-133	2.44E+03	1.92E+04	4.77E+04	2.35E+04	9.29E+04
Xe-135	1.41E+02	1.00E+03	2.95E+04	1.44E+04	4.52E+04
Xe-138	6.85E+01	1.21E+01	1.13E+04	5.49E+03	1.68E+04
惰性气体总 量	4.64E+03	2.10E+04	1.10E+05	5.39E+04	1.90E+05
I-131	9.85E-01	1.52E-03	3.30E-03	1.36E-01	1.12E+00
I-132	2.42E-02	6.53E-04	2.56E-03	5.45E-02	8.18E-02
I-133	3.03E-02	1.98E-03	4.64E-03	1.75E-01	2.12E-01
I-134	1.14E-02	1.02E-04	6.98E-04	6.44E-03	1.86E-02
I-135	1.43E-02	8.22E-04	2.27E-03	6.91E-02	8.65E-02
总碘	1.07E+00	5.10E-03	1.35E-02	4.41E-01	1.52E+00
Co-58					5.02E-02
Co-60					3.35E-02
Cs-134					5.02E-02
Cs-137					3.35E-02
气溶胶 总量					1.67E-01
Н-3					7.47E+03
C-14					4.75E+02

表 1.2-24 (1/6) 固体废物处理系统(TES)主要设备参数

— 浓缩液贮槽(TES001BA)	
数量	1
型式	立式
有效容积,m ³	5
工作压力(表压),MPa	0.2
最高温度,℃	110
主要材料	不锈钢
— 废树脂贮槽(TES002-003BA)	
数量	2
型式	立式
有效容积,m ³	9
工作压力	常压
最高工作温度,℃	45
主要材料	不锈钢
—APG 废树脂贮槽(移动式)(TES004BA)	
数量	1
型式	立式
有效容积, m ³	1.58
工作压力	常压
最高工作温度,℃	45
主要材料	不锈钢

表 1.2-24(2/6) 固体废物处理系统 (TES) 主要设备参数

表 1.2-24(2/6) 固体废物处理系统(TES)	土安区 奋 参数
一 浓缩液计量槽(TES001PM)	
— 浓缩液计量装置(TES502BA)	
数量	1
有效容积,m³	0.38
工作压力(表压),MPa	常压
计量方式	称重
最高温度,℃	110
主要材料	不锈钢
— 废树脂计量槽(TES002PM)	
— 废树脂计量装置(TES501BA)	
数量	1
有效容积,m ³	0.28
工作压力	常压
计量方式	脱水后称重
最高工作温度, ℃	45
主要材料	不锈钢
— 废树脂喷射器(TES001-002EJ)	
数量	2
喷射液体,压力(表压),MPa	0.3(SED 水)
流量,m³/h	7.5(SED 水)
吸入液体,m³/h	2.5(树脂+水)
主要材料	不锈钢

表 1.2-24(3/6) 固体废物处理系统(TES)主要设备参数

表 1.2-24(3/6)		
— 浓缩液贮槽搅拌器(TES001AG)		
数量	1	
额定功率,kW	3	
转速,r/min	140	
主要材料	不锈钢	
— 浓缩液贮槽电加热器(TES001-002RS)		
数量,(个)	2	
额定功率,kW/组	2.75×2	
— 桶内搅拌器(TES500EG)		
数量	1	
搅拌桨形式	双螺带式桶内混合器	
桨叶清理方式	震动和水洗	
电机功率,kW	17	
搅拌轴转速,r/min	180	
主要材料	碳钢,不锈钢	
— 水泥浆制备装置(TES501EG)		
数量	1	
额定功率,kW	12	
处理能力,L/min	30	
材料	碳钢,不锈钢	
<u> </u>		

表 1.2-24 (4/6) 固体废物处理系统 (TES) 主要设备参数

表 1.2-24 (4/6) 固体废物处埋系统(TES)3 — 湿料加注工位(TES530KZ)	-X (X H D) X
	1
主要功能	不锈钢
功能	与 400L 密封后, 将湿废物或水泥浆注入 400L 钢桶
辅助部件	视镜、摄像机和照明装置
一 干水泥计量装置(TES571GT)	
有效容积, m3	1
主要材料	碳钢
计量方式	称重
用电量,kW	3
一 石灰破袋装置(TES571TJ)	
有效容积, m3	0.4
主要材料	碳钢、不锈钢
计量方式	称重
用电量,kW	2
— 输送装置(TES001CX)	
数量	1
最大承重,t	15
行进速度,m/min	3
— 输送装置(TES002CX)	
数量	1
最大承重, t	15
行进速度,m/min	3

表 1.2-24 (5/6) 固体废物处理系统(TES)主要设备参数

— 報道(TES580/585/590/595/599TZ)	
数量	5
最大承重,t	1.5
行进速度,m/min	3
总用电量	5.3kW
辅助设备	振动台、澄清水回收装置
主要材料	不锈钢
— 辊道(TES001/006/008/009/012/013/014TZ)	
数量	7
最大承重, t	1.5
行进速度,m/min	7
— 旋转辊道(TES004/005TZ)	
数量	2
最大承重, t	1.5
行进速度,m/min	7
旋转速度,r/min	5
— 自动取封盖装置(TES001CZ)	
数量	1
额定功率,kW	20
主要材料	碳钢
— 过滤器芯子更换转运容器(TES001DM)	
数量	1
铅厚度,mm	100
主要材料	不锈钢、铅
— 初级压实机(TES001 PQ)(位于 QS 厂房)	
压力,kN	300
主要材料	碳钢

表 1.2-24 (6/6) 固体废物处理系统(TES)主要设备参数

— 超级压实机(TES002 PQ)(位于 QS 厂房)	
压力,kN	20000
总重量,kg	36000
主要材料	碳钢
— 两桶干燥装置	
容量	2 个 200L 钢桶
蒸发速率	4L/h
主要材料	不锈钢
— TES 干水泥贮存设备(位于 QS 厂房)	
水泥料仓数量,个	2
水泥料仓容积,m³	20
螺旋输送机,个	2
电子地磅,个	1

表 1.2-25 (1/2) 两台机组每年待处理废物的体积及每年输出桶的量

a) TES 系统输入废物的总体积的预期值

来源	TES 输入物
过滤器芯子	78 个(1)
废树脂	7m ³ (2)
浓缩液	5.6m ³
处理前的杂项干废物	208m ³ (3)

- 注: (1) 其中表面剂量率>2mSvh 的废过滤器芯子 46 个。
- (2) 正常情况下 APG 树脂仅受轻微放射性污染, 衰变后可以清洁解控, 不会产生需要处置的废物包。
 - (3) 其中 200m³是可压实废物, 8m³是不可压实废物。
- b) 两台机组每年输出桶数的预期值

	装有水泥固化物的	装有压实干废物的钢桶				
	400L 钢桶	200L	400L			
废树脂(35%体积包容率)	56	*				
浓缩液(50%体积包容率)	31					
过滤器芯子	46	32				
杂项干废物		373				
总计	133 405					
总体积	~1	$\sim 134.2 \text{m}^3$				

- 注: *正常情况下 APG 树脂仅受轻微放射性污染,衰变后可以清洁解控。
 - **待超级压实机安装以后,可压实废物和表面剂量率低于 2mSv/h 的废过滤器芯可以通过超级压实进一步减容,两台机组每年废物包产生量的预期值为 109.8 m³

表 1.2-25 (2/2) 两台机组每年待处理废物的体积及每年输出桶的量

c) TES 系统输入废物的总体积的设计值

来源	TES 输入物
过滤器芯子	218 个
废树脂	34m ³ (1)
浓缩液	20m ³
处理前的杂项干废物	280m³(2)

- 注: (1) 其中 12m³ 封装在 200L 钢桶中, 其余固化在 400L 钢桶中。
- (2) 其中 85%是可压实废物(压实系数为 3), 15%是不可压实废物(其中包括了可直接超级压实和不可压实废物)。
- d) 两台机组每年输出桶数的设计值

	装有水泥固化物 的 400L 钢桶	装有压实干废物或 APG 树脂的钢桶		
	ny 400L #y/冊	200L	400L	
废树脂(35%体积包容率)	175	60*		
浓缩液(50%体积包容率)	111			
过滤器芯子	118	100		
杂项干废物		607		
总计	404	767		
总体积	~327 m ³ **			

注: *正常情况下 APG 树脂仅受轻微放射性污染,衰变后可以清洁解控。

^{**}待超级压实机安装以后,可压实废物和表面剂量率低于 2mSv/h 的废过滤器芯可以通过超级压实进一步减容,两台机组每年废物包产生量的设计值为 269.7 m³

表 1.2-26 浓缩液和废树脂的特性

a) TEU浓缩液

—用碱中和硼酸,钠硼比	0.23
一硼含量,ppm	40000
一放射性比活度,Bq/m³	3.7×10 ¹² (最大)

b) 废树脂

—聚苯乙烯球	0.4~1.2mm
一比重	略大于1
一比活度:取决于树脂的使用情况	0 <a<9tbq m<sup="">3</a<9tbq>

表 1.2-27 过滤器器芯的核素活度设计量

RCV 过滤器是活度最高的过滤器,其他过滤器的活度均较低

ES TOWN HATCH SON THE STATE OF	HI / YIE COO HI HOTEL OF IN
核素	活度(TBq)
Cr-51	2.6
Mn-54	9.6
Co-58	155
Fe-59	1.3
Co-60	8.2
Ag-110m	1.4
Sb-124	82

表 1.2-28 废物贮存量、贮存方式及表面剂量率要求

	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. 4.2	·- · -		
度別 废物(包		码放	码放	外包装特性			废物贮存量	表面剂量
序号 装)类型 层数 方式				容积 (L)	(桶/5年)	率		
1	200L 钢桶	5	宝塔型码放	Ф 580	900	200	4430	≤2mSv/h
2	400L 钢桶	4	垂直码放	Ф 765	1130	400	1278	>2mSv/h
3	400L 钢桶	4	垂直码放	Ф765	1130	400	5160	≤2mSv/h
4	轻微污染 设备和废 过滤器芯	1	-	轻微污染的 1.2m	及备≪1.2℃	× 1.2 ×	180m ³	≤2mSv/h
5	APG 废树 脂桶	5	宝塔型堆放	Ф 580	900	200	730	可按非放 处理或回 用

2 正常运行的辐射环境影响

2.1 气载流出物的辐射环境影响

海南昌江核电厂 1、2 号机组正常运行时,气载放射性流出物主要通过核辅助厂房的烟囱排入大气,经大气扩散对核电厂周围的公众造成辐射影响。

2.1.1 排放源项

按照 HJ808-2016 的要求,在运行阶段,用于计算评价范围内的公众剂量的流出物排放源项采用排放量申请值;在分析关键人群组、关键核素、关键照射途径时源项采用流出物排放源项的预期值(现实值),两种源项值见表 2.1-1。

鉴于海南昌江核电厂 1、2 号机组改为长燃料循环后排放量的设计值比起年换料制的排放量设计值有所变化,故需调整原申请值。新申请值按照 H-3、C-14 取设计值;除 H-3、C-14 之外的核素取设计值的 90%的方法取值。

2.1.2 照射途径

计算考虑的气态途径有:空气浸没外照射,地面沉积物外照射,吸入污染空气受到的内照射和食入污染食品受到的内照射。

2.1.3 评价模式及参数

本项目运行状态下,气载放射性流出物在大气中的扩散采用高斯烟羽模式计算,在 大气弥散计算模式中,考虑了风摆效应、静风的分配、混合层高度以及建筑物尾流;同 时考虑了放射性衰变及干、湿沉积在地表的累积、清除和转移。计算模式及参数见附录 C: 对公众所致有效剂量的计算模式及参数见附录 D。

计算剂量所用的惰性气体空气浸没外照射剂量转换因子取自《电离辐射防护与辐射源安全基本标准》(GB18871-2002),其余核素的空气浸没外照射剂量转换因子取自美国联邦导则12号报告(1993),食入、吸入内照射剂量转换因子取自《电离辐射防护与辐射源安全基本标准》(GB18871-2002),地表沉积剂量转换因子取自美国联邦导则12号报告,各核素的转移系数和浓集因子取自 IAEA 安全丛书19号报告中的数据。居民食谱、生活习性数据采用2015年调查数据。人口分布数据取自厂址2019年的预期人口数据。

2.1.4 剂量估算

(1) 大气弥散因子及地面沉积因子

大气弥散因子及地面沉积因子采用厂址气象站 2016 年一整年逐时气象数据计算。 采用与烟囱高度相当的 70m 梯度的风向、风速、稳定度三维联合频率,以及 70m 梯度 的风向、风速、稳定度、降雨量四维联合频率。分别见表 2-4、表 2-5。

厂址半径 80km 范围内各子区年均大气弥散因子见表 2.1-2; 代表性放射性核素 I-131和 Cs-137的地面沉积因子见表 2.1-3。

从表 $2.1-2\sim2.1-3$ 中可见,年均大气弥散因子最大值为 6.04×10^{-7} s/m³,出现在厂址 SSW 方位 $0\sim1$ km 处;地面沉积因子的最大值为 6.28×10^{-9} m⁻²,出现在厂址 SSW 方位 $0\sim1$ km 处。

(2) 剂量估算结果

基于饮食、生活习性以及剂量转换因子的不同,将一般公众分为四个年龄组,即成人组(>17岁)、少年组(7~17岁)、儿童组(2~7岁)、婴儿组(≤2岁),分别对厂址80km 范围内各方位各距离所在子区的上述年龄组的个人年有效剂量进行估算。

经计算得到的各年龄组、各子区公众个人所受的年有效剂量见表 2.1-4。由表可知,气态途径释放的放射性核素对成人、青少年、儿童和婴儿组造成的最大个人有效剂量分别为 1.08×10^{-6} Sv/a、 1.12×10^{-6} Sv/a、 1.02×10^{-6} Sv/a 和 9.70×10^{-7} Sv/a,位于 SSW 方位 $1\sim2$ km处。气态途径释放的放射性核素所致评价范围内公众的集体剂量为 1.18×10^{-2} Sv/a。

2.2 液态流出物的辐射环境影响

2.2.1 排放源项

按照 HJ808-2016 的要求,在运行阶段,用于计算评价范围内的公众剂量的流出物排放源项采用排放量申请值;在分析关键人群组、关键核素、关键照射途径时源项采用流出物排放源项的预期值(现实值),两种源项值见表 2.2-1。

表中所列的除氚和 C-14 外其余核素共为 15 种,相较于表 1.2-16 所给出的源项少了 23 种,但此 23 种未评价核素不足总排放量的 0.5%,对总剂量贡献值为 0.05%,对评价结果影响很小。

2.2.2 照射途径

本项目在运行状态下,液态放射性流出物排放到北部湾,在其稀释和扩散的过程中,对公众的照射途径包括:食入海生生物造成的内照射、岸边沉积造成的外照射、在海域中游泳、划船和从事水上作业时受到的外照射。

昌江核电厂为滨海厂址,海水不作为农业灌溉和人畜饮用水,因此对饮用水和灌溉的照射途径不予考虑。

2.2.3 评价模式及参数

海水稀释因子取自广东省水利水电科学研究院 2009 年 9 月完成的《海南昌江核电厂可行性研究低放废水数值模拟计算研究报告》,本报告选择最不利潮型——冬季半月

潮下的稀释因子进行剂量估算,见表 2.2-3。

对公众所致有效剂量的计算模式及参数见附录 E。食入有效剂量转换因子取自《电离辐射防护与辐射源安全基本标准》(GB18871-2002),地表沉积和水中浸没剂量转化因子取自美国联邦导则 12 号报告(1993),海产品沉积吸附分配系数 Kd、海产品浓集因子 Bp 取自 IAEA 安全丛书 19 号报告中的数据。

2.2.4 剂量估算

由于膳食、生活习性以及剂量转换因子的不同,将公众个人分为四个年龄组,即成人组(>17岁)、青少年组(7-17岁)、儿童组(2~7岁)、婴儿组(≤2岁)。

经计算得到的各年龄组、各子区公众个人所受的有效剂量见表 2.2-2。由表可知,液态途径释放的放射性核素对成人、青少年、儿童和婴儿造成的个人最大有效剂量分别为 2.39×10^{-6} Sv/a、 1.65×10^{-6} Sv/a、 1.29×10^{-6} Sv/a 和 6.52×10^{-7} Sv/a。液态途径释放的放射性核素所致评价范围内公众的集体剂量为 0.173Sv/a。

2.2.5 海水水质评价

海南昌江核电厂 1、2 号机组共用一套低放废液排放系统,低放废液年排放量为58000t,间歇排放时单台有效容积 500m³ 的贮槽排空时间保守假设为 3.3h,2 台机组的冷却循环水流量为 81.6m³/s。按间歇排放方式计算得到总排放口处循环冷却水内的放射性核素浓度见表 2.2-4。由表可知,本工程运行状态下排放海域中 ⁶⁰Co、⁹⁰Sr、¹⁰⁶Ru、¹³⁴Cs、¹³⁷Cs 五个核素浓度小于《海水水质标准(GB3097-1997)》规定的浓度限值。

表 2.2-4 同时给出了 1、2 号机组运行前放射性环境本底调查对排放海域内的海水放射性浓度监测结果。由表可知,即使考虑排放海域内放射性本底与 1、2 号机组低放废水排放的叠加,海水中放射性核素的浓度也符合 GB3097-1997 中相应指标要求。

2.3 本工程所致公众年辐射剂量汇总

将气、液态途径释放的放射性核素对厂址半径 80km 范围内各年龄组、各子区公众个人所致的有效剂量叠加后的结果见表 2.3-1。由表可知,厂址半径 80km 范围内最大个人有效剂量出现在 SSW 方位 1-2km 处,此处居住的是马地自然村村民,各年龄组(成人、青少年、儿童和婴儿)受到的个人最大有效剂量分别为 3.47×10⁻⁶Sv/a、2.77×10⁻⁶Sv/a、2.30×10⁻⁶Sv/a 和 1.62×10⁻⁶Sv/a。在各年龄组中成人组的剂量最大,其中,气态途径所致的剂量为 1.08×10⁻⁶Sv/a,液态途径所致的剂量为 2.39×10⁻⁶Sv/a。气、液态途径释放的放射性核素所致评价范围内公众的集体剂量为 0.185Sv/a。

对于关键人群组,气、液态综合各途径、各核素的剂量贡献见表 2.3-2。从表 2.3-2 可以看出,关键人群组受到的个人最大有效剂量为 2.15×10⁻⁶Sv/a,关键途径为岸边活动 造成的地表沉积外照射,其所致剂量为 1.40×10⁻⁶Sv/a,约占总剂量的 65.17%; 其次为食入海产品造成的内照射和吸入内照射,分别占总剂量的 22.05%和 8.99%。各核素中关键核素为 Co-60,它所致的剂量为 1.10×10⁻⁶Sv/a,约占总剂量的 51.37%。

2.4 本工程对水生生物的辐射影响

对水生生物而言,辐射效应主要来自外照射和内照射。其中外照射主要分为水体照射和底泥照射,内照射主要来自于生物体的食入照射。昌江核电厂 1、2 号机组正常运行时,液态放射性流出物对周围水体中水生生物的辐射剂量采用 ERICA 程序计算。

ERICA 程序根据生物所在的栖息环境设置了 14 种不同的代表性生物作为参考生物。本次评价根据本工程厂址所在海域代表性生物的具体情况,选择了底栖软体动物、甲壳类动物、大型藻类、浅水鱼、深水鱼、浮游植物、浮游动物、多毛纲动物蠕虫、珊瑚虫、珊瑚虫群落共 10 类生物进行计算。

用昌江核电厂 1、2 号机组改为 18 个月换料后的流出物申请值估算对水生生物的辐射剂量率。昌江核电厂 1、2 号机组流出物中各核素对评价范围内海域不同水生生物造成的总照射剂量率的最大值见表 2.4-1。

由表 2.4-1 可见,在评价范围内 10 类生物中多毛纲动物蠕虫受到的总剂量率最大,为 $2.13\times10^{-2}\mu\text{Gy/h}$ 。对多毛纲动物蠕虫贡献最大的核素为 Co-58,该核素对多毛纲动物蠕虫造成的总剂量率 $1.16\times10^{-2}\mu\text{Gy/h}$ 。上述各类水生生物所受的总剂量率均小于 ERICA 推荐的筛选值($10\mu\text{Gy/h}$)。因此,昌江核电厂 1、2 号机组正常运行时,厂址附近 $0\sim80\text{km}$ 海域范围内水生生物是安全的。

表 2.1-1 本项目运行状态下气载放射性流出物年排放量

单位: Bq/a

核素	申请值	预期值
Kr-85m	5.27E+12	4.26E+11
Kr-85	2.17E+12	2.12E+11
Kr-87	8.30E+12	6.74E+11
Kr-88	1.31E+13	1.06E+12
Xe-133m	2.41E+12	1.86E+11
Xe-133	8.36E+13	6.64E+12
Xe-135	4.07E+13	3.16E+12
Xe-138	1.51E+13	1.27E+12
惰性气体量	1.71E+14	1.36E+13
I-131	1.01E+09	8.80E+07
I-132	7.36E+07	6.02E+06
I-133	1.91E+08	9.72E+06
I-134	1.67E+07	4.80E+06
I-135	7.78E+07	5.56E+06
总碘量	1.37E+09	1.14E+08
Cs-134	4.52E+07	3.80E+06
Cs-137	3.01E+07	2.54E+06
Co-58	4.52E+07	3.80E+06
Co-60	3.01E+07	2.54E+06
总气溶胶	1.51E+08	1.27E+07
H-3	7.47E+12	7.08E+12
C-14**	1.19E+11	1.08E+11

注*: 该数据为 C-14 中以 CO2 形态释放的量。

表 2.1-2 厂址半径 80km 范围内年均大气弥散因子

单位: s/m³

距离(km) 方位	0~1	1~2	2~3	3~5	5~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80
N	2.84E-07	1.73E-07	1.03E-07	5.96E-08	2.88E-08	1.39E-08	8.31E-09	5.94E-09	4.62E-09	3.78E-09	3.20E-09	2.77E-09
NNE	2.32E-07	1.05E-07	5.85E-08	3.35E-08	1.59E-08	7.72E-09	4.63E-09	3.31E-09	2.57E-09	2.11E-09	1.78E-09	1.54E-09
NE	2.72E-07	1.72E-07	1.01E-07	6.00E-08	3.00E-08	1.47E-08	8.84E-09	6.31E-09	4.91E-09	4.02E-09	3.40E-09	2.95E-09
ENE	3.79E-07	2.24E-07	1.30E-07	7.56E-08	3.67E-08	1.75E-08	1.05E-08	7.52E-09	5.85E-09	4.78E-09	4.05E-09	3.51E-09
Е	3.04E-07	1.69E-07	9.89E-08	5.76E-08	2.81E-08	1.34E-08	8.01E-09	5.72E-09	4.45E-09	3.64E-09	3.08E-09	2.67E-09
ESE	1.35E-07	6.91E-08	5.12E-08	4.57E-08	2.77E-08	1.24E-08	7.42E-09	5.30E-09	4.12E-09	3.37E-09	2.85E-09	2.47E-09
SE	1.25E-07	5.64E-08	4.90E-08	5.19E-08	3.41E-08	1.50E-08	8.97E-09	6.41E-09	4.99E-09	4.08E-09	3.45E-09	2.99E-09
SSE	1.52E-07	7.20E-08	4.13E-08	2.36E-08	1.13E-08	5.53E-09	3.32E-09	2.37E-09	1.84E-09	1.51E-09	1.28E-09	1.11E-09
S	3.46E-07	1.85E-07	1.05E-07	5.89E-08	2.75E-08	1.29E-08	7.73E-09	5.52E-09	4.29E-09	3.51E-09	2.97E-09	2.58E-09
SSW	6.04E-07	3.24E-07	1.78E-07	9.70E-08	4.37E-08	1.96E-08	1.18E-08	8.42E-09	6.55E-09	5.36E-09	4.53E-09	3.93E-09
SW	5.74E-07	2.45E-07	1.31E-07	6.99E-08	3.09E-08	1.38E-08	8.30E-09	5.93E-09	4.61E-09	3.77E-09	3.19E-09	2.77E-09
WSW	4.48E-07	1.56E-07	1.02E-07	8.02E-08	4.70E-08	2.10E-08	1.26E-08	9.01E-09	7.01E-09	5.73E-09	4.85E-09	4.20E-09
W	2.95E-07	2.00E-07	1.35E-07	1.04E-07	6.13E-08	2.82E-08	1.69E-08	1.21E-08	9.39E-09	7.68E-09	6.50E-09	5.63E-09
WNW	1.53E-07	1.62E-07	9.79E-08	5.98E-08	3.05E-08	1.50E-08	9.01E-09	6.44E-09	5.01E-09	4.10E-09	3.47E-09	3.00E-09
NW	1.75E-07	1.55E-07	9.46E-08	5.80E-08	2.96E-08	1.46E-08	8.78E-09	6.27E-09	4.88E-09	3.99E-09	3.38E-09	2.93E-09
NNW	3.73E-07	2.90E-07	1.79E-07	1.07E-07	5.40E-08	2.64E-08	1.59E-08	1.13E-08	8.81E-09	7.21E-09	6.10E-09	5.29E-09

