固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法
Stationary source emission—Determination of ammonia and hydrogen chloride—Portable Fourier transform infrared spectroscopy method

（征求意见稿）
目录

前言.. ii
1 适用范围.. 1
2 规范性引用文件... 1
3 术语和定义... 1
4 方法原理.. 2
5 干扰和消除... 2
6 试剂和材料... 2
7 仪器和设备... 3
8 样品... 3
9 分析步骤.. 3
10 结果计算与表示.. 4
11 准确度... 5
12 质量保证和质量控制... 5
13 注意事项.. 6
附录 A（规范性附录）方法准确度... 7
附录 B（资料性附录）测定前后仪器性能审核结果... 8
为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》，防治生态环境污染，改善生态环境质量，规范固定污染源废气中氨（NH₃）和氯化氢（HCl）的便携式测定方法，制定本标准。

本标准规定了测定固定污染源废气中NH₃和HCl的便携式傅立叶变换红外光谱法。

本标准的附录A为规范性附录，附录B为资料性附录。

本标准为首次发布。

本标准由生态环境部生态环境监测司、法规与标准司组织制订。

本标准主要起草单位：中国环境监测总站、浙江省生态环境监测中心、重庆市生态环境监测中心。

本标准验证单位：上海市环境监测中心、山东省生态环境监测中心、福建省生态环境监测中心、浙江省绍兴生态环境监测中心、浙江省台州生态环境监测中心、杭州谱育检测科技有限公司。

本标准生态环境部20□年□月□日批准。

本标准自20□年□月□日起实施。

本标准由生态环境部解释。
固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法

1 适用范围

本标准规定了测定固定污染源废气中 NH₃ 和 HCl 的便携式傅立叶变换红外光谱法。本标准适用于固定污染源有组织排放废气中 NH₃ 和 HCl 的测定。

方法检出限：NH₃ 为 1 mg/m³，HCl 为 1 mg/m³。

测定下限：NH₃ 为 4 mg/m³，HCl 为 4 mg/m³。

2 规范性引用文件

本标准引用了下列文件或其中的条款。凡是注明日期的引用文件，仅注日期的版本适用于本标准。凡是未注日期的引用文件，其最新版本（包括所有的修改单）适用于本标准。

GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法
HJ 75 固定污染源烟气（SO₂、NOₓ、颗粒物）排放连续监测技术规范
HJ/T 373 固定污染源监测质量保证与质量控制技术规范（试行）
HJ/T 397 固定源废气监测技术规范
HJ 1011 环境空气和废气 挥发性有机物组分便携式傅里叶红外检测仪技术要求及检测方法

3 术语和定义

下列术语和定义适用于本标准。

3.1 校准 calibration

在规定条件下测定测量标准，确定测量标准提供的量值与相应示值之间的关系。

3.2 调整 adjustment

为使仪器提供相应于给定被测量值的指定示值，在仪器上进行的一组操作。

3.3 校准量程 calibration span (C.S.)

仪器校准的浓度上限，由校准所用最高浓度标准气体的标准值确定，应小于或等于仪器的满量程。

3.4 示值误差 error of indication
标准气体直接导入仪器的测定结果与标准气体标准值之间的绝对误差或相对误差。

3.5
系统偏差 system bias
标准气体直接导入分析仪（直接测定模式）得到的测定结果与标准气体由采样管导入分析仪（系统测定模式）得到的测定结果之间的差值或差值与校准量程的百分比。

3.6
零点漂移 zero drift
样品测定前、后，仪器对同一零点气的测定结果之间的差值或差值与校准量程的百分比。

3.7
量程漂移 span drift
样品测定前、后，仪器对同一校准量程标准气体的测定结果之间的差值或差值与校准量程的百分比。

4 方法原理

NH₃ 和 HCl 分别对红外光区 900 cm⁻¹～1350 cm⁻¹、2600 cm⁻¹～3100 cm⁻¹特征波数的光具有选择性吸收。傅立叶变换红外光谱仪通过迈克尔逊干涉仪将红外光源发出的光转变为干涉光后照射气体样品，得到红外干涉图，再由计算机系统做傅立叶变换处理后得到以波数为横坐标、吸光度为纵坐标的红外吸收光谱，通过对比气体样品的红外吸收光谱与标准谱图库中标准物质的红外吸收光谱，可定性分析 NH₃ 和 HCl。在一定条件下，吸收峰强度与其浓度遵循朗伯-比尔定律，根据吸收峰强度定量分析 NH₃ 和 HCl。

5 干扰和消除

5.1 废气中其他化合物与目标化合物红外吸收光谱存在交叉重叠时，易对目标化合物的测定产生干扰。为保证测定结果的准确性，在定量计算时，可选择恰当的光谱分析区间，也可采用基于最小二乘法或偏最小二乘法的内置分析程序，以消除或克服干扰。
5.2 废气中的颗粒物易堵塞采样管路或沾污仪器光学部件，应在采样系统安装颗粒物过滤器，消除影响。

6 试剂和材料

6.1 标准气体：市售 NH₃、HCl 有证标准物质，以 N₂ 为平衡气，相对扩展不确定度 ≤2%（k=2）；或用符合 6.3 要求的配气装置配制所需浓度气体。
6.2 零点气：纯度 ≥99.999% 的 N₂ 或不干扰目标化合物测定的清洁空气。
6.3 配气装置：最大输出流量 ≥5 L/min，精密度或允许误差应在满量程的 ±1%以内。配气装置气路系统材质应避免与目标化合物发生物理吸附或化学反应。
7 仪器和设备