表 2.1-3(1/2) 厂址半径 80km 范围内地面沉积因子(核素: I-131)

单位: m⁻²

距离(km) 方位	0-1	1-2	2-3	3-5	5-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
N	2.91E-09	1.75E-09	1.04E-09	6.05E-10	2.93E-10	1.41E-10	8.45E-11	6.04E-11	4.70E-11	3.84E-11	3.25E-11	2.82E-11
NNE	2.41E-09	1.08E-09	6.03E-10	3.46E-10	1.65E-10	8.02E-11	4.81E-11	3.44E-11	2.67E-11	2.19E-11	1.85E-11	1.60E-11
NE	2.84E-09	1.76E-09	1.03E-09	6.15E-10	3.08E-10	1.51E-10	9.08E-11	6.48E-11	5.04E-11	4.13E-11	3.49E-11	3.03E-11
ENE	3.89E-09	2.27E-09	1.32E-09	7.69E-10	3.74E-10	1.78E-10	1.07E-10	7.67E-11	5.96E-11	4.87E-11	4.13E-11	3.58E-11
Е	3.13E-09	1.72E-09	1.01E-09	5.87E-10	2.87E-10	1.37E-10	8.18E-11	5.84E-11	4.54E-11	3.72E-11	3.15E-11	2.73E-11
ESE	1.40E-09	7.06E-10	5.21E-10	4.63E-10	2.80E-10	1.26E-10	7.51E-11	5.36E-11	4.17E-11	3.41E-11	2.88E-11	2.50E-11
SE	1.30E-09	5.80E-10	5.00E-10	5.25E-10	3.44E-10	1.52E-10	9.07E-11	6.48E-11	5.04E-11	4.12E-11	3.49E-11	3.02E-11
SSE	1.54E-09	7.26E-10	4.16E-10	2.38E-10	1.14E-10	5.59E-11	3.35E-11	2.39E-11	1.86E-11	1.53E-11	1.29E-11	1.12E-11
S	3.55E-09	1.88E-09	1.07E-09	6.00E-10	2.81E-10	1.32E-10	7.90E-11	5.64E-11	4.39E-11	3.59E-11	3.04E-11	2.64E-11
SSW	6.28E-09	3.32E-09	1.83E-09	1.00E-09	4.53E-10	2.04E-10	1.23E-10	8.76E-11	6.81E-11	5.58E-11	4.71E-11	4.09E-11
SW	5.91E-09	2.51E-09	1.34E-09	7.20E-10	3.20E-10	1.44E-10	8.64E-11	6.17E-11	4.80E-11	3.93E-11	3.32E-11	2.88E-11
WSW	4.56E-09	1.59E-09	1.04E-09	8.12E-10	4.75E-10	2.13E-10	1.28E-10	9.13E-11	7.10E-11	5.80E-11	4.91E-11	4.25E-11
W	3.03E-09	2.03E-09	1.37E-09	1.05E-09	6.18E-10	2.85E-10	1.71E-10	1.22E-10	9.48E-11	7.75E-11	6.56E-11	5.68E-11
WNW	1.63E-09	1.65E-09	9.99E-10	6.10E-10	3.12E-10	1.53E-10	9.21E-11	6.58E-11	5.12E-11	4.19E-11	3.55E-11	3.07E-11
NW	1.82E-09	1.57E-09	9.60E-10	5.88E-10	3.01E-10	1.48E-10	8.92E-11	6.37E-11	4.96E-11	4.05E-11	3.43E-11	2.98E-11
NNW	3.88E-09	2.95E-09	1.82E-09	1.09E-09	5.50E-10	2.69E-10	1.62E-10	1.15E-10	8.98E-11	7.35E-11	6.22E-11	5.39E-11

表 2.1-3(2/2) 厂址半径 80km 范围内地面沉积因子(核素: Cs-137)

单位: m⁻²

距离(km) 方位	0-1	1-2	2-3	3-5	5-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
N	4.96E-10	2.82E-10	1.68E-10	9.82E-11	4.79E-11	2.31E-11	1.39E-11	9.90E-12	7.70E-12	6.31E-12	5.33E-12	4.62E-12
NNE	4.39E-10	1.87E-10	1.06E-10	6.14E-11	2.99E-11	1.46E-11	8.75E-12	6.24E-12	4.86E-12	3.98E-12	3.36E-12	2.92E-12
NE	5.26E-10	2.97E-10	1.75E-10	1.05E-10	5.29E-11	2.60E-11	1.57E-11	1.12E-11	8.68E-12	7.10E-12	6.01E-12	5.21E-12
ENE	6.71E-10	3.70E-10	2.16E-10	1.26E-10	6.19E-11	2.97E-11	1.79E-11	1.28E-11	9.91E-12	8.12E-12	6.86E-12	5.95E-12
Е	5.40E-10	2.82E-10	1.65E-10	9.70E-11	4.79E-11	2.28E-11	1.37E-11	9.80E-12	7.62E-12	6.23E-12	5.28E-12	4.57E-12
ESE	2.47E-10	1.19E-10	8.58E-11	7.41E-11	4.46E-11	2.00E-11	1.20E-11	8.59E-12	6.68E-12	5.47E-12	4.63E-12	4.01E-12
SE	2.37E-10	1.01E-10	8.33E-11	8.40E-11	5.44E-11	2.40E-11	1.45E-11	1.03E-11	8.02E-12	6.57E-12	5.56E-12	4.82E-12
SSE	2.44E-10	1.14E-10	6.52E-11	3.75E-11	1.80E-11	8.84E-12	5.30E-12	3.79E-12	2.94E-12	2.41E-12	2.04E-12	1.77E-12
S	6.05E-10	3.07E-10	1.75E-10	9.91E-11	4.70E-11	2.22E-11	1.33E-11	9.51E-12	7.40E-12	6.05E-12	5.12E-12	4.43E-12
SSW	1.14E-09	5.65E-10	3.14E-10	1.75E-10	8.14E-11	3.74E-11	2.24E-11	1.60E-11	1.25E-11	1.02E-11	8.62E-12	7.47E-12
SW	1.03E-09	4.24E-10	2.30E-10	1.26E-10	5.78E-11	2.65E-11	1.58E-11	1.13E-11	8.81E-12	7.21E-12	6.10E-12	5.29E-12
WSW	7.54E-10	2.61E-10	1.69E-10	1.30E-10	7.59E-11	3.42E-11	2.05E-11	1.47E-11	1.14E-11	9.34E-12	7.91E-12	6.85E-12
W	5.22E-10	3.25E-10	2.18E-10	1.67E-10	9.72E-11	4.48E-11	2.69E-11	1.92E-11	1.50E-11	1.22E-11	1.04E-11	8.98E-12
WNW	3.28E-10	2.75E-10	1.67E-10	1.02E-10	5.23E-11	2.58E-11	1.55E-11	1.11E-11	8.61E-12	7.05E-12	5.96E-12	5.17E-12
NW	3.31E-10	2.56E-10	1.56E-10	9.55E-11	4.89E-11	2.43E-11	1.46E-11	1.04E-11	8.07E-12	6.60E-12	5.59E-12	4.84E-12
NNW	7.11E-10	4.85E-10	2.98E-10	1.80E-10	9.11E-11	4.47E-11	2.68E-11	1.92E-11	1.49E-11	1.22E-11	1.03E-11	8.94E-12

表 2.1-4(1/5) 本工程运行状态下气载放射性流出物对公众个人所致有效剂量(成人组)

										1 1-	Z: Sv/a
01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
**	**	**	**	**	**	**	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
**	**	2.58E-07	1.33E-07	5.18E-08	1.81E-08	7.81E-09	4.28E-09	2.71E-09	1.85E-09	1.35E-09	1.02E-09
**	**	**	**	7.33E-08	2.59E-08	1.16E-08	6.55E-09	4.22E-09	2.92E-09	2.15E-09	1.63E-09
**	**	**	1.47E-07	5.92E-08	2.10E-08	9.54E-09	5.44E-09	3.54E-09	2.46E-09	1.82E-09	1.38E-09
**	**	1.07E-07	**	1.96E-08	6.73E-09	3.11E-09	1.83E-09	1.22E-09	8.83E-10	6.79E-10	5.40E-10
**	1.75E-07	**	**	1.69E-08	6.03E-09	2.92E-09	1.78E-09	1.22E-09	9.08E-10	7.11E-10	5.76E-10
**	2.07E-07	1.03E-07	**	1.81E-08	6.15E-09	2.59E-09	1.41E-09	8.81E-10	5.99E-10	4.36E-10	3.30E-10
**	**	3.13E-07	**	**	2.17E-08	9.94E-09	5.70E-09	3.71E-09	2.57E-09	1.90E-09	1.44E-09
**	1.08E-06	**	**	**	3.51E-08	1.63E-08	9.40E-09	6.14E-09	4.28E-09	3.18E-09	2.41E-09
**	**	**	1.88E-07	6.89E-08	2.30E-08	1.06E-08	6.09E-09	3.98E-09	2.78E-09	**	**
**	**	**	1.17E-07	4.31E-08	1.50E-08	6.99E-09	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
	** ** ** ** ** ** ** ** ** **	** ** ** ** ** ** ** ** ** 1.75E-07 ** 2.07E-07 ** ** 1.08E-06 ** ** ** ** ** ** ** ** **	** ** ** ** ** ** ** ** ** **	**	**	** ** ** ** ** ** ** <t< td=""><td>** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 7.81E-09 ** ** ** ** 7.33E-08 2.59E-08 1.16E-08 ** ** ** 1.47E-07 5.92E-08 2.10E-08 9.54E-09 ** 1.75E-07 ** 1.96E-08 6.73E-09 3.11E-09 ** 1.75E-07 ** ** 1.69E-08 6.03E-09 2.92E-09 ** 2.07E-07 1.03E-07 ** 1.81E-08 6.15E-09 2.59E-09 ** ** 3.13E-07 ** * 2.17E-08 9.94E-09 ** ** ** ** 3.51E-08 1.63E-08 ** ** ** 1.88E-07 6.89E-08 2.30E-08 1.06E-08 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **</td></t<> <td>** <td< td=""><td>** <td< td=""><td>** <td< td=""><td>01 12 23 35 510 1020 2030 3040 4050 5060 6070 **</td></td<></td></td<></td></td<></td>	** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 7.81E-09 ** ** ** ** 7.33E-08 2.59E-08 1.16E-08 ** ** ** 1.47E-07 5.92E-08 2.10E-08 9.54E-09 ** 1.75E-07 ** 1.96E-08 6.73E-09 3.11E-09 ** 1.75E-07 ** ** 1.69E-08 6.03E-09 2.92E-09 ** 2.07E-07 1.03E-07 ** 1.81E-08 6.15E-09 2.59E-09 ** ** 3.13E-07 ** * 2.17E-08 9.94E-09 ** ** ** ** 3.51E-08 1.63E-08 ** ** ** 1.88E-07 6.89E-08 2.30E-08 1.06E-08 ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **	** ** <td< td=""><td>** <td< td=""><td>** <td< td=""><td>01 12 23 35 510 1020 2030 3040 4050 5060 6070 **</td></td<></td></td<></td></td<>	** ** <td< td=""><td>** <td< td=""><td>01 12 23 35 510 1020 2030 3040 4050 5060 6070 **</td></td<></td></td<>	** ** <td< td=""><td>01 12 23 35 510 1020 2030 3040 4050 5060 6070 **</td></td<>	01 12 23 35 510 1020 2030 3040 4050 5060 6070 **

^{**} 表示无人居住

表 2.1-4(2/5) 本工程运行状态下气载放射性流出物对公众个人所致有效剂量(青少年组)

											T 12.	Sv/a
方位\距离(km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	2.68E-07	1.39E-07	5.51E-08	1.98E-08	8.81E-09	5.01E-09	3.27E-09	2.31E-09	1.74E-09	1.36E-09
ENE	**	**	**	**	7.73E-08	2.78E-08	1.28E-08	7.40E-09	4.89E-09	3.46E-09	2.61E-09	2.03E-09
Е	**	**	**	1.54E-07	6.23E-08	2.25E-08	1.04E-08	6.08E-09	4.04E-09	2.87E-09	2.17E-09	1.69E-09
ESE	**	**	1.13E-07	**	2.28E-08	8.14E-09	3.96E-09	2.44E-09	1.70E-09	1.27E-09	1.01E-09	8.27E-10
SE	**	1.81E-07	**	**	2.08E-08	7.75E-09	3.96E-09	2.52E-09	1.80E-09	1.38E-09	1.11E-09	9.24E-10
SSE	**	2.14E-07	1.08E-07	**	1.93E-08	6.76E-09	2.96E-09	1.68E-09	1.09E-09	7.71E-10	5.83E-10	4.57E-10
S	**	**	3.24E-07	**	**	2.31E-08	1.08E-08	6.31E-09	4.19E-09	2.97E-09	2.24E-09	1.73E-09
SSW	**	1.12E-06	**	**	**	3.73E-08	1.76E-08	1.04E-08	6.89E-09	4.90E-09	3.70E-09	2.86E-09
SW	**	**	**	1.95E-07	7.23E-08	2.46E-08	1.15E-08	6.77E-09	4.51E-09	3.22E-09	**	**
WSW	**	**	**	1.26E-07	4.84E-08	1.74E-08	8.44E-09	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**

^{**} 表示无人居住。

表 2.1-4 (3/5) 本工程运行状态下气载放射性流出物对公众个人所致有效剂量(儿童组)

											一 1 1 2 .	SV/a
方位\距离(km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	2.41E-07	1.24E-07	4.89E-08	1.76E-08	7.90E-09	4.55E-09	3.02E-09	2.17E-09	1.67E-09	1.33E-09
ENE	**	**	**	**	6.90E-08	2.48E-08	1.14E-08	6.64E-09	4.42E-09	3.17E-09	2.42E-09	1.91E-09
Е	**	**	**	1.38E-07	5.57E-08	2.00E-08	9.30E-09	5.45E-09	3.64E-09	2.61E-09	2.00E-09	1.57E-09
ESE	**	**	1.02E-07	**	2.17E-08	7.86E-09	3.90E-09	2.45E-09	1.74E-09	1.33E-09	1.07E-09	8.89E-10
SE	**	1.65E-07	**	**	2.06E-08	7.80E-09	4.06E-09	2.64E-09	1.92E-09	1.49E-09	1.21E-09	1.02E-09
SSE	**	1.93E-07	9.65E-08	**	1.71E-08	6.03E-09	2.67E-09	1.54E-09	1.02E-09	7.37E-10	5.69E-10	4.56E-10
S	**	**	2.94E-07	**	**	2.06E-08	9.61E-09	5.63E-09	3.75E-09	2.68E-09	2.04E-09	1.60E-09
SSW	**	1.02E-06	**	**	**	3.33E-08	1.57E-08	9.22E-09	6.16E-09	4.41E-09	3.35E-09	2.61E-09
SW	**	**	**	1.77E-07	6.49E-08	2.20E-08	1.03E-08	6.07E-09	4.06E-09	2.92E-09	**	**
WSW	**	**	**	1.16E-07	4.53E-08	1.64E-08	8.08E-09	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**

^{**} 表示无人居住

表 2.1-4(4/5) 本工程运行状态下气载放射性流出物对公众个人所致有效剂量(婴儿组)

											十四: 50/6
01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
**	**	**	**	**	**	**	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
**	**	2.26E-07	1.15E-07	4.45E-08	1.55E-08	6.65E-09	3.66E-09	2.33E-09	1.61E-09	1.20E-09	9.24E-10
**	**	**	**	6.36E-08	2.22E-08	9.90E-09	5.58E-09	3.60E-09	2.50E-09	1.86E-09	1.42E-09
**	**	**	1.30E-07	5.15E-08	1.81E-08	8.15E-09	4.64E-09	3.01E-09	2.10E-09	1.57E-09	1.20E-09
**	**	9.50E-08	**	1.78E-08	6.17E-09	2.90E-09	1.73E-09	1.18E-09	8.74E-10	6.85E-10	5.56E-10
**	1.57E-07	**	**	1.60E-08	5.77E-09	2.85E-09	1.77E-09	1.25E-09	9.41E-10	7.51E-10	6.19E-10
**	1.83E-07	9.04E-08	**	1.55E-08	5.25E-09	2.21E-09	1.21E-09	7.67E-10	5.31E-10	3.95E-10	3.07E-10
**	**	2.78E-07	**	**	1.87E-08	8.49E-09	4.84E-09	3.15E-09	2.19E-09	1.62E-09	1.24E-09
**	9.70E-07	**	**	**	3.04E-08	1.39E-08	8.00E-09	5.21E-09	3.64E-09	2.70E-09	2.06E-09
**	**	**	1.66E-07	6.03E-08	1.99E-08	9.08E-09	5.21E-09	3.40E-09	2.38E-09	**	**
**	**	**	1.04E-07	3.88E-08	1.36E-08	6.35E-09	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
**	**	**	**	**	**	**	**	**	**	**	**
	** ** ** ** ** ** ** ** ** **	** ** ** ** ** ** ** ** ** 1.57E-07 ** 1.83E-07 ** ** ** ** ** ** ** ** **	**	**	**	** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 1.55E-08 1.55E-08 1.55E-08 2.22E-08 ** ** ** 6.36E-08 2.22E-08 1.81E-08 1.81E-08 1.81E-08 1.81E-08 1.78E-08 6.17E-09 1.57E-07 ** ** 1.60E-08 5.77E-09 1.87E-09 1.87E-08 5.25E-09 ** 1.87E-08 5.25E-09 ** 1.87E-08 1.87E-08	** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 9.90E-09 ** ** ** 1.30E-07 5.15E-08 1.81E-08 8.15E-09 ** ** 9.50E-08 ** 1.78E-08 6.17E-09 2.90E-09 ** 1.57E-07 ** ** 1.60E-08 5.77E-09 2.85E-09 ** 1.83E-07 9.04E-08 ** 1.55E-08 5.25E-09 2.21E-09 ** ** 2.78E-07 ** ** 1.87E-08 8.49E-09 ** ** 2.78E-07 ** ** 1.87E-08 9.08E-09 ** ** 1.66E-07 6.03E-08 1.39E-08 9.08E-09 ** ** ** ** ** ** ** ** ** ** ** ** ** <	** ** <td< td=""><td>** <td< td=""><td>*** <t< td=""><td>** <td< td=""></td<></td></t<></td></td<></td></td<>	** ** <td< td=""><td>*** <t< td=""><td>** <td< td=""></td<></td></t<></td></td<>	*** ** <t< td=""><td>** <td< td=""></td<></td></t<>	** ** <td< td=""></td<>

^{**} 表示无人居住。

表 2.1-4(5/5) 本工程运行状态下气载放射性流出物对公众所致集体剂量

方位\距离(km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080	合计
N	**	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	1.12E-04	2.40E-04	9.88E-04	7.72E-05	4.50E-05	4.00E-05	3.82E-04	1.62E-04	8.13E-05	2.11E-05	2.15E-03
ENE	**	**	**	**	6.02E-05	3.30E-04	2.02E-04	1.31E-04	2.42E-04	2.76E-04	1.89E-04	1.51E-04	1.58E-03
Е	**	**	**	2.06E-05	1.90E-04	3.14E-04	1.41E-04	1.10E-04	2.15E-04	1.41E-04	1.91E-04	1.97E-04	1.52E-03
ESE	**	**	4.92E-05	**	8.82E-06	7.33E-06	8.19E-05	9.58E-05	1.88E-05	2.17E-05	3.98E-05	9.66E-06	3.33E-04
SE	**	7.65E-05	**	**	2.36E-05	1.19E-04	1.35E-04	3.59E-05	2.03E-06	8.62E-06	2.37E-06	2.79E-06	4.06E-04
SSE	**	8.03E-05	4.45E-05	**	2.89E-05	6.38E-05	8.58E-05	8.38E-06	9.52E-06	3.72E-06	2.74E-06	1.27E-05	3.40E-04
S	**	**	6.18E-04	**	**	2.09E-04	8.96E-05	1.32E-04	1.39E-04	2.81E-05	2.39E-05	3.26E-06	1.24E-03
SSW	**	2.09E-04	**	**	**	4.42E-04	5.23E-04	4.32E-04	2.08E-04	1.65E-04	1.14E-04	1.56E-04	2.25E-03
SW	**	**	**	1.43E-04	5.47E-05	1.37E-04	3.68E-04	3.57E-04	2.70E-04	2.37E-05	**	**	1.35E-03
WSW	**	**	**	3.55E-05	4.76E-04	6.82E-05	4.87E-05	**	**	**	**	**	6.28E-04
W	**	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**	**
合计	**	3.66E-04	8.24E-04	4.39E-04	1.83E-03	1.77E-03	1.72E-03	1.34E-03	1.49E-03	8.30E-04	6.44E-04	5.54E-04	1.18E-02

^{**} 表示无人居住。

表 2.2-1 本工程运行状态下液态放射性流出物年排放量

单位: Bq/a

核素	申请值	预期值
Sr-89	6.21E+07	3.56E+07
Sr-90	1.07E+06	5.98E+05
Zr-95	4.73E+06	3.26E+06
I-131	1.45E+10	6.56E+09
I-133	2.28E+07	8.52E+06
Cs-134	5.22E+09	1.64E+09
Cs-136	7.51E+08	3.34E+08
Cs-137	4.09E+09	1.58E+09
Cr-51	4.65E+08	4.44E+08
Mn-54	5.59E+08	5.86E+07
Fe-59	4.40E+07	3.68E+07
Co-58	5.73E+09	5.40E+09
Co-60	1.58E+09	2.02E+09
Ag-110m	6.10E+08	6.78E+08
Sb-124	6.10E+08	5.38E+08
Н-3	7.47E+13	7.08E+13
C-14	3.49E+10	3.16E+10

注*: 该列数据是本期工程两台机组进行剂量后果计算时采用的排放源项数据。

表 2.2-2(1/5) 本工程运行状态下液态放射性流出物对公众个人所致有效剂量(成人组)

方位\距离(km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	2.39E-06	2.39E-06	6.11E-07	6.11E-07	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08
ENE	**	**	**	**	6.11E-07	6.11E-07	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08
Е	**	**	**	2.39E-06	6.11E-07	6.11E-07	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08
ESE	**	**	2.39E-06	**	6.11E-07	6.11E-07	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08
SE	**	2.39E-06	**	**	6.11E-07	6.11E-07	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08
SSE	**	2.39E-06	2.39E-06	**	6.11E-07	6.11E-07	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08
S	**	**	2.39E-06	**	**	6.11E-07	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08
SSW	**	2.39E-06	**	**	**	6.11E-07	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08	5.09E-08
SW	**	**	**	2.39E-06	6.11E-07	6.11E-07	5.09E-08	5.09E-08	5.09E-08	5.09E-08	**	**
WSW	**	**	**	2.39E-06	6.11E-07	6.11E-07	5.09E-08	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**

^{**} 表示无人居住

表 2.2-2 (2/5) 本工程运行状态下液态放射性流出物对公众个人所致有效剂量(青少年组)

方位\距离(km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	1.65E-06	1.65E-06	4.21E-07	4.21E-07	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08
ENE	**	**	**	**	4.21E-07	4.21E-07	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08
Е	**	**	**	1.65E-06	4.21E-07	4.21E-07	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08
ESE	**	**	1.65E-06	**	4.21E-07	4.21E-07	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08
SE	**	1.65E-06	**	**	4.21E-07	4.21E-07	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08
SSE	**	1.65E-06	1.65E-06	**	4.21E-07	4.21E-07	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08
S	**	**	1.65E-06	**	**	4.21E-07	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08
SSW	**	1.65E-06	**	**	**	4.21E-07	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08	3.51E-08
SW	**	**	**	1.65E-06	4.21E-07	4.21E-07	3.51E-08	3.51E-08	3.51E-08	3.51E-08	**	**
WSW	**	**	**	1.65E-06	4.21E-07	4.21E-07	3.51E-08	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**

^{**} 表示无人居住

表 2.2-2 (3/5) 本工程运行状态下液态放射性流出物对公众个人所致有效剂量(儿童组)

方位\距离 (km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	1.29E-06	1.29E-06	3.28E-07	3.28E-07	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08
ENE	**	**	**	**	3.28E-07	3.28E-07	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08
Е	**	**	**	1.29E-06	3.28E-07	3.28E-07	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08
ESE	**	**	1.29E-06	**	3.28E-07	3.28E-07	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08
SE	**	1.29E-06	**	**	3.28E-07	3.28E-07	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08
SSE	**	1.29E-06	1.29E-06	**	3.28E-07	3.28E-07	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08
S	**	**	1.29E-06	**	**	3.28E-07	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08
SSW	**	1.29E-06	**	**	**	3.28E-07	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08	2.74E-08
SW	**	**	**	1.29E-06	3.28E-07	3.28E-07	2.74E-08	2.74E-08	2.74E-08	2.74E-08	**	**
WSW	**	**	**	1.29E-06	3.28E-07	3.28E-07	2.74E-08	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**

^{**} 表示无人居住

表 2.2-2(4/5) 本工程运行状态下液态放射性流出物对公众个人所致有效剂量(婴儿组)

方位\距离(km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	6.52E-07	6.52E-07	1.66E-07	1.66E-07	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08
ENE	**	**	**	**	1.66E-07	1.66E-07	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08
Е	**	**	**	6.52E-07	1.66E-07	1.66E-07	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08
ESE	**	**	6.52E-07	**	1.66E-07	1.66E-07	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08
SE	**	6.52E-07	**	**	1.66E-07	1.66E-07	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08
SSE	**	6.52E-07	6.52E-07	**	1.66E-07	1.66E-07	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08
S	**	**	6.52E-07	**	**	1.66E-07	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08
SSW	**	6.52E-07	**	**	**	1.66E-07	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08	1.39E-08
SW	**	**	**	6.52E-07	1.66E-07	1.66E-07	1.39E-08	1.39E-08	1.39E-08	1.39E-08	**	**
WSW	**	**	**	6.52E-07	1.66E-07	1.66E-07	1.39E-08	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**

^{**} 表示无人居住

表 2.2-2 (5/5) 本工程运行状态下液态放射性流出物对公众所致集体剂量

方位\距离(km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080	合计
N	**	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	8.99E-04	3.75E-03	1.02E-02	2.27E-03	2.51E-04	4.02E-04	6.02E-03	3.70E-03	2.51E-03	8.65E-04	3.09E-02
ENE	**	**	**	**	4.41E-04	6.83E-03	7.61E-04	8.69E-04	2.47E-03	4.05E-03	3.74E-03	3.92E-03	2.31E-02
E	**	**	**	3.01E-04	1.73E-03	8.00E-03	6.51E-04	8.80E-04	2.63E-03	2.47E-03	4.49E-03	6.04E-03	2.72E-02
ESE	**	**	9.55E-04	**	2.35E-04	5.87E-04	1.11E-03	2.17E-03	6.28E-04	9.85E-04	2.33E-03	7.01E-04	9.70E-03
SE	**	9.13E-04	**	**	7.13E-04	1.05E-02	2.01E-03	8.61E-04	6.58E-05	3.73E-04	1.30E-04	1.88E-04	1.58E-02
SSE	**	8.15E-04	9.02E-04	**	8.55E-04	5.62E-03	1.51E-03	2.71E-04	4.88E-04	2.73E-04	2.73E-04	1.61E-03	1.26E-02
S	**	**	3.99E-03	**	**	5.17E-03	4.13E-04	1.03E-03	1.66E-03	4.84E-04	5.53E-04	9.89E-05	1.34E-02
SSW	**	3.87E-04	**	**	**	7.01E-03	1.47E-03	2.05E-03	1.51E-03	1.70E-03	1.58E-03	2.85E-03	1.86E-02
SW	**	**	**	1.60E-03	4.26E-04	3.22E-03	1.59E-03	2.61E-03	3.02E-03	3.77E-04	**	**	1.28E-02
WSW	**	**	**	6.37E-04	5.81E-03	2.37E-03	3.15E-04	**	**	**	**	**	9.13E-03
W	**	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**	**
合计	**	2.12E-03	6.75E-03	6.29E-03	2.04E-02	5.16E-02	1.01E-02	1.11E-02	1.85E-02	1.44E-02	1.56E-02	1.63E-02	1.73E-01

^{**} 表示无人居住

表 2.2-3 各类放射性核素海水稀释因子(最不利潮型)

冬季半月潮	1h	8d	70d	250d	5a
0-5km	0.001	0.023	0.040	0.045	0.047
5-20km	< 0.001	0.002	0.009	0.011	0.012
20-80km	< 0.001	< 0.001	<0.001	0.001	0.001

表 2.2-4 核电厂总排放口处放射性核素浓度与《海水水质标准》(GB 3097-1997) 比较表

单位: Bq/L

放射性核	国标中放射性指标要求		上放射性核素浓度	与排放海域本底叠加后结果				
素	四	核素浓度	所占国标份额	本底浓度*	叠加后浓度	叠加后浓度所占国标份额		
Co-60	0.03	1.56E-02	51.93%	1.70E-03	1.73E-02	57.60%		
Sr-90	4	1.06E-05	0.00%	2.06E-03	2.07E-03	0.05%		
Ru-106	0.2	1.45E-05	0.01%	**	1.45E-05	0.01%		
Cs-134	0.6	5.16E-02	8.59%	1.40E-03	5.30E-02	8.83%		
Cs-137	0.7	4.04E-02	5.77%	2.64E-03	4.30E-02	6.14%		

^{*:} 本列数据取自《海南昌江核电厂运行前两年本底调查》,中国辐射防护研究院,2013年11月。

表 2.3-1(1/4) 昌江 1、2#机组运行状态下气、液态放射性流出物对公众个人所致有效剂量(成人组)

												一 四. 5 V/a
方位\距离 (km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	2.65E-06	2.53E-06	6.63E-07	6.29E-07	5.87E-08	5.52E-08	5.36E-08	5.28E-08	5.23E-08	5.19E-08
ENE	**	**	**	**	6.84E-07	6.37E-07	6.25E-08	5.75E-08	5.52E-08	5.38E-08	5.31E-08	5.26E-08
Е	**	**	**	2.54E-06	6.70E-07	6.32E-07	6.05E-08	5.64E-08	5.45E-08	5.34E-08	5.27E-08	5.23E-08
ESE	**	**	2.50E-06	**	6.31E-07	6.18E-07	5.40E-08	5.28E-08	5.21E-08	5.18E-08	5.16E-08	5.15E-08
SE	**	2.57E-06	**	**	6.28E-07	6.17E-07	5.38E-08	5.27E-08	5.22E-08	5.18E-08	5.16E-08	5.15E-08
SSE	**	2.60E-06	2.50E-06	**	6.29E-07	6.17E-07	5.35E-08	5.23E-08	5.18E-08	5.15E-08	5.14E-08	5.13E-08
S	**	**	2.71E-06	**	**	6.33E-07	6.09E-08	5.66E-08	5.46E-08	5.35E-08	5.28E-08	5.24E-08
SSW	**	3.47E-06	**	**	**	6.46E-07	6.72E-08	6.03E-08	5.71E-08	5.52E-08	5.41E-08	5.33E-08
SW	**	**	**	2.58E-06	6.80E-07	6.34E-07	6.15E-08	5.70E-08	5.49E-08	5.37E-08	**	**
WSW	**	**	**	2.51E-06	6.54E-07	6.26E-07	5.79E-08	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**
. +	<u> </u>											

^{**} 表示无人居住

表 2.3-1(2/4) 昌江 1、2#机组运行状态下气、液态放射性流出物对公众个人所致有效剂量(青少年组)

												1 12. 017
方位\距离 (km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	1.92E-06	1.79E-06	4.76E-07	4.41E-07	4.39E-08	4.01E-08	3.83E-08	3.74E-08	3.68E-08	3.64E-08
ENE	**	**	**	**	4.98E-07	4.49E-07	4.78E-08	4.25E-08	4.00E-08	3.85E-08	3.77E-08	3.71E-08
Е	**	**	**	1.80E-06	4.83E-07	4.43E-07	4.55E-08	4.11E-08	3.91E-08	3.79E-08	3.72E-08	3.68E-08
ESE	**	**	1.76E-06	**	4.44E-07	4.29E-07	3.90E-08	3.75E-08	3.68E-08	3.63E-08	3.61E-08	3.59E-08
SE	**	1.83E-06	**	**	4.42E-07	4.29E-07	3.90E-08	3.76E-08	3.69E-08	3.64E-08	3.62E-08	3.60E-08
SSE	**	1.86E-06	1.76E-06	**	4.40E-07	4.28E-07	3.80E-08	3.67E-08	3.62E-08	3.58E-08	3.56E-08	3.55E-08
S	**	**	1.97E-06	**	**	4.44E-07	4.59E-08	4.14E-08	3.93E-08	3.80E-08	3.73E-08	3.68E-08
SSW	**	2.77E-06	**	**	**	4.58E-07	5.27E-08	4.54E-08	4.20E-08	4.00E-08	3.88E-08	3.79E-08
SW	**	**	**	1.84E-06	4.93E-07	4.45E-07	4.66E-08	4.18E-08	3.96E-08	3.83E-08	**	**
WSW	**	**	**	1.77E-06	4.69E-07	4.38E-07	4.35E-08	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**

^{**} 表示无人居住

表 2.3-1(3/4) 昌江 1、2#机组运行状态下气、液态放射性流出物对公众个人所致有效剂量(儿童组)

												十四: 5V/a
方位\距离 (km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	1.53E-06	1.41E-06	3.77E-07	3.46E-07	3.53E-08	3.19E-08	3.04E-08	2.95E-08	2.90E-08	2.87E-08
ENE	**	**	**	**	3.97E-07	3.53E-07	3.88E-08	3.40E-08	3.18E-08	3.05E-08	2.98E-08	2.93E-08
Е	**	**	**	1.42E-06	3.84E-07	3.48E-07	3.67E-08	3.28E-08	3.10E-08	3.00E-08	2.94E-08	2.89E-08
ESE	**	**	1.39E-06	**	3.50E-07	3.36E-07	3.13E-08	2.98E-08	2.91E-08	2.87E-08	2.84E-08	2.82E-08
SE	**	1.45E-06	**	**	3.49E-07	3.36E-07	3.14E-08	3.00E-08	2.93E-08	2.88E-08	2.86E-08	2.84E-08
SSE	**	1.48E-06	1.38E-06	**	3.45E-07	3.34E-07	3.00E-08	2.89E-08	2.84E-08	2.81E-08	2.79E-08	2.78E-08
S	**	**	1.58E-06	**	**	3.49E-07	3.70E-08	3.30E-08	3.11E-08	3.00E-08	2.94E-08	2.90E-08
SSW	**	2.30E-06	**	**	**	3.62E-07	4.30E-08	3.66E-08	3.35E-08	3.18E-08	3.07E-08	3.00E-08
SW	**	**	**	1.46E-06	3.93E-07	3.50E-07	3.77E-08	3.34E-08	3.14E-08	3.03E-08	**	**
WSW	**	**	**	1.40E-06	3.74E-07	3.45E-07	3.54E-08	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**
+ 1												

^{**} 表示无人居住

表 2.3-1(4/4) 昌江 1、2#机组运行状态下气、液态放射性流出物对公众个人所致有效剂量(婴儿组)

												十 <u>世</u> : 5v/a
方位\距离 (km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080
N	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	8.77E-07	7.67E-07	2.11E-07	1.82E-07	2.05E-08	1.75E-08	1.62E-08	1.55E-08	1.51E-08	1.48E-08
ENE	**	**	**	**	2.30E-07	1.89E-07	2.38E-08	1.94E-08	1.75E-08	1.64E-08	1.57E-08	1.53E-08
Е	**	**	**	7.81E-07	2.18E-07	1.84E-07	2.20E-08	1.85E-08	1.69E-08	1.60E-08	1.54E-08	1.51E-08
ESE	**	**	7.47E-07	**	1.84E-07	1.73E-07	1.68E-08	1.56E-08	1.50E-08	1.47E-08	1.45E-08	1.44E-08
SE	**	8.08E-07	**	**	1.82E-07	1.72E-07	1.67E-08	1.56E-08	1.51E-08	1.48E-08	1.46E-08	1.45E-08
SSE	**	8.34E-07	7.42E-07	**	1.82E-07	1.72E-07	1.61E-08	1.51E-08	1.46E-08	1.44E-08	1.43E-08	1.42E-08
S	**	**	9.29E-07	**	**	1.85E-07	2.24E-08	1.87E-08	1.70E-08	1.61E-08	1.55E-08	1.51E-08
SSW	**	1.62E-06	**	**	**	1.97E-07	2.78E-08	2.19E-08	1.91E-08	1.75E-08	1.66E-08	1.59E-08
SW	**	**	**	8.18E-07	2.27E-07	1.86E-07	2.29E-08	1.91E-08	1.73E-08	1.62E-08	**	**
WSW	**	**	**	7.56E-07	2.05E-07	1.80E-07	2.02E-08	**	**	**	**	**
W	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**
+ 1												

^{**} 表示无人居住

表 2.3-1(5/5) 昌江 1、2#机组运行状态下气、液态放射性流出物对公众所致集体剂量

													— <u> </u>
方位\距离(km)	01	12	23	35	510	1020	2030	3040	4050	5060	6070	7080	合计
N	**	**	**	**	**	**	**	**	**	**	**	**	**
NNE	**	**	**	**	**	**	**	**	**	**	**	**	**
NE	**	**	1.01E-03	3.99E-03	1.12E-02	2.35E-03	2.96E-04	4.42E-04	6.40E-03	3.86E-03	2.59E-03	8.86E-04	3.30E-02
ENE	**	**	**	**	5.01E-04	7.16E-03	9.62E-04	1.00E-03	2.71E-03	4.32E-03	3.92E-03	4.07E-03	2.46E-02
Е	**	**	**	3.21E-04	1.92E-03	8.31E-03	7.92E-04	9.90E-04	2.85E-03	2.61E-03	4.68E-03	6.24E-03	2.87E-02
ESE	**	**	1.00E-03	**	2.43E-04	5.94E-04	1.19E-03	2.27E-03	6.47E-04	1.01E-03	2.37E-03	7.11E-04	1.00E-02
SE	**	9.89E-04	**	**	7.37E-04	1.06E-02	2.15E-03	8.97E-04	6.78E-05	3.82E-04	1.32E-04	1.91E-04	1.61E-02
SSE	**	8.95E-04	9.46E-04	**	8.84E-04	5.69E-03	1.59E-03	2.79E-04	4.97E-04	2.77E-04	2.76E-04	1.63E-03	1.30E-02
S	**	**	4.61E-03	**	**	5.38E-03	5.02E-04	1.17E-03	1.80E-03	5.12E-04	5.77E-04	1.02E-04	1.47E-02
SSW	**	5.96E-04	**	**	**	7.45E-03	1.99E-03	2.49E-03	1.72E-03	1.87E-03	1.69E-03	3.01E-03	2.08E-02
SW	**	**	**	1.75E-03	4.81E-04	3.36E-03	1.96E-03	2.97E-03	3.29E-03	4.01E-04	**	**	1.42E-02
WSW	**	**	**	6.72E-04	6.29E-03	2.44E-03	3.64E-04	**	**	**	**	**	9.77E-03
W	**	**	**	**	**	**	**	**	**	**	**	**	**
WNW	**	**	**	**	**	**	**	**	**	**	**	**	**
NW	**	**	**	**	**	**	**	**	**	**	**	**	**
NNW	**	**	**	**	**	**	**	**	**	**	**	**	**
合计	**	2.48E-03	7.57E-03	6.73E-03	2.23E-02	5.33E-02	1.18E-02	1.25E-02	2.00E-02	1.52E-02	1.62E-02	1.68E-02	1.85E-01

^{**} 表示无人居住

表 2.3-2 昌江 1、2#机组各途径、各核素对关键居民组剂量的贡献

核素\途径	食入	吸入	地面沉积	空气浸没	食入海产品	岸边活动	水上活动	合计(Sv/a)	份额
水系、 处在	及八	700.70	地面机物	工版权	(大)(4) HI	开场证例	小工行列	ди (3 7/а)	U) I IV
Mn-54	0	0	0	0	1.7E-10	7.73E-09	1.44E-13	7.90E-09	0.368%
Fe-59	0	0	0	0	1.41E-08	4.27E-10	1.31E-13	1.45E-08	0.677%
Co-58	4.32E-12	6.23E-13	1.75E-11	5.64E-14	3.04E-08	3.31E-07	1.54E-11	3.61E-07	16.838%
Co-60	2.24E-11	6.15E-12	9.92E-11	9.93E-14	5.26E-08	1.05E-06	1.53E-11	1.10E-06	51.372%
Kr-85m	0	0	0	8.65E-10	0	0	0	8.65E-10	0.040%
Kr-87	0	0	0	7.36E-09	0	0	0	7.36E-09	0.343%
Kr-88	0	0	0	3.01E-08	0	0	0	3.01E-08	1.402%
Zr-95	0	0	0	0	2.91E-12	6.94E-10	7.06E-15	6.97E-10	0.032%
I-131	3.17E-09	5.08E-11	1.11E-10	4.98E-13	2.08E-08	1.88E-12	7.21E-12	2.41E-08	1.125%
I-133	2.68E-12	1.13E-12	2.21E-12	8.93E-14	2.58E-12	4.38E-16	1.5E-14	8.70E-12	0.000%
Xe-133m	0	0	0	7.25E-11	0	0	0	7.25E-11	0.003%
Xe-133	0	0	0	2.84E-09	0	0	0	2.84E-09	0.132%
Xe-135	0	0	0	1.06E-08	0	0	0	1.06E-08	0.494%
Xe-138	0	0	0	1.46E-08	0	0	0	1.46E-08	0.680%
Cs-134	1.45E-10	3.35E-12	8.7E-11	8.96E-14	3.78E-09	7.5E-09	7.41E-12	1.15E-08	0.537%
Cs-136	0	0	0	0	3.45E-11	5.46E-12	2.13E-12	4.21E-11	0.002%
Cs-137	6.93E-11	7.73E-12	1.27E-14	2.29E-14	2.5E-09	1.58E-12	6.5E-16	2.58E-09	0.120%
Ag-110m	0	0	0	0	2.22E-08	1.34E-09	5.49E-12	2.35E-08	1.097%
Sb-124	0	0	0	0	8.42E-10	2.55E-10	2.94E-12	1.10E-09	0.051%
H-3	1.09E-08	1.44E-07	0	7.21E-13	1.96E-09	0	0	1.57E-07	7.307%
C-14	1.15E-10	4.89E-08	3.08E-11	8.81E-14	3.24E-07	1.21E-12	3.84E-16	3.73E-07	17.379%
合计(Sv/a)	1.44E-08	1.93E-07	3.48E-10	6.64E-08	4.73E-07	1.40E-06	5.62E-11	2.15E-06	100.000%
份额	0.672%	8.990%	0.016%	3.095%	22.053%	65.171%	0.003%	100.000%	

表 2.4-1 本工程液态流出物排放对水生生物的辐射剂量率 (µGy/h)

生物种类核素	软体动物	甲壳类动物	藻类	深水鱼	浮游植物	多毛纲蠕虫	浮游动物	浅水鱼	珊瑚虫	珊瑚虫群落
Co-60	4.07E-03	3.78E-03	4.10E-03	3.80E-03	4.18E-06	8.14E-03	7.84E-06	2.76E-05	3.76E-03	4.05E-03
Cr-51	3.87E-06	3.38E-06	4.16E-06	3.46E-06	2.99E-07	7.68E-06	6.15E-08	1.54E-08	3.28E-06	3.95E-06
Mn-54	4.82E-04	4.43E-04	4.80E-04	4.39E-04	2.76E-07	9.59E-04	2.47E-07	3.70E-07	4.39E-04	4.84E-04
Co-58	5.69E-03	5.27E-03	5.77E-03	5.30E-03	5.92E-06	1.16E-02	1.28E-05	4.31E-05	5.15E-03	5.78E-03
I-131	1.03E-06	6.65E-07	1.22E-04	6.83E-07	1.64E-05	1.58E-06	7.83E-05	1.78E-07	2.61E-06	2.16E-06
I-133	2.94E-09	1.78E-09	3.60E-07	1.81E-09	2.50E-08	4.30E-09	2.01E-07	5.29E-10	7.57E-09	6.50E-09
Cs-134	1.26E-04	1.14E-04	1.28E-04	1.18E-04	7.21E-07	2.55E-04	9.71E-07	1.48E-06	1.20E-04	1.31E-04
Cs-137	3.68E-05	3.32E-05	3.83E-05	3.38E-05	6.84E-07	7.61E-05	1.02E-06	1.12E-06	3.66E-05	4.11E-05
Ag-110m	4.50E-05	4.91E-05	9.96E-06	1.47E-05	1.92E-05	4.38E-05	9.13E-06	5.86E-06	1.67E-05	1.16E-05
Sb-124	6.97E-06	1.04E-05	6.37E-06	6.18E-06	6.57E-07	1.58E-05	1.91E-06	7.58E-07	5.64E-06	6.36E-06
Н-3	1.13E-05									
C-14	1.83E-04	1.89E-04	1.49E-04	2.27E-04	9.89E-05	1.83E-04	1.83E-04	2.27E-04	2.01E-04	2.01E-04
总计	1.07E-02	9.90E-03	1.08E-02	9.95E-03	1.59E-04	2.13E-02	3.06E-04	3.19E-04	9.75E-03	1.07E-02

3、事故的辐射环境影响

3.1 设计基准事故描述及源项

3.1.1 失水事故(LOCA)

假定一根主冷却剂管道双端断裂,反应堆冷却剂通过管道的破口大量泄出,当压力 低于安全注入整定值时,安注系统投入以确保堆芯的完整性,同时,喷淋系统动作,降 低安全壳的压力和温度,从而保证安全壳的完整性,最大限度地降低裂变产物的释放。 裂变产物通过安全壳泄漏进入环境中。该事故属于极限事故。

计算该事故向环境的排放源项采用了如下的假设和参数:

- 事故发生在堆芯平衡循环末期;
- 燃料包壳破损份额: 100%;
- 堆芯裂变产物释放到冷却剂份额: Kr-85 30% 惰性气体(除 Kr-85) 2% 碘 3%
- 碘在冷却剂中的滞留和在结构上的沉积,导致碘向安全壳的释放减少50%;
- 碘的喷淋去除因子: 元素碘 1000

有机碘 1

- 碘在安全壳内的化学形态和泄漏率
 - 1) 保守模型下, 碘在安全壳内的化学形态: 元素碘占 90%, 粒子碘占 10%。

安全壳泄漏率:

0.3%/d 0~24h

0.15%/d

24h~30d

2) 现实模型下, 碘在安全壳内的化学形态: 元素碘占 90%, 粒子碘占 10%。 安全壳的泄漏率是安全壳内压降的函数,最大值为0.3%/d,见下表。

时间	0-1h	1-2h	2-6h	6-12h	12h-1d	1-30d
绝对压力(bar)	4.08	2.32	1.97	1.68	1.61	1.56
空气温度(℃)	169	99	88	77	74	71
每天的泄漏率(%)	0.300	0.247	0.228	0.202	0.195	0.188

该事故现实模型和保守模型下向环境的释放源项见表 3-1。

3.1.2 控制棒弹出事故 (CREA)

该事故是由于控制棒驱动机构耐压壳机械损坏,导致控制棒组件和驱动轴弹出堆芯 外。这种机械损坏将导致正反应性的快速引入和不利的堆芯功率分布畸变。事故可能引 起局部的燃料棒破损。该事故属于极限事故。

计算该事故向环境的排放源项采用了如下的假设和参数:

- ——随着假想的控制棒弹出,燃料中的放射性物质将释放进入反应堆冷却剂,并假定在反应堆冷却剂中瞬时均匀混合。
- ——假定释放到安全壳中的放射性物质(通过破裂的控制棒机构承压外壳释放)在安全壳中瞬时均匀混合,然后泄漏入大气。在安全壳内考虑的去除过程包括碘沉积、放射性衰变、安全壳泄漏以及通过安全壳喷淋的除碘,喷淋系统在事故开始后6小时手动启动。

释放到环境的放射性物质包括:

- 一 通过安全壳途径泄漏的放射性物质:
- 一 通过主蒸汽安全阀和释放阀泄漏的放射性物质。

主要计算参数如下:

	现实模型	保守模型
堆芯热功率	1930 MWth	1930 MWth
破损燃料	燃料棒的 40%	40%
熔化燃料	堆芯的 4%	4%
释放到反应堆冷却剂的放射性活度 (燃料所含活度的%) — 破损燃料	惰性气性 (Kr-85 除外): 2% Kr-85: 30%	惰性气性 (Kr-85 除外): 10% Kr-85: 30%
— 熔化燃料	碘: 3% 惰性气性: 100% 碘: 50%	碘: 10% 惰性气性: 100% 碘: 50%
安全壳中碘的形态:		
— 元素碘	90%	90%
— 粒子碘	10%	10%
安全壳喷淋除碘因子(事故后 6 小时): — 元素碘 — 有机碘	10 ⁻³ 1	10 ⁻³ 1
释放到安全壳的碘活度的沉积	50%	50%
一回路到二回路的泄漏率	3kg/h	72kg/h

通过二回路释放的假设参数,如事故后 200 秒通过二回路安全阀喷射了 3.4 吨蒸汽,事故后 30 分钟内通过二回路释放阀释放 6.75 吨蒸汽,一、二回路平衡时间保守地按 2500 秒考虑。

该事故向环境的释放源项见表 3-2。由于通过二回路主蒸汽安全阀和释放阀的环境 释放源项远小于安全壳直接向环境的排放量,因此仅计算了安全壳释放造成的剂量。

3.1.3 主蒸汽管道断裂事故(MLSB)

主蒸汽系统管道失效是由主蒸汽管道断裂引起的,蒸汽系统管道损坏最保守的假设是导致最快降温冷却的双端剪切断裂。

假设安全壳外一根主蒸汽管道完全切断。事故期间,与断裂的蒸汽管相连的受影响蒸汽发生器在很短的时间内完全排空,随后产生的蒸汽通过破口直接向大气喷放,直到工作人员把受影响蒸汽发生器隔离为止。主蒸汽管道隔离阀、其旁路阀以及蒸汽排放管线阀在接到主蒸汽隔离信号后将未受影响蒸汽发生器和主蒸汽管道隔离。未受影响蒸汽发生器可以通过卸压阀将蒸汽排入大气来去除堆芯衰变热。排气持续进行直到反应堆冷却剂的温度和压力降到余热排出系统能用于冷却反应堆为止。

事故期间释放到环境的放射性核素是由受影响蒸汽发生器通过管道破口和未受影响蒸汽发生器通过释放阀排放到大气的二回路蒸汽带出的。二回路蒸汽中的放射性核素是由反应堆冷却剂通过蒸汽发生器传热管的泄漏而带入的。

该事故属于极限事故。

计算该事故向环境的排放源项采用了如下的假设和参数:

- ——假定事故发生在瞬态释放持续 1.5 小时后,此时一、二回路的比活度达到最大值。现实模型中泄漏率为 3kg/h,而保守模型中为 72kg/h。
- ——事故发生在 25%额定功率下,假定蒸汽发生器排污立即停止。紧急停堆后,假设冷凝器不可用,机组的冷却通过蒸汽发生器中水的蒸发和蒸汽释放入大气来保证。受影响蒸汽发生器主给水隔离时间为 22.7 秒,辅助给水隔离时间为 30 分钟。假设在事故期间,一/二回路的泄漏率保持不变。
- ——事故后 741 秒,受影响蒸汽发生器水质量达到瞬态过程中最小值,此时可近似 认为,所有的水都以蒸汽的形式被带走,一回路向二回路的泄漏直接排入大气。事故后 二回路通过安全释放阀向环境的蒸汽排放量为:

质量	事故开始后的时间			
	0-600 秒	600 秒-30 分	30 分-2 小时	2 小时-8 小时
由破损蒸汽发生器排放的蒸汽	128.86 t	67.0 t	0	0
由完好蒸汽发生器排放的蒸汽	11.48 t	0	98.0 t	194.0t
到完好蒸汽发生器的给水	41.0t	53.0 t	0	201.0t

该事故现实模型和保守模型下向环境的释放源项见表 3-3。

3.1.4 蒸发器传热管破裂事故(SGTR)

该事故假设蒸汽发生器一根传热管完全双端断裂。假定事故出现在功率运行时,反 应堆冷却剂被裂变产物污染的程度相当于具有有限数量破损燃料棒连续运行的情况。由

于该事故使放射性冷却剂从 RCP 向二回路系统泄漏,导致二回路系统放射性增加。如果在发生该事故的同时又失去厂外电源或蒸汽向冷凝器的排放系统失效,则放射性活度将通过蒸汽发生器的安全阀和大气释放阀向大气排放。该事故属于稀有事故。

计算该事故向环境的排放源项采用了如下的假设和参数:

假设 SGTR 事故前一回路冷却剂系统的放射性比活度达到了瞬态后的最大值;二回路系统的初始放射性比活度也达到了瞬态后的最大值;一回路向二回路的泄漏率保持在0.02kg/s。根据事故分析的结果,当反应堆在5%的功率水平运行时发生的 SGTR 事故将使得破损蒸汽发生器释放的蒸汽排放量最大,从而导致有最多的放射性物质释放至环境中,这种形式的释放对环境的影响最为严重。因此,只考虑了5%功率下发生 SGTR 事故的源项。

该事故向环境的释放源项见表 3-4。

3.1.5 蒸汽发生器传热管破裂并伴随安全阀卡开事故(SGTR+SVSO)

这一事故基于如下假设:蒸汽发生器发生传热管断裂(称"相关蒸汽发生器"),在一回路冷却剂向二回路泄漏的过程中,与相关蒸汽发生器有关的释放阀和安全阀被迫打开向环境释放蒸汽,以降低压力,但相关蒸汽发生器发生了满溢,安全阀过水,在受到水冲击后,安全阀始终处于打开位置向环境释放蒸汽而不能回座,持续到一、二回路与大气压力达到平衡,排放停止。该事故属于极限事故。

发生一回路向二回路泄漏事故时,假设主回路冷却剂从卡开的安全阀立刻释放到大 气环境中。此时假定主冷却剂的放射性水平与事故前稳态工况时相同。当反应堆停堆触 发时,碘的浓度水平达到峰值。

反应堆一回路向二回路的泄漏率,事故前为 0.02kg/s;事故发生后两小时内总泄漏量为 157t。

由于安全阀卡开,蒸汽发生器传热管破裂事故发生 7.3 个小时后,破口流量终止。向环境的释放为:

水 280.5 t

蒸汽 152.34 t (受影响 SG), 127.67t (完好 SG)

在破损的蒸汽发生器中,保守地取碘的分配因子为 0.1, 在所有的蒸汽发生器中,

二回路蒸汽中液滴夹带系数取 0.0025。

该事故向环境的释放源项见表 3-5。

3.1.6 主蒸汽管道断裂叠加蒸汽发生器传热管断裂事故(MLSB+SGTR)

初始事件是指安全壳外一根无隔离的蒸汽管道断裂,同时在同一蒸汽发生器内的 100 根传热管断裂。这个事件相当于一回路向安全壳外直接排放的一个破口。在短期内 考虑为一回路的当量直径为 6.65 英寸破口,长期的反应堆安全由控制系统和操纵员实施相应事故操作规程来保证。

该事故属于特殊工况,放射性后果不得超过相应于极限事故的剂量控制值。

假设在事故发生 2 小时内,事故前积累在反应堆一回路冷却剂中的所有放射性核素全部通过破口释放到环境。假设事故前反应堆一回路冷却剂中的放射性核素浓度为4.44GBq/t I-131 当量活度浓度。

该事故向环境的释放源项见表 3-6。

3.1.7 最终热阱丧失事故

该事故考虑两种情况:如果开始时电站处于带功率运行、热停堆或中间停堆状态,则退防到中间停堆状态。余热靠蒸汽发生器排出,蒸汽发生器由其辅助给水系统和大气排放系统进行冷却,而辅助给水泵在一定时间后将按照厂区情况由数个水箱供水,并连接有可移动设备(如自备电动泵和可拆卸的连接管道)。如果开始时电站处于冷停堆状态,依靠常用设备或特殊设备保证对一回路系统补水。这些措施可在大约一个月的时间内保证电站的安全,这个期限对于恢复正常热阱来说是足够的。

该事故属于特殊工况,放射性后果不得超过相应于极限事故的放射性控制值。

计算该事故时稳态运行的一回路冷却剂放射性活度取 37GBq/t I-131 当量谱,随后 1.5 小时发展成为一个功率瞬变。二次系侧的活度与一次侧的泄漏率造成的放射性污染 相关联,计算中假定在停堆前和停堆后都有一个恒定的泄漏 72kg/h。其他与计算相关的系统特性如下:

- 一回路环路数: 2条环路
- 一回路水质量: 146.0t
- 一回路净化流量: 0
- SG 水质量: 47.95 t
- SG 蒸汽质量: 3.622 t
- SG 排污流量: 0
- SG 额定蒸汽流量: 554.63kg/s

最终热阱的丧失可以维持非常长的时间,表 3-7 给出了事故后 8 天和 30 天的排放情况。

3.1.8 容积控制箱破裂事故 (RCVA)

当化容系统容积控制箱破裂时,容控箱内的放射性液体和气体不可控制地释放到它 所在的房间内,并且在操作员隔断 RCV 下泄管之前,放射性液体以一确定流量连续释 放。为了减轻容器溢流、泄漏或破损造成的影响,在厂房设计上采取了一系列设施,可 以防止放射性液体扩散,因此,在事故分析中,只考虑气态放射性释放对环境的影响。 该事故属于稀有事故。

- ——假设事故发生在瞬态工况下,此时一回路冷却剂的比活度达到设计最大值。
- ——在最大下泄流量的稳态工况下,考虑碘通过混合床除盐器的去污因子等于 10,计算了在 RCV 箱运行工况下(30° \mathbb{C} 到 50° \mathbb{C} ; 2.2bar)RCV 箱液相和气相的活度。
- ——平衡状态下,碘的分配因子(核素在气相中的放射性浓度与液相中的放射性浓度之比值)为 10^{-4} 。惰性气体 Xe 的分配因子为 15、Kr 为 25,它们是用 HENRY 定律求得的值以及在 FESSENHEIM-I 和 BUGEY 电站上得到的实验值的包络值。

该事故向环境的释放源项见表 3-8。

3.1.9 废气衰变箱破裂事故(TEGA)

放射性废气处理系统(TEG)的功用在于滞留衰变反应堆冷却剂中的裂变气体,以及处理和控制放射性气体向环境释放。该系统由废气缓冲罐、过滤器、废气压缩机和废气衰变箱等部件组成。废气处理系统或设备破损事故中可能导致较为严重的放射性释放是废气衰变箱或与之相联的管道发生破损的事故。事故发生时,废气衰变箱破裂导致容器内全部放射性气体排放出来,并且在操作员隔离该废气衰变箱上充管之前,仍有放射性物质不断地从进气管线进入衰变箱再通过破口处连续释放出来。该事故属于稀有事故。

计算该事故向环境的排放源项采用了如下的假设和参数:

- ——机组分别采用采用基本负荷运行方式和负荷跟踪运行方式。在基本负荷运行方式下,在事故发生前,硼回收系统(TEP)除气塔连续运行。含氢废液的产生量为每天 15m³,其中的放射性全部积累在 TEG 衰变箱中,一回路水的活度对应于基本负荷运行工况的活度。
- ——假设在停堆 2h 后发生 TEG 废气系统衰变箱破裂事故,并假设事故发生 1 小时后才能隔离破损的衰变箱,在这 1h 期间 TEP 除气塔仍在除气并不断将裂变气体送入 TEG 衰变箱,此时气相中的放射性活度对应于一回路冷却剂比活度为 37GBq/t I-131 当量条件下的瞬态值。

——为保守考虑,在负荷路	艮踪运行方式下,假设停堆时刻即发生衰变箱破裂事故。
含氢废液的日产量为基本负荷的	运行方式下的 10 倍。
——假定 RCV 及 TEP 除盐	a器对碘的去污因子等于 100;
——RCV 容控箱内和 TEG	缓冲罐内碘的分配因子为 10-4;
——TEP 除气塔碘的分配	因子为 10 ⁻³ 。
该事故向环境的释放源项员	记表 3-9 。
3.1.10 燃料操作事故(FHA)	
燃料操作事故是指一组乏烷	然料组件跌落在乏燃料水池内(这种情景后果最大)导致
经过辐照的这组乏燃料组件燃料	斗棒包壳破损,致使放射性裂变产物释放到燃料厂房,并
通过厂房通风系统释放到环境。	假定事故发生在停堆后 100h, 这是停堆后将乏燃料送至
贮存池的最短时间。事故导致组	1件内所有的燃料棒包壳破损,包壳间隙中的放射性物质
全部立即释放到乏燃料水池中。	裂变产物中惰性气体不滞留水中, 乏燃料水池对元素碘
和有机碘两种化学形态的滞留因	因子不同。该事故属于极限事故。
计算该事故向环境的排放》	原项采用了如下的假设和参数:
——假定破损组件是放射性	生含量最大的组件。
——事故发生在停堆后 100	Oh.
——事故导致一个组件内的	的所有燃料棒包壳破损,燃料包壳间隙中的放射性物质全
部释放到燃料水池中。	
——燃料包壳间隙中的放射	付性占燃料组件中的份额,现实情况下,
Kr-85	30%
惰性气体(除 Kr-85)	2%
碘	3%
保守情况下 Kr-85 的份额为	习30%,其余惰性气体和碘的份额为10%。

——燃料包壳间隙内碘的化学形态:

元素碘 99.75% 有机碘 0.25%

乏燃料水池对碘的去除因子

现实情况下:

元素碘 500 有机碘 1 保守情况下:

元素碘	133
有机碘	1

——燃料厂房空气过滤系统的去污因子

现实情况下:

元素碘	1000
有机碘	100

保守情况下:

元素碘 10 有机碘 3.3

该事故向环境的释放源项见表 3-10。

3.1.11 卡轴事故(LRA)

卡轴事故假设一台反应堆冷却剂泵的泵轴意外卡住,受影响环路的反应堆冷却剂流量快速下降,导致触发反应堆冷却剂流量低信号而紧急停堆。该事故为RCC-P IV类工况,是一个极限事故。

该事故所释放的裂变产物停留在反应堆冷却剂系统中而不排放到环境,仅由于在反应堆冷却剂系统压力降至二次侧压力之前存在着从反应堆冷却剂向二次侧泄漏释放的裂变产物。

- ——假设事故前一回路冷却剂的初始放射性活度为归一化到37GBq/t I-131当量的 比活度,并考虑了瞬变后达到的最大值。
- ——假设事故前二回路冷却剂的初始放射性活度为对应于归一化到37GBq/t I-131 当量的一回路冷却剂比活度,并考虑了瞬变后达到的最大值。
- ——假设一回路冷却剂向二回路的泄漏在两台蒸汽发生器之间均匀分配,总的泄漏率为48kg/h。
- ——事故过程中发生DNB的燃料棒份额为29.93%,保守地考虑燃料包壳破损份额为30%。在破损燃料棒中,裂变产物的释放份额Kr-85为30%,其余惰性气体为2%,碘为3%,同时假设这些放射性核素瞬时释放到一回路中并混合均匀。
 - ——保守假设事故发生时蒸汽发生器排污立即终止。
- ——假设事故发生30分钟后操纵员开始动作,将反应堆稳定在热停堆状态,事故2 小时后由热停堆状态开始向余热排出系统冷却的停堆状态退防,事故8小时后余热排出

系统投入运行。

- ——假设停堆后蒸汽发生器水位为零负荷水位。
- ——假定蒸汽发生器中碘的汽水分配因子为0.01; 碘在蒸汽中的液滴夹带份额为0.0025。

该事故向环境的释放源项见表 3-11。

3.1.12 安全壳外载有一回路冷却剂的小管线破裂事故

安全壳外载有一回路冷却剂的小管线包括反应堆冷却剂核取样管线和从化容控制系统到液态放射性废物处理系统的化容控制系统净化流排放管线。没有仪表管贯穿安全壳并直接与反应堆冷却剂系统连接。因此,发生这类事故可能由以下两种原因造成:核取样管线破裂,或是化容控制系统管线及与化容控制系统相连的管线破裂。这类小截面管道破裂引起的冷却剂排放流量可以由一台上充泵来补充,稳压器内维持运行水位,允许操作员实施正常停堆。排放物所含放射性核素浓度与一次冷却剂的相同。该事故属于稀有事故。

在分析中使用的主要假设和参数如下:

假设从事故发生开始,破口在15min后被隔离;

假设一次小管道破口当量直径取9.5mm时的最大泄漏率为8kg/s;

假设从破口溢出的冷却剂为高温高压,则大部分流体将闪蒸为蒸汽,计算得出闪蒸份额为0.43,即从取样管线喷放出的冷却剂中43%闪蒸变成蒸汽,蒸汽中的碘全部释放到环境;剩下的57%的冷却剂以液态存在,这部分液体中有10%的碘释放到环境;

假设反应堆在连续运行的条件下,事故发生时一回路冷却剂裂变产物比活度为 37GBqIt 1-131当量;不考虑放射性核素在管道中的衰减;假设事故时并发碘尖峰,导致 碘从燃料到冷却剂的释放速率增加,峰值因子为500。

该事故向环境的释放源项见表 3-12。

3.2 事故后果

3.2.1 计算模式

事故工况下的大气弥散因子计算采用PAVAN程序。由于事故时的释放高度小于相邻建筑物高度的2.5倍,按照RG1.145的规定,采用地面释放模式。事故大气弥散因子取各方位99.5%概率水平和全厂址95%概率水平的最大值。联合频率采用厂址气象站2016年的风向、风速、大气稳定度统计的10m高度三维联合频率。

事故工况下的剂量计算考虑空气浸没外照射、地面沉积外照射以及吸入内照射三个

途径。计算模式及参数见附录 F。

3.2.2 剂量计算结果及评价

大气弥散因子计算结果见表 3-13~3-14。现实模型和保守模型下各种事故所致剂量的详细计算结果见表 3-15~3-26。计算结果最大值汇总见下表。

		0h-2	h, 500m	0d-30d,	5000m
事	故名称	有效剂量 (Sv)	甲状腺当量剂 量(Sv)	有效剂量 (Sv)	甲状腺当量 剂量(Sv)
	SGTR	1.87E-03	3.69E-02	1.85E-04	3.64E-03
经 左声	RCVA	1.25E-03	8.08E-04	1.24E-04	7.98E-05
稀有事故	TEGA	2.17E-03	4.91E-04	2.14E-04	4.85E-05
	小管道破裂	1.95E-03	3.49E-02	1.93E-04	3.45E-03
	LOCA	2.77E-03	4.35E-02	1.17E-03	2.12E-02
	CREA	3.95E-02	7.17E-01	8.90E-03	1.67E-01
	MSLB	5.17E-04	9.18E-03	5.43E-05	9.64E-04
扣阻击壮	FHA	8.16E-03	1.24E-01	8.12E-04	1.23E-02
极限事故	LRA	9.70E-04	9.15E-03	3.25E-04	4.64E-03
	SGTR+SVSO	4.31E-03	8.31E-02	9.80E-04	1.94E-02
	MSLB+SGTR	1.89E-02	3.72E-01	1.87E-03	3.67E-02
	最终热阱丧失	3.75E-06	3.75E-05	1.26E-04	2.56E-03

根据《核动力厂环境辐射防护规定》GB 6249-2011的规定,在发生一次稀有事故时,非居住区边界上公众在事故后2h内以及规划限制区外边界上公众在整个事故持续时间内可能受到的有效剂量应控制在5mSv以下,甲状腺当量剂量应控制在50mSv以下。在发生一次极限事故时,非居住区边界上公众在事故后2h内以及规划限制区外边界上公众在整个事故持续时间内可能受到的有效剂量应控制在0.1Sv以下,甲状腺当量剂量应控制在1Sv以下。

由计算结果可以得到:在各类极限事故中,放射性后果最严重的是弹棒事故。在一系列的保守假设下,该事故导致在非居住区边界上公众中任何个人在事故后 2h 内可能受到的最大有效剂量为 3.95×10⁻²Sv,甲状腺当量剂量为 7.17×10⁻¹Sv;导致规划限制区外边界上公众中任何个人在整个事故持续时间内可能受到的最大有效剂量为 8.90×10⁻³Sv,甲状腺当量剂量为 1.67×10⁻¹Sv。

在各类稀有事故中,放射性后果最严重的是蒸汽发生器传热管破裂事故、废气衰变

箱破裂事故。在一系列的保守假设下,稀有事故导致在非居住区边界上公众中任何个人在事故后 2h 内可能受到的最大有效剂量为 2.17×10⁻³Sv,甲状腺当量剂量为 3.69×10⁻²Sv;导致规划限制区外边界上公众中任何个人在整个事故持续时间内可能受到的最大有效剂量为 2.14×10⁻⁴Sv,甲状腺当量剂量为 3.64×10⁻³Sv。

综上所述,极限事故和稀有事故的放射性后果均低于 GB 6249-2011 中规定的剂量控制值。因此,改为长燃料循环后后设计基准事故的环境影响满足 GB 6249-2011 的要求。将厂址非居住区半径设置为 500m、将规划限制区半径设置为 5km 在改为长燃料循环后仍然是适宜的。

表 3-1(1/2) 失水事故后向环境的释放源项(现实模型)(GBq)

核素	0h-2h	0h-8h	0h-24h	0h-96h	0h-720h
Kr-83m	9.87E+02	1.65E+03	1.72E+03	1.72E+03	1.72E+03
Kr-85m	2.60E+03	6.05E+03	7.82E+03	7.96E+03	7.96E+03
Kr-85	1.48E+03	5.03E+03	1.35E+04	4.99E+04	1.22E+05
Kr-87	3.91E+03	5.49E+03	5.55E+03	5.55E+03	5.55E+03
Kr-88	6.96E+03	1.37E+04	1.54E+04	1.54E+04	1.54E+04
Xe-131m	1.17E+02	3.95E+02	1.04E+03	3.56E+03	7.48E+03
Xe-133m	5.54E+02	1.83E+03	4.50E+03	1.14E+04	1.53E+04
Xe-133	1.81E+04	6.09E+04	1.58E+05	4.89E+05	8.64E+05
Xe-135m	8.94E+02	1.19E+03	1.45E+03	1.50E+03	1.50E+03
Xe-135	6.10E+03	1.76E+04	3.13E+04	3.75E+04	3.75E+04
Xe-138	3.73E+03	3.75E+03	3.75E+03	3.75E+03	3.75E+03
I-131	6.54E+02	2.21E+03	5.77E+03	1.88E+04	3.66E+04
I-132	7.32E+02	1.34E+03	1.44E+03	1.45E+03	1.45E+03
I-133	1.35E+03	4.19E+03	8.96E+03	1.49E+04	1.54E+04
I-134	8.29E+02	9.99E+02	1.00E+03	1.00E+03	1.00E+03
I-135	1.19E+03	3.13E+03	4.76E+03	5.13E+03	5.13E+03

表 3-1(2/2) 失水事故后向环境的释放源项(保守模型)(GBq)

核素	0h-2h	0h-8h	0h-24h	0h-96h	0h-720h
Kr-83m	1.06E+03	1.95E+03	2.06E+03	2.06E+03	2.06E+03
Kr-85m	2.84E+03	7.49E+03	1.02E+04	1.03E+04	1.03E+04
Kr-85	1.62E+03	6.48E+03	1.94E+04	4.85E+04	1.06E+05
Kr-87	4.18E+03	6.29E+03	6.38E+03	6.38E+03	6.38E+03
Kr-88	7.55E+03	1.66E+04	1.91E+04	1.91E+04	1.91E+04
Xe-131m	1.28E+02	5.09E+02	1.50E+03	3.51E+03	6.63E+03
Xe-133m	6.08E+02	2.35E+03	6.41E+03	1.19E+04	1.51E+04
Xe-133	1.99E+04	7.84E+04	2.26E+05	4.90E+05	7.90E+05
Xe-135m	9.19E+02	1.33E+03	1.71E+03	1.75E+03	1.75E+03
Xe-135	6.68E+03	2.23E+04	4.31E+04	4.80E+04	4.81E+04
Xe-138	3.78E+03	3.81E+03	3.81E+03	3.81E+03	3.81E+03
I-131	7.17E+02	2.84E+03	8.27E+03	1.87E+04	3.29E+04
I-132	7.92E+02	1.60E+03	1.76E+03	1.77E+03	1.77E+03
I-133	1.48E+03	5.36E+03	1.26E+04	1.73E+04	1.78E+04
I-134	8.78E+02	1.10E+03	1.10E+03	1.10E+03	1.10E+03
I-135	1.30E+03	3.93E+03	6.41E+03	6.70E+03	6.70E+03

表 3-2(1/4) 弹棒事故后通过安全壳泄漏向环境的释放源项(现实模型)(GBq)

核素	0h-2h	0h-8h	0h-24h	0h-96h	0h-720h
Kr-83m	2.13E+03	3.80E+03	3.94E+03	3.94E+03	3.94E+03
Kr-85m	5.68E+03	1.41E+04	1.73E+04	1.76E+04	1.76E+04
Kr-85	7.18E+02	2.59E+03	6.03E+03	2.15E+04	1.52E+05
Kr-87	8.36E+03	1.24E+04	1.25E+04	1.25E+04	1.25E+04
Kr-88	1.51E+04	3.18E+04	3.49E+04	3.50E+04	3.50E+04
Xe-131m	2.57E+02	9.19E+02	2.11E+03	6.94E+03	2.67E+04
Xe-133m	1.22E+03	4.27E+03	9.19E+03	2.24E+04	3.14E+04
Xe-133	3.97E+04	1.41E+05	3.18E+05	9.52E+05	2.22E+06
Xe-135m	2.92E+03	5.70E+03	5.90E+03	5.95E+03	5.95E+03
Xe-135	1.39E+04	4.62E+04	7.56E+04	8.85E+04	8.85E+04
Xe-138	7.56E+03	7.61E+03	7.61E+03	7.61E+03	7.61E+03
I-131	6.31E+03	1.92E+04	2.21E+04	3.32E+04	6.64E+04
I-132	6.98E+03	1.30E+04	1.31E+04	1.31E+04	1.31E+04
I-133	1.30E+04	3.72E+04	4.10E+04	4.60E+04	4.66E+04
I-134	7.73E+03	9.64E+03	9.64E+03	9.64E+03	9.64E+03
I-135	1.15E+04	2.88E+04	3.01E+04	3.04E+04	3.04E+04

表 3-2(2/4) 弹棒事故后通过安全壳泄漏向环境的释放源项(保守模型)(GBq)

核素	0h-2h	0h-8h	0h-24h	0h-96h	0h-720h
Kr-83m	3.55E+03	6.33E+03	6.56E+03	6.56E+03	6.56E+03
Kr-85m	9.44E+03	2.35E+04	2.88E+04	2.93E+04	2.93E+04
Kr-85	7.18E+02	2.59E+03	6.03E+03	2.15E+04	1.52E+05
Kr-87	1.40E+04	2.08E+04	2.09E+04	2.09E+04	2.09E+04
Kr-88	2.52E+04	5.32E+04	5.83E+04	5.84E+04	5.84E+04
Xe-131m	4.27E+02	1.53E+03	3.52E+03	1.16E+04	4.45E+04
Xe-133m	2.03E+03	7.15E+03	1.54E+04	3.76E+04	5.27E+04
Xe-133	6.64E+04	2.36E+05	5.33E+05	1.59E+06	3.71E+06
Xe-135m	5.16E+03	1.04E+04	1.08E+04	1.08E+04	1.08E+04
Xe-135	2.33E+04	7.85E+04	1.29E+05	1.52E+05	1.52E+05
Xe-138	1.26E+04	1.27E+04	1.27E+04	1.27E+04	1.27E+04
I-131	1.18E+04	3.59E+04	4.14E+04	6.22E+04	1.25E+05
I-132	1.31E+04	2.44E+04	2.46E+04	2.46E+04	2.46E+04
I-133	2.44E+04	6.99E+04	7.72E+04	8.66E+04	8.76E+04
I-134	1.45E+04	1.81E+04	1.81E+04	1.81E+04	1.81E+04
I-135	2.15E+04	5.40E+04	5.64E+04	5.70E+04	5.70E+04

表 3-2(3/4) 弹棒事故后通过大气释放阀向环境的释放源项(现实模型)(GBq)

核素	0h-0.5h	0h-5h
Kr-85m	5.44E+01	8.57E+01
Kr-85	6.18E+00	9.90E+00
Kr-87	9.94E+01	1.50E+02
Kr-88	1.53E+02	2.39E+02
Xe-133	3.45E+02	5.52E+02
Xe-135	1.21E+02	1.94E+02
Xe-138	1.46E+02	1.81E+02
I-131	4.49E-02	8.47E-02
I-132	5.42E-02	1.02E-01
I-133	8.40E-02	1.65E-01
I-134	7.09E-02	1.29E-01
I-135	7.46E-02	1.47E-01

表 3-2(4/4) 弹棒事故后通过大气释放阀向环境的释放源项(保守模型)(GBq)

核素	0h-0.5h	0h-5h
Kr-85m	2.17E+03	3.43E+03
Kr-85	1.49E+02	2.38E+02
Kr-87	3.98E+03	6.02E+03
Kr-88	6.12E+03	9.55E+03
Xe-133	1.37E+04	2.20E+04
Xe-135	4.84E+03	7.76E+03
Xe-138	5.80E+03	7.20E+03
I-131	1.67E+00	3.39E+00
I-132	2.20E+00	4.31E+00
I-133	3.50E+00	7.10E+00
I-134	3.13E+00	5.76E+00
I-135	3.23E+00	6.49E+00

表 3-3(1/2) 主蒸汽管道断裂事故后向环境的释放源项(现实模型)(GBq)

核素	0min-10min	0h-2h	0h-8h
Kr-85m	6.62E-01	9.29E-01	1.32E+00
Kr-85	1.80E-02	2.35E-02	3.77E-02
Kr-87	1.25E+00	1.55E+00	1.67E+00
Kr-88	1.71E+00	2.29E+00	2.90E+00
Xe-133	6.40E+00	9.46E+00	1.75E+01
Xe-135	3.65E+00	4.95E+00	7.63E+00
Xe-138	2.49E+00	2.64E+00	2.64E+00
I-131	3.73E+00	7.89E+00	8.83E+00
I-132	2.53E+00	5.16E+00	5.32E+00
I-133	3.09E+00	6.42E+00	6.98E+00
I-134	8.55E-01	1.70E+00	1.71E+00
I-135	1.51E+00	3.11E+00	3.31E+00
Cs-134	5.76E-02	9.98E-01	1.12E+00
Cs-137	3.92E-02	6.79E-01	7.58E-01

表 3-3(2/2) 主蒸汽管道断裂事故后向环境的释放源项(保守模型)(GBq)

核素	0min-10min	0h-2h	0h-8h
Kr-85m	1.59E+01	2.23E+01	3.17E+01
Kr-85	4.32E-01	5.64E-01	9.05E-01
Kr-87	3.00E+01	3.72E+01	4.02E+01
Kr-88	4.10E+01	5.51E+01	6.97E+01
Xe-133	1.54E+02	2.27E+02	4.19E+02
Xe-135	8.76E+01	1.19E+02	1.83E+02
Xe-138	5.98E+01	6.34E+01	6.34E+01
I-131	8.95E+01	1.89E+02	2.12E+02
I-132	6.08E+01	1.24E+02	1.28E+02
I-133	7.43E+01	1.54E+02	1.67E+02
I-134	2.05E+01	4.07E+01	4.09E+01
I-135	3.62E+01	7.47E+01	7.94E+01
Cs-134	1.38E+00	2.40E+01	2.68E+01
Cs-137	9.41E-01	1.63E+01	1.82E+01

表 3-4 蒸发器传热管破裂事故后向环境的释放源项(GBq)

核素	0h-2h	0h-8h
Kr-85m	1.93E+02	1.93E+02
Kr-85	3.34E+00	3.34E+00
Kr-87	2.89E+02	2.89E+02
Kr-88	4.55E+02	4.55E+02
Xe-133	1.91E+03	1.91E+03
Xe-135	8.47E+02	8.47E+02
Xe-138	4.92E+02	4.92E+02
I-131	8.19E+02	8.19E+02
I-132	2.97E+02	2.97E+02
I-133	3.58E+02	3.58E+02
I-134	1.56E+02	1.56E+02
I-135	1.90E+02	1.90E+02

表 3-5 蒸汽发生器传热管破裂并伴随安全阀卡开事故后向环境的释放源项(GBq)

核素	0h-2h	0h-8h
Kr-85m	1.15E+03	1.57E+03
Kr-85	2.20E+01	3.43E+01
Kr-87	1.40E+03	1.60E+03
Kr-88	2.59E+03	3.33E+03
Xe-133	1.25E+04	1.94E+04
Xe-135	5.38E+03	8.15E+03
Xe-138	1.14E+03	1.14E+03
I-131	1.85E+03	6.50E+03
I-132	6.17E+02	1.36E+03
I-133	8.01E+02	2.62E+03
I-134	2.85E+02	3.70E+02
I-135	4.14E+02	1.16E+03

表 3-6 主蒸汽管道断裂外加蒸汽发生器传热管断裂事故后向环境的释放源项(GBq)

核素	0h-2h
Kr-85m	1.75E+03
Kr-85	3.02E+01
Kr-87	2.70E+03
Kr-88	4.18E+03
Xe-133	1.72E+04
Xe-135	7.65E+03
Xe-138	5.30E+03
I-131	8.25E+03
I-132	3.33E+03
I-133	3.65E+03
I-134	2.11E+03
I-135	1.99E+03

表 3-7 最终热阱完全丧失事故后向环境的释放源项(GBq)

核素	0h-2h	0d-8d	0d-30d
Kr-85m	1.36E+01	5.10E+01	5.10E+01
Kr-85	2.75E-01	2.52E+01	8.31E+01
Kr-87	1.51E+01	2.27E+01	2.27E+01
Kr-88	2.98E+01	7.71E+01	7.71E+01
Xe-133	1.56E+02	8.94E+03	1.29E+04
Xe-135	6.37E+01	4.48E+02	4.48E+02
Xe-138	9.31E+00	9.34E+00	9.34E+00
I-131	8.39E-01	8.66E+02	2.54E+03
I-132	2.06E-01	1.12E+00	1.12E+00
I-133	3.44E-01	4.15E+01	4.18E+01
I-134	3.82E-02	7.67E-02	7.67E-02
I-135	1.53E-01	3.32E+00	3.32E+00

表 3-8 容积控制箱破裂事故向环境的释放源项(GBq)

核素	RCV 气相	RCV 液相	下泄管	合计
Kr-85m	7.66E+03	2.22E+02	1.50E+03	9.38E+03
Kr-85	2.24E+02	6.49E+00	2.60E+01	2.57E+02
Kr-87	5.90E+03	1.71E+02	2.34E+03	8.41E+03
Kr-88	1.48E+04	4.27E+02	3.56E+03	1.88E+04
Xe-133m	2.86E+03	1.38E+02	5.71E+02	3.57E+03
Xe-133	7.57E+04	3.65E+03	1.48E+04	9.42E+04
Xe-135	2.79E+04	1.34E+03	6.49E+03	3.57E+04
Xe-138	2.97E+03	1.43E+02	5.17E+03	8.28E+03
I-131	3.14E-02	3.59E+00	1.44E+01	1.80E+01
I-132	1.09E-02	1.25E+00	5.19E+00	6.45E+00
I-133	1.33E-02	1.53E+00	6.13E+00	7.67E+00
I-134	3.45E-03	3.95E-01	1.74E+00	2.14E+00
I-135	6.45E-03	7.38E-01	2.99E+00	3.74E+00

表 3-9(1/2) 废气衰变箱破损事故向环境的释放源项(GBq)(现实模型)

核素	衰变箱	RCV 气相	TEP 除气	TEP 缓冲罐	TEG 运行	合计
Kr-85m	1.37E+02	1.68E+03	4.39E+03	0.00E+00	2.14E+03	8.34E+03
Kr-85	1.62E+05	2.24E+02	1.04E+02	0.00E+00	5.43E+01	1.63E+05
Kr-87	2.83E+01	4.95E+02	3.15E+03	0.00E+00	1.28E+03	4.95E+03
Kr-88	1.81E+02	2.62E+03	8.75E+03	0.00E+00	4.08E+03	1.56E+04
Xe-133m	8.72E+02	1.21E+03	2.23E+03	0.00E+00	1.16E+03	5.47E+03
Xe-133	6.45E+04	3.89E+04	5.86E+04	0.00E+00	3.06E+04	1.93E+05
Xe-135	2.51E+03	1.52E+04	2.23E+04	0.00E+00	1.12E+04	5.12E+04
Xe-138	7.71E-02	1.51E+00	5.62E+01	0.00E+00	1.03E+01	6.81E+01
I-131	4.43E-02	1.20E-04	3.61E-01	4.22E-02	1.88E-01	6.36E-01
I-132	2.13E-04	4.49E-05	7.17E-02	9.61E-03	3.26E-02	1.14E-01
I-133	6.25E-03	1.55E-04	1.45E-01	2.25E-02	7.47E-02	2.49E-01
I-134	5.84E-06	2.90E-06	9.00E-03	1.13E-03	3.32E-03	1.35E-02
I-135	7.96E-04	6.16E-05	6.12E-02	9.31E-03	3.05E-02	1.02E-01

表 3-9(2/2) 废气衰变箱破损事故向环境的释放源项(GBq)(保守模型)

核素	衰变箱	RCV 气相	TEP 除气	TEP 缓冲罐	TEG 运行	合计
Kr-85m	3.26E+03	5.44E+03	0.00E+00	0.00E+00	2.77E+03	1.15E+04
Kr-85	1.62E+06	2.24E+02	0.00E+00	0.00E+00	5.20E+01	1.62E+06
Kr-87	6.63E+02	3.46E+03	0.00E+00	0.00E+00	3.61E+03	7.73E+03
Kr-88	4.12E+03	9.71E+03	0.00E+00	0.00E+00	6.32E+03	2.02E+04
Xe-133m	1.94E+04	2.76E+03	0.00E+00	0.00E+00	1.13E+03	2.33E+04
Xe-133	1.22E+06	7.46E+04	0.00E+00	0.00E+00	2.96E+04	1.32E+06
Xe-135	3.38E+04	2.38E+04	0.00E+00	0.00E+00	1.25E+04	7.01E+04
Xe-138	2.19E+00	1.57E+03	0.00E+00	0.00E+00	3.32E+03	4.89E+03
I-131	1.15E+01	3.14E-03	0.00E+00	1.60E-01	1.81E-01	1.18E+01
I-132	2.73E-02	1.05E-03	0.00E+00	5.78E-02	5.66E-02	1.43E-01
I-133	5.00E-01	1.33E-03	0.00E+00	6.84E-02	7.62E-02	6.46E-01
I-134	1.31E-03	3.17E-04	0.00E+00	1.94E-02	1.52E-02	3.62E-02
I-135	6.67E-02	6.37E-04	0.00E+00	3.34E-02	3.59E-02	1.37E-01

表 3-10(1/2) 燃料操作事故向环境的释放源项(GBq)(现实模型)

核素	0h-1h	0h-2h	0h-8h	0h-12h
Kr-83m	2.60E-08	3.54E-08	4.08E-08	4.08E-08
Kr-85m	8.57E-03	1.24E-02	1.56E-02	1.56E-02
Kr-85	3.87E+04	5.90E+04	8.10E+04	8.15E+04
Kr-87	1.59E-19	2.09E-19	2.31E-19	2.31E-19
Kr-88	2.74E-06	3.87E-06	4.67E-06	4.67E-06
Xe-131m	3.07E+03	4.68E+03	6.42E+03	6.45E+03
Xe-133m	5.90E+03	8.97E+03	1.22E+04	1.23E+04
Xe-133	3.07E+05	4.68E+05	6.41E+05	6.44E+05
Xe-135m	7.56E-01	7.86E-01	7.87E-01	7.87E-01
Xe-135	5.70E+02	8.48E+02	1.11E+03	1.11E+03
Xe-138	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	6.72E+00	1.02E+01	1.40E+01	1.41E+01
I-132	4.89E+00	6.79E+00	8.00E+00	8.00E+00
I-133	6.70E-01	1.01E+00	1.36E+00	1.36E+00
I-134	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-135	4.47E-04	6.59E-04	8.50E-04	8.52E-04

表 3-10(2/2) 燃料操作事故向环境的释放源项(GBq)(保守模型)

核素	0h-1h	0h-2h	0h-8h	0h-12h
Kr-83m	2.77E-07	2.86E-07	2.87E-07	2.87E-07
Kr-85m	8.82E-02	9.18E-02	9.20E-02	9.20E-02
Kr-85	7.76E+04	8.13E+04	8.15E+04	8.15E+04
Kr-87	1.74E-18	1.79E-18	1.79E-18	1.79E-18
Kr-88	2.86E-05	2.97E-05	2.97E-05	2.97E-05
Xe-131m	3.08E+04	3.23E+04	3.24E+04	3.24E+04
Xe-133m	5.94E+04	6.22E+04	6.23E+04	6.23E+04
Xe-133	3.09E+06	3.24E+06	3.24E+06	3.24E+06
Xe-135m	1.07E+01	1.07E+01	1.07E+01	1.07E+01
Xe-135	5.79E+03	6.05E+03	6.06E+03	6.06E+03
Xe-138	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-131	2.51E+03	2.63E+03	2.64E+03	2.64E+03
I-132	1.92E+03	1.99E+03	1.99E+03	1.99E+03
I-133	2.52E+02	2.63E+02	2.64E+02	2.64E+02
I-134	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I-135	1.70E-01	1.77E-01	1.77E-01	1.77E-01

表 3-11 卡轴事故后向环境的释放源项(GBq)

核素	0min-10min	0h-0.5h	0h-2h	0h-10h
Kr-85m	2.35E+02	8.13E+02	2.98E+03	8.13E+03
Kr-85	1.16E+02	4.13E+02	1.70E+03	7.00E+03
Kr-87	4.64E+02	1.51E+03	4.26E+03	6.39E+03
Kr-88	6.75E+02	2.30E+03	7.90E+03	1.78E+04
Xe-133	1.45E+03	5.14E+03	2.12E+04	8.74E+04
Xe-135	5.16E+02	1.89E+03	8.78E+03	4.56E+04
Xe-138	1.02E+03	2.36E+03	3.05E+03	3.06E+03
I-131	1.84E+00	2.13E+01	1.51E+02	1.36E+03
I-132	2.54E+00	2.79E+01	1.53E+02	5.23E+02
I-133	3.78E+00	4.41E+01	3.06E+02	2.46E+03
I-134	3.93E+00	3.91E+01	1.48E+02	2.29E+02
I-135	3.53E+00	4.07E+01	2.65E+02	1.64E+03
Cs-134	7.26E-02	8.16E-01	5.79E+00	5.28E+01
Cs-137	3.25E-01	1.55E+00	6.31E+00	4.26E+01

表 3-12 安全壳外载有一回路冷却剂的管道破裂事故后向环境的释放源项(GBq)

核素	0h-2h
Kr-85m	3.26E+02
Kr-85	1.38E+01
Kr-87	4.93E+02
Kr-88	8.03E+02
Xe-133m	1.36E+02
Xe-133	4.14E+03
Xe-135	2.52E+03
Xe-138	6.82E+02
I-131	5.98E+02
I-132	1.63E+03
I-133	1.06E+03
I-134	6.63E+02
I-135	7.50E+02

表 3-13 非居住区边界处事故大气弥散因子 单位: s/m³

方位	0-2 h	2-8 h	8-24 h	1-4 d	4-30 d
N	1.86E-04	1.27E-04	9.02E-05	5.34E-05	2.52E-05
NNE	7.18E-05	4.71E-05	3.23E-05	1.81E-05	7.90E-06
NE	1.36E-04	8.98E-05	6.21E-05	3.53E-05	1.57E-05
ENE	1.44E-04	9.65E-05	6.76E-05	3.92E-05	1.79E-05
Е	1.22E-04	8.13E-05	5.65E-05	3.23E-05	1.45E-05
ESE	7.33E-05	4.91E-05	3.43E-05	1.98E-05	8.98E-06
SE	3.82E-05	2.67E-05	1.94E-05	1.19E-05	5.90E-06
SSE	3.90E-05	2.75E-05	2.01E-05	1.24E-05	6.25E-06
S	1.75E-04	1.24E-04	9.10E-05	5.67E-05	2.88E-05
SSW	2.05E-04	1.53E-04	1.18E-04	7.97E-05	4.52E-05
SW	1.36E-04	9.90E-05	7.45E-05	4.82E-05	2.58E-05
WSW	6.06E-05	4.20E-05	3.02E-05	1.83E-05	8.87E-06
W	1.32E-04	6.22E-05	3.18E-05	1.14E-05	2.61E-06
WNW	2.67E-04	1.84E-04	1.32E-04	7.92E-05	3.80E-05
NW	3.67E-04	2.64E-04	1.97E-04	1.26E-04	6.61E-05
NNW	3.78E-04	2.73E-04	2.04E-04	1.30E-04	6.86E-05

表 3-14 规划限制区边界处事故大气弥散因子 单位: s/m³

方位	0-2 h	2-8 h	8-24 h	1-4 d	4-30 d
N	1.81E-05	9.15E-06	4.99E-06	1.97E-06	5.17E-07
NNE	3.67E-06	1.93E-06	1.09E-06	4.52E-07	1.28E-07
NE	1.25E-05	6.14E-06	3.25E-06	1.23E-06	3.05E-07
ENE	1.32E-05	6.57E-06	3.53E-06	1.36E-06	3.48E-07
Е	1.01E-05	5.02E-06	2.69E-06	1.04E-06	2.63E-07
ESE	1.86E-06	1.06E-06	6.39E-07	2.95E-07	9.70E-08
SE	1.50E-06	8.39E-07	4.99E-07	2.25E-07	7.19E-08
SSE	1.21E-06	6.93E-07	4.22E-07	1.97E-07	6.60E-08
S	1.66E-05	8.62E-06	4.80E-06	1.95E-06	5.38E-07
SSW	5.14E-06	3.33E-06	2.26E-06	1.24E-06	5.29E-07
SW	1.12E-05	5.95E-06	3.39E-06	1.43E-06	4.12E-07
WSW	2.28E-06	1.28E-06	7.68E-07	3.50E-07	1.13E-07
W	1.25E-05	6.18E-06	3.29E-06	1.25E-06	3.13E-07
WNW	2.45E-05	1.29E-05	7.24E-06	3.00E-06	8.46E-07
NW	3.55E-05	1.95E-05	1.14E-05	4.98E-06	1.53E-06
NNW	3.73E-05	2.04E-05	1.19E-05	5.19E-06	1.58E-06

表 3-15 失水事故造成的有效剂量和甲状腺当量剂量(Sv)

		保气	产模型	也从时代 从川里	现实模型			
方位	0h-2h,	500m	0d-30d, 5000m		0h-2h, 500m		0d-30d, 5000m	
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量
N	1.37E-03	2.14E-02	5.02E-04	9.05E-03	1.25E-03	1.96E-02	4.41E-04	7.97E-03
NNE	5.27E-04	8.27E-03	1.10E-04	1.96E-03	4.83E-04	7.55E-03	9.74E-05	1.74E-03
NE	9.95E-04	1.56E-02	3.33E-04	5.97E-03	9.13E-04	1.43E-02	2.91E-04	5.22E-03
ENE	1.05E-03	1.66E-02	3.59E-04	6.45E-03	9.67E-04	1.51E-02	3.14E-04	5.66E-03
E	8.97E-04	1.41E-02	2.74E-04	4.91E-03	8.23E-04	1.29E-02	2.40E-04	4.31E-03
ESE	5.38E-04	8.44E-03	6.39E-05	1.14E-03	4.93E-04	7.70E-03	5.81E-05	1.03E-03
SE	2.80E-04	4.40E-03	5.05E-05	8.90E-04	2.57E-04	4.01E-03	4.58E-05	8.03E-04
SSE	2.86E-04	4.49E-03	4.27E-05	7.51E-04	2.62E-04	4.10E-03	3.91E-05	6.82E-04
S	1.28E-03	2.02E-02	4.79E-04	8.66E-03	1.18E-03	1.84E-02	4.23E-04	7.66E-03
SSW	1.50E-03	2.36E-02	2.21E-04	4.08E-03	1.38E-03	2.15E-02	2.07E-04	3.84E-03
SW	9.98E-04	1.57E-02	3.36E-04	6.08E-03	9.15E-04	1.43E-02	2.99E-04	5.42E-03
WSW	4.45E-04	6.98E-03	7.66E-05	1.37E-03	4.08E-04	6.37E-03	6.94E-05	1.24E-03
W	9.66E-04	1.52E-02	3.36E-04	6.02E-03	8.85E-04	1.38E-02	2.94E-04	5.27E-03
WNW	1.96E-03	3.08E-02	7.20E-04	1.30E-02	1.80E-03	2.81E-02	6.37E-04	1.16E-02
NW	2.69E-03	4.23E-02	1.12E-03	2.03E-02	2.47E-03	3.86E-02	9.96E-04	1.82E-02
NNW	2.77E-03	4.35E-02	1.17E-03	2.12E-02	2.54E-03	3.97E-02	1.04E-03	1.90E-02

表 3-16 弹棒事故造成的有效剂量和甲状腺当量剂量(Sv)

		保守	r模型	也冰时有 双川里	现实模型			
方位	0h-2h, 500m		0d-30d, 5000m		0h-2h, 500m		0d-30d, 5000m	
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量
N	1.95E-02	3.53E-01	4.05E-03	7.56E-02	1.04E-02	1.89E-01	2.17E-03	4.04E-02
NNE	7.51E-03	1.36E-01	8.54E-04	1.58E-02	4.03E-03	7.28E-02	4.57E-04	8.46E-03
NE	1.42E-02	2.57E-01	2.74E-03	5.11E-02	7.61E-03	1.37E-01	1.47E-03	2.73E-02
ENE	1.50E-02	2.73E-01	2.93E-03	5.45E-02	8.07E-03	1.46E-01	1.57E-03	2.91E-02
E	1.28E-02	2.32E-01	2.24E-03	4.16E-02	6.87E-03	1.24E-01	1.20E-03	2.22E-02
ESE	7.67E-03	1.39E-01	4.67E-04	8.63E-03	4.11E-03	7.43E-02	2.50E-04	4.60E-03
SE	3.99E-03	7.24E-02	3.72E-04	6.84E-03	2.14E-03	3.87E-02	1.99E-04	3.65E-03
SSE	4.08E-03	7.39E-02	3.08E-04	5.64E-03	2.19E-03	3.95E-02	1.65E-04	3.01E-03
S	1.83E-02	3.32E-01	3.80E-03	7.09E-02	9.82E-03	1.77E-01	2.03E-03	3.78E-02
SSW	2.14E-02	3.88E-01	1.46E-03	2.74E-02	1.15E-02	2.07E-01	7.81E-04	1.46E-02
SW	1.42E-02	2.58E-01	2.62E-03	4.88E-02	7.64E-03	1.38E-01	1.40E-03	2.60E-02
WSW	6.34E-03	1.15E-01	5.65E-04	1.05E-02	3.40E-03	6.14E-02	3.03E-04	5.58E-03
W	1.38E-02	2.50E-01	2.76E-03	5.14E-02	7.39E-03	1.33E-01	1.48E-03	2.74E-02
WNW	2.80E-02	5.07E-01	5.66E-03	1.06E-01	1.50E-02	2.71E-01	3.03E-03	5.64E-02
NW	3.84E-02	6.96E-01	8.49E-03	1.59E-01	2.06E-02	3.72E-01	4.55E-03	8.48E-02
NNW	3.95E-02	7.17E-01	8.90E-03	1.67E-01	2.12E-02	3.83E-01	4.77E-03	8.89E-02

表 3-17 主蒸汽管道断裂事故造成的有效剂量和甲状腺当量剂量(Sv)

			F模型	文 事	现实模型				
方位	0h-2h,	500m	0d-30d	l, 5000m	0h-2h, 500m		0d-30d,	0d-30d, 5000m	
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	
N	2.55E-04	4.52E-03	2.62E-05	4.64E-04	1.06E-05	1.89E-04	1.09E-06	1.94E-05	
NNE	9.84E-05	1.74E-03	5.33E-06	9.45E-05	4.11E-06	7.28E-05	2.22E-07	3.94E-06	
NE	1.86E-04	3.30E-03	1.81E-05	3.20E-04	7.75E-06	1.38E-04	7.53E-07	1.34E-05	
ENE	1.97E-04	3.49E-03	1.91E-05	3.39E-04	8.21E-06	1.46E-04	7.96E-07	1.41E-05	
E	1.68E-04	2.97E-03	1.46E-05	2.59E-04	6.99E-06	1.24E-04	6.09E-07	1.08E-05	
ESE	1.00E-04	1.78E-03	2.73E-06	4.82E-05	4.19E-06	7.43E-05	1.14E-07	2.01E-06	
SE	5.24E-05	9.27E-04	2.20E-06	3.88E-05	2.18E-06	3.87E-05	9.16E-08	1.62E-06	
SSE	5.35E-05	9.47E-04	1.78E-06	3.13E-05	2.23E-06	3.95E-05	7.41E-08	1.31E-06	
S	2.40E-04	4.25E-03	2.41E-05	4.27E-04	1.00E-05	1.77E-04	1.00E-06	1.78E-05	
SSW	2.80E-04	4.97E-03	7.57E-06	1.34E-04	1.17E-05	2.07E-04	3.15E-07	5.59E-06	
SW	1.86E-04	3.31E-03	1.63E-05	2.89E-04	7.78E-06	1.38E-04	6.78E-07	1.20E-05	
WSW	8.31E-05	1.47E-03	3.34E-06	5.90E-05	3.47E-06	6.14E-05	1.39E-07	2.46E-06	
W	1.80E-04	3.20E-03	1.81E-05	3.21E-04	7.52E-06	1.33E-04	7.55E-07	1.34E-05	
WNW	3.66E-04	6.50E-03	3.56E-05	6.31E-04	1.53E-05	2.71E-04	1.48E-06	2.63E-05	
NW	5.03E-04	8.92E-03	5.17E-05	9.17E-04	2.10E-05	3.72E-04	2.16E-06	3.83E-05	
NNW	5.17E-04	9.18E-03	5.43E-05	9.64E-04	2.16E-05	3.83E-04	2.26E-06	4.02E-05	

表 3-18 蒸发器传热管破裂事故造成的有效剂量和甲状腺当量剂量(Sv)

-10 m/2	保守模型								
方位	0h-2h,	500m	0d-30d	l, 5000m					
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量					
N	9.23E-04	1.82E-02	8.96E-05	1.76E-03					
NNE	3.56E-04	7.01E-03	1.82E-05	3.58E-04					
NE	6.73E-04	1.32E-02	6.20E-05	1.22E-03					
ENE	7.13E-04	1.40E-02	6.54E-05	1.29E-03					
E	6.07E-04	1.19E-02	5.01E-05	9.84E-04					
ESE	3.64E-04	7.15E-03	9.27E-06	1.82E-04					
SE	1.89E-04	3.72E-03	7.46E-06	1.46E-04					
SSE	1.93E-04	3.80E-03	6.02E-06	1.18E-04					
S	8.68E-04	1.71E-02	8.24E-05	1.62E-03					
SSW	1.01E-03	2.00E-02	2.55E-05	5.01E-04					
SW	6.75E-04	1.33E-02	5.56E-05	1.09E-03					
WSW	3.01E-04	5.91E-03	1.13E-05	2.22E-04					
W	6.53E-04	1.28E-02	6.22E-05	1.22E-03					
WNW	1.33E-03	2.61E-02	1.22E-04	2.39E-03					
NW	1.82E-03	3.58E-02	1.76E-04	3.47E-03					
NNW	1.87E-03	3.69E-02	1.85E-04	3.64E-03					

表 3-19 蒸汽发生器传热管破裂并伴随安全阀卡开事故造成的有效剂量和甲状腺当量剂量(Sv)

	保守模型								
 方位	0h-2h,	500m	0d-30d, 5000m						
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量					
N	2.12E-03	4.10E-02	4.55E-04	8.97E-03					
NNE	8.19E-04	1.58E-02	9.45E-05	1.86E-03					
NE	1.55E-03	2.99E-02	3.09E-04	6.10E-03					
ENE	1.64E-03	3.16E-02	3.29E-04	6.49E-03					
E	1.40E-03	2.69E-02	2.52E-04	4.96E-03					
ESE	8.36E-04	1.61E-02	5.02E-05	9.89E-04					
SE	4.36E-04	8.40E-03	4.01E-05	7.88E-04					
SSE	4.45E-04	8.58E-03	3.28E-05	6.45E-04					
S	2.00E-03	3.85E-02	4.24E-04	8.36E-03					
SSW	2.33E-03	4.50E-02	1.49E-04	2.95E-03					
SW	1.55E-03	2.99E-02	2.90E-04	5.72E-03					
WSW	6.92E-04	1.33E-02	6.11E-05	1.20E-03					
W	1.50E-03	2.90E-02	3.11E-04	6.13E-03					
WNW	3.05E-03	5.89E-02	6.29E-04	1.24E-02					
NW	4.19E-03	8.08E-02	9.34E-04	1.85E-02					
NNW	4.31E-03	8.31E-02	9.80E-04	1.94E-02					

表 3-20 主蒸汽管道断裂外加蒸汽发生器传热管断裂事故造成的有效剂量和甲状腺当量剂量(Sv)

	保守模型								
方位	0h-2h,	500m	0d-30d	l, 5000m					
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量					
N	9.33E-03	1.83E-01	9.06E-04	1.78E-02					
NNE	3.60E-03	7.07E-02	1.84E-04	3.61E-03					
NE	6.80E-03	1.34E-01	6.27E-04	1.23E-02					
ENE	7.21E-03	1.42E-01	6.61E-04	1.30E-02					
E	6.13E-03	1.20E-01	5.06E-04	9.93E-03					
ESE	3.68E-03	7.22E-02	9.37E-05	1.83E-03					
SE	1.92E-03	3.76E-02	7.55E-05	1.48E-03					
SSE	1.96E-03	3.84E-02	6.09E-05	1.19E-03					
S	8.78E-03	1.72E-01	8.33E-04	1.63E-02					
SSW	1.03E-02	2.01E-01	2.58E-04	5.06E-03					
SW	6.82E-03	1.34E-01	5.62E-04	1.10E-02					
WSW	3.04E-03	5.97E-02	1.15E-04	2.25E-03					
W	6.60E-03	1.30E-01	6.28E-04	1.23E-02					
WNW	1.34E-02	2.63E-01	1.23E-03	2.41E-02					
NW	1.84E-02	3.61E-01	1.78E-03	3.50E-02					
NNW	1.89E-02	3.72E-01	1.87E-03	3.67E-02					

表 3-21 最终热阱丧失事故造成的有效剂量和甲状腺当量剂量(Sv)

X 3-21 E	保守模型								
 方位	0h-2h,	500m	0d-30d	l, 5000m					
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量					
N	1.85E-06	1.84E-05	5.46E-05	1.11E-03					
NNE	7.13E-07	7.12E-06	1.19E-05	2.38E-04					
NE	1.35E-06	1.35E-05	3.62E-05	7.32E-04					
ENE	1.43E-06	1.42E-05	3.90E-05	7.89E-04					
E	1.21E-06	1.21E-05	2.98E-05	6.02E-04					
ESE	7.27E-07	7.27E-06	6.87E-06	1.36E-04					
SE	3.79E-07	3.78E-06	5.43E-06	1.07E-04					
SSE	3.87E-07	3.86E-06	4.58E-06	8.96E-05					
S	1.74E-06	1.74E-05	5.20E-05	1.05E-03					
SSW	2.03E-06	2.03E-05	2.31E-05	4.66E-04					
SW	1.35E-06	1.35E-05	3.65E-05	7.38E-04					
WSW	6.01E-07	6.01E-06	8.25E-06	1.64E-04					
W	1.31E-06	1.30E-05	3.65E-05	7.38E-04					
WNW	2.65E-06	2.65E-05	7.81E-05	1.58E-03					
NW	3.64E-06	3.64E-05	1.21E-04	2.45E-03					
NNW	3.75E-06	3.75E-05	1.26E-04	2.56E-03					

表 3-22 容积控制箱破裂事故造成的有效剂量和甲状腺当量剂量(Sv)

5-22 71	保守模型								
方位	0h-2h,	500m	0d-30d	l, 5000m					
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量					
N	6.16E-04	3.98E-04	5.98E-05	3.86E-05					
NNE	2.38E-04	1.53E-04	1.21E-05	7.84E-06					
NE	4.49E-04	2.90E-04	4.13E-05	2.67E-05					
ENE	4.76E-04	3.07E-04	4.36E-05	2.82E-05					
E	4.05E-04	2.61E-04	3.34E-05	2.16E-05					
ESE	2.43E-04	1.57E-04	6.17E-06	3.98E-06					
SE	1.26E-04	8.16E-05	4.97E-06	3.21E-06					
SSE	1.29E-04	8.33E-05	4.00E-06	2.58E-06					
S	5.80E-04	3.74E-04	5.50E-05	3.55E-05					
SSW	6.77E-04	4.37E-04	1.70E-05	1.10E-05					
SW	4.51E-04	2.91E-04	3.71E-05	2.39E-05					
WSW	2.01E-04	1.30E-04	7.55E-06	4.87E-06					
W	4.36E-04	2.81E-04	4.14E-05	2.68E-05					
WNW	8.86E-04	5.72E-04	8.11E-05	5.24E-05					
NW	1.22E-03	7.85E-04	1.18E-04	7.59E-05					
NNW	1.25E-03	8.08E-04	1.24E-04	7.98E-05					

表 3-23 废气衰变箱破损事故造成的有效剂量和甲状腺当量剂量(Sv)

			P模型	火 手	现实模型			
方位	0h-2h, 500m		0d-30d, 5000m		0h-2h, 500m		0d-30d, 5000m	
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量
N	1.07E-03	2.42E-04	1.03E-04	2.34E-05	4.95E-04	1.39E-05	4.80E-05	1.35E-06
NNE	4.12E-04	9.33E-05	2.10E-05	4.76E-06	1.91E-04	5.37E-06	9.76E-06	2.74E-07
NE	7.78E-04	1.76E-04	7.16E-05	1.62E-05	3.61E-04	1.01E-05	3.32E-05	9.34E-07
ENE	8.24E-04	1.87E-04	7.55E-05	1.71E-05	3.82E-04	1.07E-05	3.51E-05	9.85E-07
E	7.01E-04	1.59E-04	5.78E-05	1.31E-05	3.25E-04	9.15E-06	2.68E-05	7.54E-07
ESE	4.20E-04	9.52E-05	1.07E-05	2.42E-06	1.95E-04	5.48E-06	4.96E-06	1.39E-07
SE	2.19E-04	4.96E-05	8.60E-06	1.95E-06	1.02E-04	2.86E-06	3.99E-06	1.12E-07
SSE	2.23E-04	5.06E-05	6.93E-06	1.57E-06	1.04E-04	2.92E-06	3.22E-06	9.04E-08
S	1.00E-03	2.27E-04	9.52E-05	2.16E-05	4.66E-04	1.31E-05	4.42E-05	1.24E-06
SSW	1.17E-03	2.66E-04	2.94E-05	6.67E-06	5.44E-04	1.53E-05	1.37E-05	3.84E-07
SW	7.80E-04	1.77E-04	6.42E-05	1.45E-05	3.62E-04	1.02E-05	2.98E-05	8.37E-07
WSW	3.47E-04	7.87E-05	1.31E-05	2.96E-06	1.61E-04	4.53E-06	6.07E-06	1.71E-07
W	7.55E-04	1.71E-04	7.17E-05	1.63E-05	3.50E-04	9.84E-06	3.33E-05	9.36E-07
WNW	1.53E-03	3.47E-04	1.40E-04	3.18E-05	7.12E-04	2.00E-05	6.52E-05	1.83E-06
NW	2.10E-03	4.77E-04	2.04E-04	4.61E-05	9.77E-04	2.75E-05	9.45E-05	2.66E-06
NNW	2.17E-03	4.91E-04	2.14E-04	4.85E-05	1.01E-03	2.83E-05	9.93E-05	2.79E-06

表 3-24 燃料操作事故造成的有效剂量和甲状腺当量剂量(Sv)

	表 3-24 燃料操作争战道成的有效剂重和甲状脲当重剂重(SV)							
		保气	F模型		现实模型			
方位	0h-2h, 500m		0d-30d, 5000m		0h-2h, 500m		0d-30d, 5000m	
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量
N	4.02E-03	6.10E-02	3.93E-04	5.93E-03	1.40E-04	2.36E-04	1.62E-05	2.73E-05
NNE	1.55E-03	2.35E-02	8.06E-05	1.20E-03	5.41E-05	9.12E-05	3.31E-06	5.57E-06
NE	2.93E-03	4.45E-02	2.72E-04	4.10E-03	1.02E-04	1.72E-04	1.11E-05	1.88E-05
ENE	3.11E-03	4.71E-02	2.87E-04	4.33E-03	1.08E-04	1.83E-04	1.18E-05	1.99E-05
E	2.65E-03	4.01E-02	2.20E-04	3.31E-03	9.22E-05	1.55E-04	9.02E-06	1.52E-05
ESE	1.59E-03	2.40E-02	4.14E-05	6.12E-04	5.52E-05	9.31E-05	1.71E-06	2.87E-06
SE	8.29E-04	1.25E-02	3.35E-05	4.93E-04	2.88E-05	4.85E-05	1.37E-06	2.30E-06
SSE	8.46E-04	1.28E-02	2.71E-05	3.97E-04	2.94E-05	4.95E-05	1.11E-06	1.86E-06
S	3.78E-03	5.74E-02	3.62E-04	5.45E-03	1.32E-04	2.22E-04	1.49E-05	2.52E-05
SSW	4.42E-03	6.70E-02	1.13E-04	1.69E-03	1.54E-04	2.60E-04	4.81E-06	8.10E-06
SW	2.94E-03	4.46E-02	2.44E-04	3.68E-03	1.03E-04	1.73E-04	1.01E-05	1.70E-05
WSW	1.31E-03	1.99E-02	5.04E-05	7.49E-04	4.57E-05	7.70E-05	2.08E-06	3.51E-06
W	2.85E-03	4.31E-02	2.73E-04	4.11E-03	9.92E-05	1.67E-04	1.12E-05	1.88E-05
WNW	5.78E-03	8.77E-02	5.33E-04	8.04E-03	2.02E-04	3.40E-04	2.21E-05	3.72E-05
NW	7.93E-03	1.20E-01	7.73E-04	1.17E-02	2.77E-04	4.66E-04	3.23E-05	5.43E-05
NNW	8.16E-03	1.24E-01	8.12E-04	1.23E-02	2.85E-04	4.80E-04	3.39E-05	5.71E-05

表 3-25 卡轴事故造成的有效剂量和甲状腺当量剂量(Sv)

12 3-2	保守模型								
方位	0h-2h,	500m	0d-30d	l, 5000m					
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量					
N	4.78E-04	4.51E-03	1.49E-04	2.11E-03					
NNE	1.84E-04	1.74E-03	3.14E-05	4.42E-04					
NE	3.48E-04	3.29E-03	1.01E-04	1.43E-03					
ENE	3.69E-04	3.48E-03	1.08E-04	1.52E-03					
E	3.14E-04	2.96E-03	8.25E-05	1.16E-03					
ESE	1.88E-04	1.78E-03	1.70E-05	2.39E-04					
SE	9.80E-05	9.25E-04	1.36E-05	1.90E-04					
SSE	1.00E-04	9.44E-04	1.12E-05	1.56E-04					
S	4.49E-04	4.24E-03	1.40E-04	1.98E-03					
SSW	5.25E-04	4.96E-03	5.08E-05	7.34E-04					
SW	3.49E-04	3.30E-03	9.59E-05	1.36E-03					
WSW	1.56E-04	1.47E-03	2.06E-05	2.90E-04					
W	3.38E-04	3.19E-03	1.02E-04	1.43E-03					
WNW	6.86E-04	6.48E-03	2.08E-04	2.95E-03					
NW	9.42E-04	8.89E-03	3.10E-04	4.42E-03					
NNW	9.70E-04	9.15E-03	3.25E-04	4.64E-03					

表 3-26 安全壳外小管道破裂事故造成的有效剂量和甲状腺当量剂量(Sv)

	保守模型				
方位	0h-2h, 500m		0d-30d, 5000m		
	有效剂量	甲状腺 当量剂量	有效剂量	甲状腺 当量剂量	
N	9.61E-04	1.72E-02	9.34E-05	1.67E-03	
NNE	3.71E-04	6.64E-03	1.90E-05	3.39E-04	
NE	7.01E-04	1.25E-02	6.46E-05	1.15E-03	
ENE	7.42E-04	1.33E-02	6.82E-05	1.22E-03	
E	6.32E-04	1.13E-02	5.22E-05	9.33E-04	
ESE	3.79E-04	6.78E-03	9.69E-06	1.72E-04	
SE	1.97E-04	3.53E-03	7.80E-06	1.39E-04	
SSE	2.02E-04	3.60E-03	6.30E-06	1.12E-04	
S	9.04E-04	1.62E-02	8.59E-05	1.54E-03	
SSW	1.06E-03	1.89E-02	2.66E-05	4.75E-04	
SW	7.03E-04	1.26E-02	5.79E-05	1.04E-03	
WSW	3.13E-04	5.60E-03	1.18E-05	2.11E-04	
W	6.80E-04	1.22E-02	6.47E-05	1.16E-03	
WNW	1.38E-03	2.47E-02	1.27E-04	2.26E-03	
NW	1.89E-03	3.39E-02	1.84E-04	3.29E-03	
NNW	1.95E-03	3.49E-02	1.93E-04	3.45E-03	

附录 A 运行状态下放射性气载流出物排放量计算模式及参数

A.1 放射性废气处理系统的排放量

1) 压缩机的泄漏释放(AGWT1)

 $AGWT1 = TFC \times SFIBRS \times Q$

$$Q = \frac{QBRSNO \times PCANO}{DFICVC^{2}} + \frac{QBRST \times PCAT \times e^{-\lambda_{L} \times TCVC}}{DFICVC^{2}} + PCM \times PCCSN \times PCAT$$

$$\lambda_{L} = \lambda + \frac{QCVC \times (1 - DFICVC^{-1})}{PCM}$$

参数物理意义:

TFC: 压缩机的泄漏率,用总流量的百分比表示;

SFIBRS: 硼回收系统除气塔中碘或惰性气体核素的汽水分配因子;

OBRSNO: 稳态运行时硼回收系统的年处理量, t;

PCANO: 稳态运行工况下一回路冷却剂中碘或惰性气体核素的放射性比活度,

GBq/t;

DFICVC: 化容系统和硼回收系统除盐器对碘和惰性气体核素的去污因子;

OBRST: 瞬态时硼回收系统的年处理量, t;

PCAT: 瞬态工况下一回路冷却剂中碘或惰性气体核素的放射性比活度, GBq/t;

TCVC: OBRST 输送到硼回收系统之前化容系统的运行时间, h:

PCM: 一回路冷却剂的质量, t:

PCCSN: 一回路脱气的冷停堆次数;

λ: 核素衰变常数, 1/h;

OCVC: 化容系统的流量, t/h。

2) 衰变箱的清扫释放(AGWT2)

$$AGWT2 = (1 - TFC) \times SFIBRS \times \frac{\left[1 - e^{-\lambda_1 \times FTDGWT}\right] \times e^{(-\lambda \times STDGWT)} \times Q}{\lambda_1 \times FTDGWT}$$

$$\lambda_l = \lambda + \frac{XFUITR}{24}$$

参数物理意义:

FTDGWT: 衰变箱的充满时间, h;

STDGWT: 气态放射性流出物释放前在衰变箱中的贮存时间, h:

XFUITR: 衰变箱的泄漏率,与日贮存量成正比,1/d。

3) 衰变箱的泄漏释放(AGWT3)

$$AGWT3 = \frac{XFUITR}{24 \times \lambda_{I}} \times \left[\frac{(1 - TFC) \times AGWT1}{TFC} - AGWT2 \right]$$

参数物理意义同上。

A.2 反应堆厂房通风系统的排放量

反应堆厂房通风系统的排放量:

ARB = ARB1 + ARB2

1) 停堆期间大流量清扫引起的释放 (ARB1):

$$ARB1 = \frac{SFIRB \times TAO \times QLRB \times PCANO \times \left(1 - e^{-\lambda_T \times TIRB}\right)}{DFIRB \times \lambda_T \times TIRB}$$

$$\lambda_T = \lambda + \left(1 - DFIRB^{-1}\right) \times \lambda_v + \lambda_B$$

参数物理意义:

SFIRB: 反应堆厂房内碘或惰性气体核素的汽水分配因子;

TAO: 机组全年运行时间, h;

QLRB: 反应堆厂房内一回路冷却剂泄漏率,t/h;

TIRB: 进行反应堆厂房清扫的时间间隔, h;

DFIRB: 反应堆厂房通风系统对碘和惰性气体的去污因子:

λv: 内部过滤系统的时间常数 (系统带有碘捕集器), 1/h;

λB: 空气监测系统的时间常数 (系统带有碘捕集器), 1/h。

2) 机组运行时小流量清扫引起的释放 (ARB2):

$$ARB2 = \frac{\lambda_B}{\lambda_T} \times \left(\frac{SFIRB \times TAO \times QLRB \times PCANO}{DFIRB} - ARB1 \right)$$

参数物理意义同上。

A.3 核辅助厂房通风系统的排放量

核辅助厂房通风系统的排放量:

$$AAB = AAB1 + AAB2$$

1) 冷泄漏引起的排放 (AAB1):

$$AAB1 = \frac{QCLAB \times TAO \times PCANO \times SFICAB}{DFICVC}$$

参数物理意义:

OCLAB: 冷的一回路冷却剂泄漏率, t/h;

SFICAB:冷的一回路冷却剂泄漏中碘或惰性气体的汽水分配因子。

2) 热泄漏引起的排放 (AAB2):

$$AAB2 = \frac{QHLAB \times TAO \times PCANO \times SFIHAB}{DFICVC}$$

QHLAB: 热的一回路冷却剂泄漏率, t/h;

SFIHAB: 热的一回路冷却剂泄漏中碘或惰性气体的汽水分配因子。

A.4 二回路系统的排放量

1) 真空泵抽气引起的惰性气体年排放量

$$ASEC(N) = \int_{0}^{t} PCANO(N) \times (BB + AA \times t) dt = PCANO(N) \times \left(BB \times t + \frac{AA \times t^{2}}{2}\right)$$

参数物理意义:

PCANO(N): 稳态运行工况下,一回路主冷却剂中惰性气体核素的放射性比活度,GBq/t;

BB: 一回路至二回路的初始泄漏率, t/h;

AA: 一回路至二回路的泄漏率系数, t/h^2 ;

t: 一回路向二回路的泄漏时间。

2) 真空泵抽气引起的碘核素年排放量

$$ASEC(I) = \int_{0}^{t} \frac{AGV(I_{t}) \times QCOND \times S_{F} \times F_{H}}{SGM} dt$$

$$= \frac{QCOND \times S_{F} \times F_{H}}{SGM} \times \left\{ \left[AGV(I_{0}) + n(I) \right] \times \left[\mu(I) - \mu(I) \times e^{-t/\mu(I)} \right] - \frac{m(I) \times t^{2}}{2} - n(I) \times t \right\}$$

$$m(I) = -\mu(I) \times AA \times PCANO(I)$$

$$n(I) = -(BB - \mu(I) \times AA) \times PCANO(I) \times \mu(I)$$

$$\mu(I) = 1 / \left(\lambda(I) + \frac{QFSG}{SGM} - \frac{QFSG}{SGM \times D} + \frac{F_H \times QFSEC \times (1 - S_F)}{SGM} + \frac{QCOND \times F_H \times S_F}{SGM}\right)$$

参数物理意义:

AGV (It): 蒸汽发生器水相中核素的总活度, GBq;

PCANO(I): 稳态运行工况下,一回路冷却剂中碘核素的放射性比活度,GBq/t;

OCOND: 两台冷凝器的蒸汽总流量, t/h;

SF: 冷凝器中的碘的汽水分配因子;

FH: 蒸汽携带因子(蒸汽发生器蒸汽中核素的比活度与蒸汽发生器水中核素的比活度之比);

SGM: 两台蒸汽发生器中水的质量, t;

QFSG: 两台蒸汽发生器的排污率, t/h;

D: 蒸汽发生器排污系统除盐器净化因子;

QFSEC: 二回路泄漏率, t/h。

A.5 计算参数

计算所用参数见表 A-1、A-2。

表 A-1 计算放射性气载流出物的主要系统参数

序号	变量名	物理意义	取值
1	QCVC	化容系统的流量	13.6t/h
2	PCM	一回路冷却剂的质量	143t
3	QBRSNO	稳态运行时输送到硼回收系统的年处理量	732t
4	QBRST	瞬态工况时输送到硼回收系统的年处理量	1960t
5	DFICVC	硼回收系统除盐器和化容系统对碘的去污因子	100
6	SFIBRS	硼回收系统除气塔中碘的汽水分配因子	0.001
7	QLRB	反应堆厂房中一回路冷却剂的泄漏率	6.60E-02t/h
8	TAO	机组的全年满功率运行时间	7728h
9	AA	一回路泄漏率的变化系数	$5.0E-05t/h^2$
10	BB	一回路至二回路的初始泄漏率	0.001t/h
11	DFUITE	DFUITE 一回路至二回路的泄漏时间	
12	QCOND	QCOND 一台冷凝器的蒸汽流量(假定与主蒸汽流量相同)	
13	QFSG	QFSG 一台蒸汽发生器的排污率	
14	SGM	一台蒸汽发生器内水的质量	44t
15	D	蒸汽发生器排污系统除盐器净化因子 10	
16	QFSEC	二回路系统的泄漏率 22t/h	
17	PCCSN 一回路完全脱气的冷停堆次数		2

表 A-2 法国同类机组的运行经验数据

序号	变量名	物理意义	取值
1	TFC	废气处理系统压缩机的泄漏率(泄漏量与总流量之比)	0.001
2	TCVC	QBRST 输送到硼回收系统之前化容系统的运行时间	55.6h
3	TIRB	进行反应堆厂房清扫的时间间隔	1600h
4	XLAMB V	内部过滤系统的时间常数 (带碘捕集器)	0.4/h
5	XLAMB B	空气监测系统时间常数 (带碘捕集器)	6.8E-04/h
6	FTDGWT	废气处理系统衰变箱的充满时间	240h
7	STDGWT	气态流出物排放前在贮存罐中的贮存时间	1080h
8	XFUITR	废气处理系统衰变箱的泄漏率(与日贮量成正比)	0.0001/d
9	SFIRB	反应堆厂房中碘的汽水分配因子	0.001
10	DFIRB	反应堆厂房通风系统中碘的去污因子	10

序号	变量名	物理	取值	
11	QCLAB	核辅助厂房中冷的一	0.031t/h	
12	QHLAB	核辅助系统中热的-	2.0E-03t/h	
13	SFICAB	冷的一回路冷却剂泄漏率中碘的汽水分配因子		1.0E-04
14	SFIHAB	热的一回路冷却剂泄漏率中碘的汽水分配因子		1.0E-03
15	SF	冷凝器碘的汽水分配因子	碘	1.0E-04
			其他核素	0
16	FH	蒸汽携带因子	固体裂变产物和腐蚀产物	0.0025
			碘	0.01

附录 B 运行状态下放射性液态流出物排放量计算模式及参数

B.1 硼回收系统的排放量

硼回收系统裂变产物的总排放量: ABRS(F) = ABRS1 + ABRS2 + ABRS3 + ABRS4(F) 硼回收系统腐蚀产物的总排放量: ABRS(C) = ABRS1 + ABRS2 + ABRS3 + ABRS4(C) 稳态运行时的释放(ABRS1):

$$ABRS1 = \frac{QBRS1 \times PCANO \times e^{(-\lambda \times TBRS1)}}{DFBRS}$$

参数物理意义:

OBRS1: 稳态运行时硼回收系统的年处理量, t;

PCANO: 稳态运行一回路冷却剂中裂变产物或腐蚀产物核素的放射性比活度,

GBq/t;

λ: 核素的衰变常数, 1/h;

TBRS1: QBRS1 在硼回收系统内的贮存时间, h;

DFBRS: 硼回收系统的去污因子。

瞬态工况(8小时热停堆)时的释放(ABRS2):

$$ABRS2 = \frac{QBRS2 \times PCAT1 \times e^{\left[-(\lambda + \lambda_1) \times TPCB1\right]} \times e^{\left(-\lambda \times TBRS2\right)}}{DFBRS}$$

$$\lambda_1 = \frac{QCVC1}{PCM} \times \left(1 - DFCVC^{-1}\right)$$

参数物理意义:

OBRS2: 8 小时热停堆期间输送到硼回收系统的年处理量, t;

PCAT1: 热停堆时一回路冷却剂中裂变产物和腐蚀产物的放射性比活度,GBq/t;

*TPCB*1:由于瞬态工况引起的一回路冷却剂中放射性峰值时刻与 *QBRS*2 输送到硼回收系统相隔的时间,h;

TBRS2: OBRS2 在硼回收系统内的贮存时间, h;

QCVC1: 8 小时热停堆期间化容系统的流量, t/h;

PCM: 一回路冷却剂的质量, t;

DFCVC: 化容系统的去污因子。

瞬态工况(90小时热停堆)时的释放(ABRS3):

$$ABRS3 = \frac{QBRS3 \times PCAT1 \times e^{[-(\lambda + \lambda_2) \times TPCB2]} \times e^{(-\lambda \times TBRS3)}}{DFBRS}$$

$$\lambda_2 = \frac{QCVC2}{PCM} \times \left(1 - DFCVC^{-1}\right)$$

参数物理意义:

OBRS3: 90 小时热停堆期间输送到硼回收系统的年处理量, t;

PCAT1: 热停堆时一回路冷却剂中裂变产物和腐蚀产物的放射性比活度, GBq/t;

*TPCB*2:由于瞬态工况引起的一回路冷却剂中放射性峰值时刻与 *QBRS*3 输送到硼回收系统相隔的时间,h;

TBRS3: OBRS3 在硼回收系统内存储的时间, h;

OCVC2: 90 小时热停堆期间化容系统的流量, t/h。

瞬态工况(冷停堆)时的释放(ABRS4):

裂变产物 (ABRS4(F)):

$$ABRS4(F) = \frac{QBRS4 \times PCAT2(F) \times e^{[-(\lambda + \lambda_3) \times TPCBF3]} \times e^{(-\lambda \times TBRS4)}}{DFBRS}$$

$$\lambda_3 = \frac{QCVC3}{PCM} \times \left(1 - DFCVC^{-1}\right)$$

参数物理意义:

OBRS4: 冷停堆期间输送到硼回收系统的年处理量, t:

PCAT2(F): 冷停堆时一回路冷却剂中裂变产物的放射性比活度,GBq/t;

TPCBF3: 由于冷停堆产生的裂变产物放射性峰值时刻与 QBRS4 输送到硼回收系统相隔的时间,h;

TBRS4: QBRS4 在硼回收系统内贮存的时间, h;

OCVC3: 冷停堆期间化容系统的流量, t/h。

腐蚀产物 (ABRS4(C)):

$$ABRS4(C) = \frac{QBRS4 \times PCAT2(C) \times e^{[-(\lambda + \lambda_3) \times TPCBC3]} \times e^{(-\lambda \times TBRS4)}}{DFBRS}$$

参数物理意义:

PCAT2(C): 冷停堆时一回路冷却剂中腐蚀产物的放射性比活度,GBq/t;

TPCBC3:由于冷停堆产生的腐蚀产物放射性峰值时刻与 QBRS4 输送到硼回收系统相隔的时间,h。

B.2 废液处理系统的排放量

废液处理系统的排放包括化学排水、地面排水和工艺排水。

废液处理系统裂变产物的总排放量: ALWT(F) = ALWT1 + ALWT2 + ALWT3(F)

废液处理系统腐蚀产物的总排放量: ALWT(C) = ALWT1 + ALWT2 + ALWT3(C)

①蒸发器处理的化学疏水释放 (ALWT1):

$$ALWT1 = \frac{QCH \times PCANO \times e^{(-\lambda \times TCH)}}{DFLWT}$$

参数物理意义:

QCH: 经蒸发器处理的化学疏水当量, t;

TCH: QCH 在废液处理系统中的贮存时间, h;

DFLWT: 废液处理系统对裂变产物的去污因子。

②过滤器处理的地面疏水释放(ALWT2):

$$ALWT2 = QFL \times PCANO \times e^{(-\lambda \times TFL)}$$

参数物理意义:

OFL: 经过滤器处理的地面疏水当量, t;

TFL: OFL 在废液处理系统中的贮存时间, h。

③除盐器处理的工艺疏水释放(ALWT3):

裂变产物 (ALWT3(F)):

$$ALWT3(F) = \frac{QPR \times PCAT2(F) \times e^{[-(\lambda + \lambda_4) \times TPCQF]} \times e^{(-\lambda \times TPR)}}{DFLWT}$$

$$\lambda_4 = \frac{QCVC}{PCM} \times \left(1 - DFCVC^{-1}\right)$$

参数物理意义:

OPR: 经除盐器处理的工艺疏水的当量, t;

TPCQF: 裂变产物放射性峰值出现至 QPR 输送到废液处理系统的时间间隔,h; TPR: QPR 在废液处理系统内的贮存时间,h。

QCVC: 冷停堆期间在 TPCQF 和 TPCQC 两个时间间隔内化容系统的流量,t/h。**腐蚀产物** (ALWT3(C))):

$$ALWT3(C) = \frac{QPR \times PCAT2(C) \times e^{\left[-(\lambda + \lambda_4) \times TPCQC\right]} \times e^{\left(-\lambda \times TPR\right)}}{DFLWT}$$

参数物理意义:

TPCQC: 腐蚀产物放射性峰值出现至 QPR 输送到废液处理系统的时间间隔, h。

B.3 二回路系统的排放量

蒸汽发生器排污释放 (ASCE):

$$ASCE = AGV(I_t) = \left\{ \left[AGV(I_0) + n(I) \right] \times e^{-t/\mu(I)} - m(I) \times t - n(I) \right\} \times e^{-\lambda \times TD}$$

参数物理意义:

PCANO(I): 稳态运行一回路冷却剂中裂变产物或腐蚀产物核素的放射性比活度,

GBq/t;

TD:排污前蒸汽发生器内核素的衰变时间,h。

B.4 计算参数

计算所用参数见表 B-1、B-2。

表 B-1 计算放射性液态流出物的主要系统参数

序号	参数	物理意义	取值
1	QBRS1	稳态运行时输送到硼回收系统的年处理量	732t
2	QBRS2	8 小时热停堆时输送到硼回收系统的年处理量	1040t
3	QBRS3	90 小时热停堆时输送到硼回收系统的年处理量	910t
4	QBRS4	冷停堆时输送到硼回收系统的年处理量	456t
5	QCVC1	8 小时热停堆期间化容系统的流量	13.6t/h
6	QCVC2	90 小时热停堆期间化容系统的流量	13.6t/h
7	QCVC3	冷停堆期间化容系统的流量	13.6t/h
8	PCM	一回路冷却剂的质量	143t
9	DFCVC	化容系统的去污因子	10
10	DFBRS	硼回收系统的去污因子	100000
11	DFLWTI 废液处理系统蒸发器对碘的去污因子		1000
12	DFLWTC 废液处理系统蒸发器对铯的去污因子		1000
13	DFLWTA 废液处理系统蒸发器对其他核素的去污因子		1000
14	DFLWTD	工艺疏水经除盐器处理的去污因子	100

表 B-2 法国同类机组的运行经验数据

	农业 农口 100 100 100 100 100 100 100 100 100 10							
序号	参数	物理意义	取值					
1	TBRS1	QBRS1 在硼回收系统内贮存的时间	250h					
2	TBRS2	QBRS2 在硼回收系统内贮存的时间	250h					
3	TBRS3	QBRS3 在硼回收系统内贮存的时间	250h					
4	TBRS4	QBRS4 在硼回收系统内贮存的时间	250h					
5	TPCB1	由于瞬态工况引起的一回路冷却剂中放射性峰值时刻与 QBRS2 输送到硼回收系统所相隔的时间	0					
6	TPCB2	由于瞬态工况引起的一回路冷却剂中放射性峰值时刻与 QBRS3 输送到硼回收系统所相隔的时间	90h					

序号	参数	物理意义	取值
7	TPCBF3	由于冷停堆产生的裂变产物放射性峰值时刻与 QBRS4 输送到 硼回收系统所间隔的时间	139h
8	TPCBC3	由于冷停堆产生的腐蚀产物放射性峰值时刻与 QBRS4 输送到 硼回收系统所间隔的时间	214h
9	TPCQF	裂变产物放射性峰值出现至 QPR 输送到废液处理系统的时间间隔	111h
10	TPCQC	腐蚀产物放射性峰值出现至 QPR 输送到废液处理系统的时间间隔	61.1h
11	TCH	QCH 在废液处理系统中的存储时间	120h
12	TFL	QFL 在废液处理系统中的存储时间	120h
13	TPR	QPR 在废液处理系统中的存储时间	120h
14	QCVC	冷停堆期间在 TPCQF 和 TPCQC 两个时间间隔内化容系统的流量	6.5t/h
15	TD	排污前蒸汽发生器内核素的衰变时间	88.9h
16	TN	每次排污的时间	750h

附录 C 大气年均扩散因子、沉积因子的计算模式及参数

C.1 大气年均扩散因子计算模式

当气载流出物排放高度高于周围建筑物高度的 2 倍时为高架排放,大气年均弥散因子采用高架释放模式计算,见 C1.1 节。

当气载流出物排放高度低于周围最高建筑物高度时为低架排放,大气年均弥散因子 采用低架释放模式计算,见 C1.2 节。

当气载流出物排放高度高于周围最高建筑物高度,但低于周围最高建筑物高度的 2 倍时,大气年均弥散因子采用混合释放模式计算,见 C1.3 节。

C.1.1 高架排放

根据烟羽扩散的下风距离x与烟羽边界初次到达混合层底时对应的下风距离xL之间的关系分以下两种情况分别计算 i 风向、下风距离 x 处扇形弧段上高架点源污染物排放的大气年均弥散因子。

C.1.1.1 不受混合层限制的大气年均弥散因子模式

当 $x \le x_L$ 时,烟羽扩散不会受到混合层顶的限制,年均大气弥散因子计算公式如下:

$$(\frac{\overline{X}}{Q})_{i} = \frac{2.032}{x} \cdot \sum_{j=1,k=3}^{6,6} \frac{\exp(-\frac{Hs^{2}}{2 \cdot \sigma^{2}_{zj}(x)})}{\sigma_{zi}(x)} \cdot \frac{P_{ijk}}{u_{jk}}...(C1.1)$$

式中:

 $(\frac{\overline{X}}{O})_i$ —— i 风向的下风向扇形内的长期大气弥散因子, s/m^3 ;

x —— i 风向的下风向距离,m;

 H_s — 有效释放高度, $H_s = H + \Delta H_i$,m;

H—— 排风塔的几何高度, m:

 ΔH_i ——考虑烟羽抬升,i 类稳定度、x 下风距离处的烟羽抬升高度,m;

 $\sigma_{z,i}(x)$ —— i 类稳定度、x 下风距离处的垂直扩散参数,m;

 P_{iik} —— i 风向、j 类稳定度、k 风速级出现的频率;

 u_{ik} — 流出物释放高度处、i 类稳定度、k 风速级对应的平均风速,m/s.

C.1.1.2 受混合层限制的大气年均弥散因子模式

当 x>x_L时,烟羽经过较长时间的迁移扩散,将受到混合层顶的限制。根据烟羽物质

的浓度在混合层内垂直方向分布情况分以下两种情况考虑:

(1)当 $x \ge 2x_L$ 时,认为烟羽迁移的距离 x 足够大,使得烟羽物质的浓度在混合层内垂直方向分布均匀。根据流出物有效释放高度 H_s 与大气混合层高度 H_m 之间的关系来确定此种情况下混合层对烟羽扩散的影响,:

$$\left(\frac{\overline{X}}{Q}\right)_{i} = \frac{2.546}{x} \cdot \sum_{i=1,k=3}^{6.6} \frac{{}_{w}P_{ijk}}{u_{ik} \cdot H_{mi}}$$
 (C1.2)

(2)当 $x_L < x < 2x_L$ 时,长期大气弥散因子由根据(C1.1)式当 $x = x_L$ 时计算出的($\frac{\overline{X}}{Q}$)_i值,

与根据(C1.2)式或(C1.3)式当 $x=2x_L$ 时计算出的($\frac{\overline{X}}{O}$)_i值内插得到。

C.1.2 地面释放

C.1.2.1 不受混合层限制的大气年均弥散因子模式

当 *x*≤*x*_L时,烟羽扩散不会受到混合层顶的限制,在考虑建筑物尾流影响情况下,地面释放的大气年均弥散因子计算公式如下:

$$(\frac{\overline{X}}{Q})_i = \frac{2.032}{x \cdot \sum z_j(x)} \cdot \sum_{k=1, j=1}^{6,6} \frac{P_{ijk}}{u_{jk}} \dots$$
 (C1.5)

式中:

 $\sum z_j(x)$ ——经建筑物尾流校正后的垂直大气扩散参数, m, 见(C1.6)式和(C1.7) 式, 并择其中计算结果较小者;

$$\sum z_{j}(x) = \left(\sigma_{zj}^{2}(x) + \frac{0.5}{\pi} \cdot D_{z}^{2}\right)^{0.5}$$
 (C1.6)

$$\sum z_j(x) = \sqrt{3} \cdot \sigma_{zj}(x) \tag{C1.7}$$

式(C1.6)中:

 D_Z — 排放点附近最高建筑物的高度, m。

其他参数含义同高架释放模式。

C.1.2.2 受混合层限制的大气年均弥散因子模式

当 x>x_L时,烟羽经过较长时间的迁移扩散,将受到混合层顶的限制,此种情况下的模式与高架释放受混合层限制模式相同。

C.1.3 混合释放

当流出物释放高度高于邻近建筑物但低于邻近建筑物高度 2 倍时,部分时间视为高架释放,部分时间视为地面释放,其时间分配比例 E_t 取决于 W_0/u_{jk} 的比值(W_0 为烟囱出口处烟气流速, u_{ik} 为烟羽排放高度处的风速),此种情况称为混合释放方式。

时间分配比例 Et 的计算公式如下:

$$E_{t} = \begin{cases} 1 & W_{0}/u_{jk} \leq 1.0, \text{ 地面释放} \\ 2.58 - 1.58(W_{0}/u_{jk}) & 1.0 < W_{0}/u_{jk} \leq 1.5, \text{ 混合释放} \\ 0.30 - 0.06(W_{0}/u_{jk}) & 1.5 < W_{0}/u_{jk} \leq 5.0, \text{ 混合释放} \\ 0 & W_{0}/u_{jk} > 5.0, \text{高架释放} \end{cases}$$

If the

E, 混合释放模式中高架释放所占比例。

C.1.4 烟羽损耗校正因子

由于存在放射性衰变、干沉积及湿沉积等过程,将造成烟羽中放射性物质减少(即烟羽损耗)。通过引入放射性衰变校正因子、干沉积校正因子及湿沉积校正因子来对源项加以校正。

C.1.4.1 放射性衰变校正因子

$$F_m = \exp(-\lambda \cdot \frac{x}{U_{ik}}) \dots (C1.9)$$

式中:

F.,......放射性衰变校正因子;

 λ ——核素放射性衰变常数 , s^{-1} 。

C.1.4.2 干沉积校正因子

干沉积校正因子 F_d 采用 NUREG1.111 图 3~图 6 中给出的数据。

C.1.4.3 湿沉积校正因子

湿沉积校正因子 F_w 用下式计算:

$$F_{w} = \exp(-\Lambda \cdot \frac{x}{u_{ik}}) \quad \dots (C1.10)$$

式中:

 F_w ——湿沉积校正因子。

C.1.4.4 经烟羽损耗修正后的源项

$$Q' = Q \cdot F_m \cdot F_d \cdot F_w \qquad (C1.11)$$

式中:

Q'——经烟羽损耗修正因子修正后的源项,Bq/a;

Q——项目释放的气载流出物源项,Bq/a。

C.1.5 计算大气弥撒因子的有关参数

C.1.5.1 抬升高度 ΔHj

本项目气载流出物排放为冷排放,不考虑热力抬升,仅考虑动力抬升。

(1)对于 A、B、C、D 类稳定度情况,分别按下面两式计算,取其小者为 ΔH_i 。

$$\Delta H_j = 1.44D \cdot (\frac{W_o}{u})^{2/3} \cdot (\frac{x}{D})^{1/3} - C$$
 (C1.12)

$$\Delta H_j = 3 \cdot \frac{W_o}{u} \cdot D \tag{C1.13}$$

式中:

 W_o — 烟囱出口处烟气流速, m/s;

D — 烟囱出口处内径, m;

$$C$$
 — 当 W_o <1.5 u 时,下曳校正因子, $C = 3 \cdot \left(1.5 - \frac{W_o}{u}\right) \cdot D$

(2)对于 E、F 类稳定度情况,比较按式 C1.12 计算值与下面两式计算值,取其最小者为 ΔH_i 。

$$\Delta H_j = 4 \cdot \left(\frac{F_m}{S}\right)^{1/4} \tag{C1.14}$$

$$\Delta H_j = 1.5 \cdot S^{-1/6} \left(\frac{F_m}{\nu} \right)^{1/3} \tag{C1.15}$$

$$F_m = W_o^2 \cdot (\frac{D}{2})^2$$
 (C1.16)

式中:

 F_m — 动量通量参数;

S—— 稳定度参数, E 类天气 S 取 8.7×10⁻⁴, F 类天气 S 取 1.75×10⁻³。

C.1.5.2 排放参数

烟囱排放参数见表 C-1。

表 C-1 烟囱排放参数

烟囱高度	62.3m
烟囱内径	3.0m
烟囱出口排气速度	14.6m/s
临近建筑物高度	56.0m

C.2 年均沉积因子

正常运行状态下年均干沉积因子和湿沉积因子按(C)式和(C)式计算:

$$W_{D,i} = (\chi/Q)_i \cdot V_d \qquad (C2.1)$$

$$W_{wi} = \frac{N}{2\pi x} \sum_{i,k,l} f_{i,j,k,l} \frac{\Lambda_l}{\overline{u}_{i,k}} (C2.2)$$

式中:

 W_{Di} , W_{wi} —分别为 i 风向下的年均干沉积因子和湿沉积因子, m^{-2} ;

(x/Q)_i—i 风向下的年均大气弥散因子, s/m³;

 V_d —放射性核素的干沉积速度,m/s;

N-16 个扇形方位数(N=16);

 Λ —相应于1降水强度组的冲洗系数 s⁻¹;

 $f_{i,i,k,l}$ —i 风向、j 稳定度、k 风速组、1 降水强度组的四维联合频率;

 \bar{u}_{ik} —j 稳定度、k 风速组的年均风速,m/s。

附录 D 运行状态下放射性气载流出物所致辐射剂量的计算模式及参数

D.1 空气浸没剂量

浸没在放射性烟云中所受到的外照射剂量按下式计算:

$$D_{Bi} = Q(X/Q)_{i}g_{B} \tag{1}$$

式中:

D_{Bi}—i 风向下风向扇形区内受照个人的年剂量, Sv/a:

Q—放射性核素的释放率, Bq/a;

(X/Q)—i 风向下风向扇形区内 x 距离处的年均大气弥散因子, s/m^3 ;

 g_B —烟云浸没照射的有效剂量转换因子, $Sv/(s \cdot Bq \cdot m^{-3})$ 。

D.2 吸入剂量

放射性核素所致吸入内照射剂量按下式计算:

$$D_{Ai}^{a} = \frac{1}{3.15 \times 10^{7}} \cdot Ra \cdot Q(\chi/Q)_{i} \cdot g_{Aa}$$
 (2)

 D_{Ai}^a —i 风向下风向扇形区内年龄组 a 的个人年吸入待积有效剂量,Sv/a;

Ra—年龄组 a 的个人呼吸率, m^3/a :

gAa—年龄组 a 的吸入剂量转换因子, Sv/Bq;.

D.3 地面沉积外照射剂量

地面沉积外照射剂量按下式计算:

$$D_{Gi} = 3.15 \times 10^{7} \cdot S_{F} \cdot C_{i}^{G} g_{G}$$
 (3)

式中:

 D_{Gi} —i 风向下风向扇形区内由干、湿沉积外照射所致的年有效剂量,Sv/a;

 C_i^G —i 风向下风向扇形区内放射性核素 i 的干、湿沉积量, Bq/m^2 , C_i^G 由下式计算:

$$C_{i}^{G} = \frac{(w_{Di} + w_{wi})Q}{\lambda_{e}^{s}} (1 - e^{-\lambda_{e}^{s} \cdot t_{b}})$$

式中: \mathbf{w}_{Di} 和 \mathbf{w}_{wi} 分别为 i 风向下风向扇形区内年干、湿沉积因子, \mathbf{m}^{-2} , \mathbf{t}_b 为放射性核素的地面累积时间, \mathbf{a} ; λ_e^s 为放射性核素由地表面清除的有效速率常数, \mathbf{a}^{-1} ; λ_s^s = $\lambda + \lambda_s$, λ 为放射性核素的物理衰变常数, \mathbf{a}^{-1} ; λ_s 为除放射性衰变外其他清除过程的速率常数, \mathbf{a}^{-1} 。

 g_G —沉积外照射有效剂量转换因子, $Sv(s\cdot Bq\cdot m^{-2})^{-1}$ 。

D.4 食入内照射剂量

食入内照射剂量按下式计算:

$$D_{Fi}^{a} = g_{Fa} \sum_{p} u_{p}^{a} c_{i}^{p} \tag{4}$$

式中:

 D_{Fi}^a —i 风向下风向扇形区内 a 年龄组个人的食入待积有效剂量,Sv/a;

 g_{Fa} —a 年龄组的食入剂量转换因子,Sv/Bq;

 u^p —a 年龄组个人对 p 类农产品的年摄入量,kg/a 或 L/a;

 C^p —p 类农产品中放射性核素浓度,Bq/kg 或 Bq/L。

各类农产品中的放射性核素浓度计算公式如下:

1)蔬菜、谷类、水果等农作物中核素浓度

$$C_{i}^{p} = Q(w_{Di} + w_{wi}) \left\{ \frac{RT_{iv}[1 - exp(-\lambda_{e}^{v} \cdot t_{e})]}{Y_{v} \cdot \lambda_{e}^{v}} + \frac{B_{v}[1 - exp(-\lambda_{e}^{s} \cdot t_{b})]}{p\lambda_{e}^{s}} \right\} exp(-\lambda t_{h})$$

式中:

Tiv—易位因子,即沉积于植物外部的放射性核素向植物食用部分的转移系数;

 λ_e^v —放射性核素由植物清除的有效速率常数, \mathbf{a}^{-1} ; $\lambda_e^v = \lambda + \lambda_w$, λ_W 为物理消除速率常数:

t。—农作物在生长季节受污染的时间, a;

 Y_v —收获时农作物的单位面积产量, kg/m^2 ;

B_v—农作物食用部分相对于土壤中核素的浓集因子,Bq/kg(鲜作物)/Bq/kg(干土壤);

p—土壤有效表面密度, kg(干土壤)/m²;

th—农作物由收获到消费的时间, a。

2) 饲料作物中的核素浓度

饲料作物中的核素浓度计算公式同前描述的农作物中核素浓度计算公式,但式中的 参数取值不同。

3) 奶、肉等动物产品中的核素浓度

$$C_i^a = F_m C_i^p Q_F \exp(-\lambda t_f)$$

式中:

 C^a —动物产品中核素浓度,Bq/kg 或 Bq/L;

 C_r^p —动物饲料中核素浓度。Bq/kg(干重);

F_m—动物每天摄入放射性核素出现在每千克(或每升)动物产品中的份额, d/kg 或 d/L;

QF—动物每天消耗的饲料量,kg(干重)/d;

t-放射性核素由屠宰或挤奶到人消费的平均迁移时间, a。

考虑到鲜饲料和贮存饲料的区别,动物饲料浓度 C_i^p 由下式计算:

$$C_i^p = f_f C_{if}^p + f_s C_{is}^p$$

式中, f_f 为饲料中鲜饲料的份额, f_s 为饲料中贮存饲料的份额; C_{ij}^p 为鲜饲料中放射性核素的浓度; C_{ij}^p 为贮存饲料中放射性核素的浓度。

4) ³H 在农作物中浓度

当计算 ³H 在农作物中浓度时,只考虑来自大气水中的氚,未考虑经土壤向植物的转移。

$$C_{i}^{T} = \frac{1}{3.15 \times 10^{4}} \cdot Q_{H} \cdot (\chi/Q)_{i} \cdot 0.75 \cdot \frac{0.5}{H}$$

式中:

 C_i^T —i 风向下风向扇形区内农作物中 3 H 浓度,Bq/kg;

Q_H—³H 的年释放率,Bq/a;

(x/Q)—i 风向下风向扇形区内在 x 距离处的大气弥散因子, s/m^3 ;

H—评价点的年均绝对湿度, g/m³;

0.75—农作物总质量中水份所占的份额:

0.5—农作物水份中氚浓度与大气水份中氚浓度的比值;

1/(3.15×10⁴)—单位转换系数。

5) ¹⁴C 在农作物中浓度

农作物中 14 C 的浓度是按农作物中 14 C 浓度与天然 C 浓度的比值和农作物周围空气中 14 C 浓度与天然 C 浓度的比值相同的假定进行计算。

$$C_{i}^{T} = \frac{1}{3.15 \times 10^{4}} \cdot p \cdot Q_{C} \cdot (\chi/Q)_{i} \cdot \frac{0.11}{0.16}$$

式中:

 C_i^T —i 风向下风向扇形区内农作物中 ¹⁴C 浓度,Bq/kg;

Q_c—¹⁴C 的年释放率, Bq/a;

 $(x/Q)_{i}$ —i 风向下风向扇形区内在 x 距离处的大气弥散因子, s/m^3 ;

p—相对平衡比,无量纲,对于连续释放,p=1;

0.11—植物总量中天然 C 所占的份额;

0.16—大气中天然 C 的浓度, g/m³;

1/(3.15×10⁴)—单位转换系数。

剂量转换因子见表 D-1,转移系数和浓集因子表 D-2。

表 D-1 气态剂量转换因子

	空气浸没	地表沉积	食入			吸入				
核素\途径			成人	青少年	儿童	婴儿	成人	青少年	儿童	婴儿
	Sv.m ³ /Bq.s	Sv.m ² /Bq.s	Sv/Bq							
Н-3	3.31E-19	*	4.20E-11	5.70E-11	7.30E-11	1.20E-10	2.60E-10	3.80E-10	6.30E-10	1.20E-09
C-14	2.65E-18	1.61E-20	5.80E-10	8.00E-10	9.90E-10	1.40E-09	5.80E-09	7.40E-09	1.10E-08	1.90E-08
Kr-85m	6.83E-15	*	*	*	*	*	*	*	*	*
Kr-85	2.55E-16	*	*	*	*	*	*	*	*	*
Kr-87	3.94E-14	*	*	*	*	*	*	*	*	*
Kr-88	9.72E-14	*	*	*	*	*	*	*	*	*
Xe-133m	1.27E-15	*	*	*	*	*	*	*	*	*
Xe-133	1.39E-15	*	*	*	*	*	*	*	*	*
Xe-135	1.11E-14	*	*	*	*	*	*	*	*	*
Xe-138	5.44E-14	*	*	*	*	*	*	*	*	*
I-131	1.84E-14	3.82E-16	2.20E-08	5.20E-08	1.00E-07	1.80E-07	7.40E-09	1.90E-08	3.70E-08	7.20E-08
I-132	1.14E-13	2.29E-15	2.90E-10	6.20E-10	1.30E-09	3.00E-09	1.10E-10	2.20E-10	4.50E-10	1.10E-09
I-133	3.01E-14	6.34E-16	4.30E-09	1.00E-08	2.30E-08	4.90E-08	1.50E-09	3.80E-09	8.30E-09	1.90E-08
I-134	1.33E-13	2.63E-15	1.10E-10	2.10E-10	3.90E-10	1.10E-09	5.50E-11	1.10E-10	1.80E-10	4.80E-10
I-135	8.24E-14	1.52E-15	9.30E-10	2.20E-09	4.70E-09	1.00E-08	3.20E-10	7.90E-10	1.70E-09	4.10E-09
Co-58	4.82E-14	9.50E-16	7.40E-10	1.70E-09	2.60E-09	7.30E-09	2.10E-09	3.10E-09	4.50E-09	9.00E-09
Co-60	1.27E-13	2.35E-15	3.40E-09	1.10E-08	1.70E-08	5.40E-08	3.10E-08	4.00E-08	5.90E-08	9.20E-08
Cs-134	7.61E-14	1.52E-15	1.90E-08	1.40E-08	1.30E-08	2.60E-08	2.00E-08	2.80E-08	4.10E-08	7.00E-08
Cs-137	2.93E-14	2.85E-19	1.30E-08	1.00E-08	9.60E-09	2.10E-08	3.90E-08	4.80E-08	7.00E-08	1.10E-07

表 D-2 气态剂量计算转移系数和浓集因子

	₩ D-2	浓集因子		系数
核素∖途径	牧草	农作物可食部分	奶 d/L	肉 d/kg
H-3	*	*	*	*
C-14	*	*	*	*
Ar-41	*	*	*	*
Kr-85m	*	*	*	*
Kr-85	*	*	*	*
Kr-87	*	*	*	*
Kr-88	*	*	*	*
Xe-133m	*	*	*	*
Xe-133	*	*	*	*
Xe-135	*	*	*	*
Xe-138	*	*	*	*
I-131	1.00E-01	2.00E-02	1.00E-02	5.00E-02
I-132	1.00E-01	2.00E-02	1.00E-02	5.00E-02
I-133	1.00E-01	2.00E-02	1.00E-02	5.00E-02
I-134	1.00E-01	2.00E-02	1.00E-02	5.00E-02
I-135	1.00E-01	2.00E-02	1.00E-02	5.00E-02
Co-58	2.00E+00	8.00E-02	1.00E-02	7.00E-02
Co-60	2.00E+00	8.00E-02	1.00E-02	7.00E-02
Cs-134	1.00E+00	4.00E-02	1.00E-02	5.00E-02
Cs-137	1.00E+00	4.00E-02	1.00E-02	5.00E-02

附录 E 运行状态下放射性液态流出物所致辐射剂量的计算模式及参数

E.1 放射性核素浓度计算模式

1) 海水中放射性核素浓度

$$C_{wki} = 3.17 \times 10^{-8} Q_i \cdot q^{-1} \cdot C_{ki} \tag{1}$$

式中,

 C_{wki} --在 k 海域海水中放射性核素 i 的浓度, Bq/m^3 ;

Qi--液体废物中放射性核素 i 的年均释放率, Bq/a;

q--液体放射性废物的流量, m³/s;

 C_{ki} --在 k 海域海水中放射性核素 i 的稀释因子,无量纲;

3.17×10⁻⁸--a/s 的换算系数。

2) 海产品中放射性核素浓度

$$C_{pki} = C_{wki} B_{pi}$$
 (2)

式中,

Cpki--在 k 海域内的海产品中放射性核素 i 浓度, Bq/kg;

 C_{wki} --在 k 海域海水中放射性核素 i 的浓度, Bg/m^3 ;

 B_{pi} --在海产品 p 中放射性核素 i 浓集因子, m^3/kg 。

E.2 液态放射性物质释放的公众个人照射剂量计算模式

1) 食入海产品所致的个人内照射剂量

$$D_{ep} = \sum_{i} C_{pki} \cdot U_{p} \cdot \exp(-\lambda_{i} \cdot t_{p}) DF_{ei}$$
(3)

式中,

Den--公众个人食入 k 海域内海产品 p 所致的有效剂量, Sv/a;

Cpki--在 k 海域内的海产品中放射性核素 I 浓度, Bq/kg;

U_p--公众个人的海产品 p 消费量, kg/a;

 λ_i --放射性核素 i 的衰变常数, h^{-1} ;

t_p--海产品 p 从捕捞到被消费的时间间隔, h;

DF_{ei}--因食入海产品 p,放射性核素 i 对公众个人的有效剂量转换因子,Sv/Bq。

2) 岸边沉积物所致的个人外照射剂量

$$D_{es} = \sum_{i} C_{wsi} \cdot Kd_{i} \cdot W \cdot DS \cdot OF \cdot DF_{si} \cdot \frac{1 - e^{-\lambda_{i} T_{e}}}{\lambda_{i} T_{e}}$$

$$\tag{4}$$

式中,

Des--岸边沉积物对公众个人所致的有效剂量, Sv/a;

 C_{wsi} --靠近岸边的海水中放射性核素 i 浓度, Bq/m^3 ;

 K_{di} --核素 i 的吸附分配系数, m^3/kg ;

W--岸宽因子, 无量纲;

DS--有效沉积密度,kg/m²;

OF--岸边居留因子,或个人一年内在受污染岸边度过的时间份额,无量纲;

T。—有效累积时间,取一年;

 DF_{si} --岸边沉积物中放射性核素 i 对公众个人的有效剂量转换因子, $(Sv \cdot m^2)/(Bq \cdot a)$ 。

3) 游泳和水上活动所致的个人外照射剂量

$$D_{ew} = \sum_{i} C_{wki} \left(U_{p1} + U_{P2} / 2 \right) \cdot DF_{wi}$$
 (5)

式中,

 D_{ew} --在 k 海域内公众个人游泳和水上活动时,受到的有效剂量,Sv/a:

 C_{wki} --在 k 海域海水中放射性核素 i 的浓度, Bq/m^3 ;

 U_{p1} 、 U_{p2} --分别为公众个人在 k 海域内一年中游泳和水上活动时间份额,无量纲;

 D_{wi} --在海中游泳和水上活动时,放射性核素 i 对公众个人的有效剂量转换因子, $(Sv \cdot m^3)/(Bq \cdot a)$ 。

4) 液态放射性释放物对公众个人总的照射剂量

$$D_e = D_{ep} + D_{es} + D_{ew}$$
 (6)

式中,

De--放射性废液释放对公众个人所致的有效剂量, Sv/a:

 D_{ep} --公众个人食入 k 海域内海产品 p 所致的有效剂量,Sv/a;

Des--岸边沉积物对公众个人所致的有效剂量, Sv/a;

 D_{ew} --在 k 海域内公众个人游泳和水上活动时,受到的有效剂量,Sv/a。

表 E-1 液态途径剂量转换因子和沉积吸附分配系数

bb 丰	地面沉积	水中浸没		食入	Sv/Bq		沉积吸附分配系数
核素	Sv.m ² /Bq.s	Sv.m³/Bq.s	成人	青少年	儿童	婴儿	m ³ /kg
H-3	0.00E+00	0.00E+00	1.80E-11	2.30E-11	3.10E-11	6.40E-11	1.00E-03
C-14	1.61E-20	4.39E-22	5.80E-10	8.00E-10	9.90E-10	1.40E-09	2.00E+00
I-131	3.82E-16	3.98E-17	2.20E-08	5.20E-08	1.00E-07	1.80E-07	2.00E-02
I-133	6.34E-16	6.39E-17	4.30E-09	1.00E-08	2.30E-08	4.90E-08	2.00E-02
Sr-89	2.27E-18	1.49E-19	2.60E-09	5.80E-09	8.90E-09	3.60E-08	1.00E+00
Sr-90	2.84E-19	1.46E-20	2.80E-10	6.00E-08	4.70E-08	2.30E-07	1.00E+00
Cs-134	1.52E-15	1.64E-16	1.90E-08	1.40E-08	1.30E-08	2.60E-08	3.00E+00
Cs-136	2.09E-15	2.31E-16	3.00E-09	4.40E-09	6.10E-09	1.50E-08	3.00E+00
Cs-137	2.85E-19	1.49E-20	1.30E-08	1.00E-08	9.60E-09	2.10E-08	3.00E+00
Cr-51	3.08E-17	3.30E-18	3.80E-11	7.80E-11	2.30E-10	3.50E-10	5.00E+01
Mn-54	8.12E-16	8.88E-17	7.10E-10	1.30E-09	1.90E-09	5.40E-09	2.00E+02
Co-58	9.50E-16	1.03E-16	7.40E-10	1.70E-09	2.60E-09	7.30E-09	2.00E+02
Co-60	2.35E-15	2.74E-16	3.40E-09	1.10E-08	1.70E-08	5.40E-08	2.00E+02
Ag-110m	2.65E-15	2.94E-16	2.80E-09	5.20E-09	7.80E-09	2.40E-08	1.00E+00
Sb-124	1.71E-15	1.98E-16	2.50E-09	5.20E-09	8.40E-09	2.50E-08	1.00E+00
Zr-95	7.23E-16	7.82E-17	9.50E-10	1.90E-09	3.00E-09	8.50E-09	1.00E+03
Fe-59	1.12E-15	1.29E-16	1.80E-09	4.70E-09	7.50E-09	3.90E-08	5.00E+01

附录 F 事故工况下辐射剂量计算模式及参数

F.1 事故大气弥散计算模式

用于事故后果评价的事故(短期)大气弥散因子,根据 USNRC 的管理导则 RG1.145 推荐的模式和方法,采用 PAVAN 程序进行计算。

由于事故时的释放高度小于相邻建筑物高度的 2.5 倍,按照 RG1.145 的规定,采用地面释放模式。对于地面释放,其事故(短期)大气弥散因子(X/Q)通过以下公式来确定:

$$\frac{X}{Q}(r,k,j) = \frac{1}{u_{kj}(10)[\pi\sigma_{yj}(r)\sigma_{zj}(r) + A/2]}$$
(1)

$$\frac{X}{Q}(r,k,j) = \frac{1}{3 \cdot u_{kj}(10)\pi\sigma_{yj}(r)\sigma_{zj}(r)}$$
(2)

$$\frac{X}{Q}(r,k,j) = \frac{1}{u_{ki}(10)\pi M_{ki}(r)\sigma_{vi}(r)\sigma_{zi}(r)}$$
(3)

其中:

X/Q(r,k,j): 下风向距离 r 处, k 风速级, j 稳定度的大气弥散因子, (s/m³);

 $\sigma_{vi}(r)$: j 稳定度、r 距离处烟羽水平弥散参数,(m);

 $\sigma_{zi}(r)$: j 稳定度、r 距离处烟羽垂直弥散参数,(m);

 $u_{ij}(10)$: 地面上方 10 米高度处、k 风速级、j 稳定度的平均风速,(m/s);

A: 反应堆建筑物的最小迎风截面, (m^2) ;

 $M_{kj}(r)$: 风速级 k, 稳定度 j 在下风向距离 r 处水平烟羽弥散的风摆因子。

当距离 r 大于 800m 时, $M_{ij}(r)\sigma_{yj}(r) = \sigma_{yj}(r) + [M_{ij}(r) - 1]\sigma_{yj}(800)$,式中, $\sigma_{yj}(800)$ 是 i 稳定度,下风向 800m 处烟羽的水平弥散参数。

对于中性 D 或稳定的 (E、F、G) 大气稳定度天气,且 10m 高处风速小于 6m/s 时,大气弥散因子 X/Q 的值是由公式(1)和(2)求出的较大值与公式(3)的值比较,选其较小值。在非稳定 (A、B 或 C) 的大气稳定度情况或者 10m 高处风速 $\geq 6m/s$ 时,不考虑风摆,则取公式(1)和公式(2)计算的较大值作为 X/Q 的值。

F.2 事故剂量计算模式

1) 放射性烟云浸没外照射

$$(DA)_{re} = \sum_{n} Q_{ne} \cdot (X/Q)_{re} \cdot DFA_{n}$$
(4)

其中:

 $(DA)_{re}$: 事故发生后第 e 释放时间段内在 r 距离处的烟云浸没剂量(Sv);

 Q_{ne} : 事故发生后第 e 释放时间段内核素 n 的释放活度(Bq);

 $(X/Q)_{re}$: 事故发生后第 e 时间段、r 距离处的事故大气弥散因子(s/m^3);

 DFA_n : 放射性核素 n 的空气浸没剂量转换因子($Sv \cdot m^3$)/($Bq \cdot s$)。

2) 地面沉积外照射

$$(DG)_{rg} = (W_d + W_s) \cdot Q \cdot DRF_{sur} \cdot [1 - \exp(-\lambda t)] / \lambda \tag{5}$$

其中:

 $(DG)_{re}$:由于事故后第 e 时间段内的放射性释放,在 r 距离处由地面沉积的放射性核素在 t_r 照射时间内形成的剂量(Sv);

 W_d : 事故后核素 n 在距离 r 处的干沉积因子(\mathbf{m}^{-2}); $W_d = (X/Q)_{re}.V_d$,其中 V_d 为核素的干沉积速度(\mathbf{m}/\mathbf{s})。

 W_{w} : 事故后核素 n 在距离 r 处的湿沉积因子(m^{-2});

$$W_{w} = \frac{8 \cdot \Lambda}{\pi \cdot x \cdot u_{ik}}$$

 DRF_{sur} : 核素的地面外照射剂量转换因子($Sv \cdot m^2$)/($Bq \cdot s$);

 λ : 核素 n 的衰变常数(s⁻¹)。

3) 吸入放射性物质引起的内照射

$$(DI)_{re} = \sum_{n} Q_{ne} \cdot (X/Q)_{re} \cdot BR_{e} \cdot DFI_{n}$$
(6)

其中:

 $(DI)_{re}$: 事故发生后第 e 时间段在 r 距离处由于吸入烟云中放射性物质产生的剂量 (Sv):

 BR_e : 成人在 e 时段的呼吸率(m^3/s);

 DFI_n : 放射性核素 n 的吸入剂量转换因子 (Sv/Bq)。

F.3 参数选取

1) 剂量转换因子

吸入剂量转换因子、浸没照射剂量转换因子和地面照射的剂量转换因子,包括有效剂量和甲状腺当量剂量转换因子,取自 GB 18871、ICRP 71 号出版物和美国联邦导则第 12 号报告中的推荐值。见表 G-1。

表 F-1 主要核素剂量转换因子

核素	烟羽γ外照 (Sv·m³)/(Bq·s)	地表沉积γ外照 (Sv·m²)/(Bq·s)	吸入内照射	甲状腺
Kr-83m	2.43E-18	0.00E+00	(Sv/Bq) 0.00E+00	(Sv/Bq) 0.00E+00
Kr-85m	6.83E-15	0.00E+00	0.00E+00	0.00E+00
Kr-85	2.55E-16	0.00E+00	0.00E+00	0.00E+00
Kr-87	3.94E-14	0.00E+00	0.00E+00	0.00E+00
Kr-88	9.72E-14	0.00E+00	0.00E+00	0.00E+00
Xe-131m	3.70E-16	0.00E+00	0.00E+00	0.00E+00
Xe-133m	1.27E-15	0.00E+00	0.00E+00	0.00E+00
Xe-133	1.39E-15	0.00E+00	0.00E+00	0.00E+00
Xe-135m	1.85E-14	0.00E+00	0.00E+00	0.00E+00
Xe-135	1.11E-14	0.00E+00	0.00E+00	0.00E+00
Xe-138	5.44E-14	0.00E+00	0.00E+00	0.00E+00
I-131(气溶胶)	1.85E-14	3.82E-16	7.40E-09	1.50E-07
I-132(气溶胶)	1.14E-13	2.29E-15	9.40E-11	1.40E-09
I-133(气溶胶)	3.00E-14	6.43E-16	1.50E-09	2.80E-08
I-134(气溶胶)	1.32E-13	2.63E-15	4.50E-11	2.60E-10
I-135(气溶胶)	8.09E-14	1.52E-15	3.20E-10	5.70E-09
I-131(元素碘)	1.85E-14	3.82E-16	2.00E-08	3.90E-07
I-132(元素碘)	1.14E-13	2.29E-15	3.10E-10	3.60E-09
I-133(元素碘)	3.00E-14	6.43E-16	4.00E-09	7.60E-08
I-134(元素碘)	1.32E-13	2.63E-15	1.50E-10	7.00E-10
I-135(元素碘)	8.09E-14	1.52E-15	9.20E-10	1.50E-08
I-131(有机碘)	1.85E-14	3.82E-16	1.50E-08	3.10E-07
I-132(有机碘)	1.14E-13	2.29E-15	1.90E-10	3.20E-09
I-133(有机碘)	3.00E-14	6.43E-16	3.10E-09	6.00E-08
I-134(有机碘)	1.32E-13	2.63E-15	5.00E-11	7.00E-10
I-135(有机碘)	8.09E-14	1.52E-15	6.80E-10	1.30E-08
Cs-134	7.66E-14	1.54E-15	6.60E-09	6.30E-09
Cs-137	2.93E-14	6.06E-16	4.60E-09	4.40E-09

2) 干沉积速度

干沉积速度取自联邦德国辐射防护委员会第十七卷出版物:元素碘的干沉积速度为 1×10^{-2} m/s;有机碘的干沉积速度为 1×10^{-4} m/s;气溶胶取 1.5×10^{-3} m/s;气体取 0.0 m/s。

3) 呼吸率

呼吸率按照美国管理导则《评价压水堆失水事故的潜在辐射后果的假定》USNRC RG1.4 取值:

0~8h 时段,BR=3.47×10⁻⁴m³/s; 8~24h 时段,BR=1.75×10⁻⁴m³/s; 24h~30d 时段,BR=2.32×10⁻⁴m³/s。

委托书

中国核动力研究设计院:

根据《中华人民共和国环境影响评价法》、《中华人民共和国放射性污染防治法》的相关要求,经调查和研究,决定委托你院编制《海南昌江核电厂1、2号机组长燃料循环换料项目环境影响报告表》。

特此委托

委托单位:海南核电有限公司(盖章)