7.1 便携式傅立叶变换红外光谱仪

7.1.1 仪器组成

傅立叶变换红外光谱仪一般由采样单元、样品预处理单元、样品分析单元和数据处理单元等部分组成。采样单元包括采样管、导气管、流量控制设备和抽气泵等；样品预处理单元包括颗粒物过滤器、加热和保温装置；样品分析单元包括红外光源、干涉仪、样品室及检测器等；数据处理单元包括计算机、分析软件及参考光谱等。采样管、导气管及样品室应具备加热、保温功能，加热温度≥180℃。

7.1.2 性能要求

便携式傅立叶变换红外光谱仪应满足以下性能要求：

a）示值误差：校准量程＞60 μmol/mol时，相对误差在±5%以内；校准量程≤60 μmol/mol时，绝对误差在±3 μmol/mol以内；

b）系统偏差：校准量程＞60 μmol/mol时，应在±5%以内；校准量程≤60 μmol/mol时，应在±3 μmol/mol以内；

c）零点漂移：在±3%以内；

d）量程漂移：在±3%以内；

e）分析仪：波数范围应至少包括900 cm⁻¹～4000 cm⁻¹；光程总长度应满足本标准各目标化合物最低检出限要求；光谱分辨率应保证能将气体样品中的目标化合物与其他共存物质的红外吸收峰分开；

f）颗粒物过滤器及仪器其他性能应符合HJ 1011对II型仪器的技术要求。

7.2 标准气体钢瓶

配置可调式防腐材质减压阀、可调式转子流量计及导气管，各部件材质应避免与目标化合物发生物理吸附或化学反应。

8 样品

按照GB/T 16157、HJ 75、HJ/T 373、HJ/T 397等有关规定，确定采样位置、采样点及采样频次，采集样品。

9 分析步骤

9.1 测试准备

依据仪器使用说明书连接分析仪、采样管、导气管等部分，开启仪器，待各加热部件温度达到180℃且保持稳定，分析仪的光源强度、干涉图性能等各项参数达到仪器使用说
明书规定的工作状态，按照仪器使用说明书要求检查系统气密性。

若发现分析仪的光源强度、干涉图性能未达到仪器使用说明书要求，需使用零点气按仪器规定的流量清洗检测器和样品室，直至达到使用说明书要求。若系统气密性检查不合格，应查漏和维护，直至检查合格。

9.2 仪器核查

9.2.1 零点核查

待仪器运行稳定后，将零点气导入分析仪，充分吹扫样品室，按照仪器使用说明书规定的步骤做零点核查。

9.2.2 量程校准和调整

以分析仪规定的采样流量导入并测定待测目标化合物的标准气体，若示值误差满足7.1.2 a）的要求，分析仪可用；否则需按仪器使用说明书中规定的步骤做量程调整。

9.3 样品测定

9.3.1 将采样管前端置于排气筒中并尽量靠近中心位置，封堵采样孔。

9.3.2 启动抽气泵，以仪器规定的采样流量取样测定，待仪器运行稳定后开始按分钟保存测定数据，连续取样测定5 min～15 min，并获得至少5个有效数据的平均值作为1次测量值。

9.3.3 同一点位的样品测定结束后，用零点气清洗分析系统，使仪器示值回到零点附近。

9.3.4 关机前，用零点气清洗分析系统，使仪器示值回到零点附近，然后先关闭抽气泵，再关闭分析仪和预处理装置，最后断开分析系统各部分连接，结束测定。

10 结果计算与表示

10.1 结果计算

目标化合物的测定结果以标准状态（273 K，101.325 kPa）下干基废气的质量浓度表示。各目标化合物质量浓度的计算公式为：

a）仪器示值以摩尔分数表示时，按照公式（1）转换为标准状态下干基废气的质量浓度 \(\rho \) ：

\[
\rho = \frac{M}{22.4} \times x' \times \frac{1}{1 - \phi_{sw}}
\]

式中：\(\rho \) 一一目标化合物的质量浓度，mg/m³；

\(M \) 一一目标化合物的摩尔质量，g/mol；

22.4 一一标准状态下气态分子的摩尔体积，L/mol；

\(x' \) 一一湿基废气中目标化合物的摩尔分数，μmol/mol；

\(\phi_{sw} \) 一一废气中的水分含量（体积分数），%。

b）仪器示值以质量浓度表示时，按照公式（2）转换为标准状态下干基废气的质量浓...
度 ρ:

$$\rho = \rho' \frac{1}{1 - \varphi_{sw}} \tag{2}$$

式中：ρ——目标化合物的质量浓度，mg/m3；

ρ'——湿基废气中目标化合物的质量浓度，mg/m3；

φ_{sw}——废气中的水分含量（体积分数），%。

10.2 结果表示

测定结果<100 mg/m3时，保留至小数点后1位；测定结果≥100 mg/m3时，保留3位有效数字。

11 准确度

11.1 精密度

6家验证实验室分别对4个浓度水平的NH$_3$、HCl的单组分统一有证标准气体样品以及含NH$_3$、HCl的实际气体样品进行了6次重复测定，实验室内和实验间的相对标准偏差，以及重复性和再现性限参见附录A。

11.2 正确度

6家验证实验室分别对4个浓度水平的NH$_3$、HCl的单组分统一有证标准气体样品进行了6次重复测定，相对误差和相对误差最值参见附录A。

12 质量保证和质量控制

12.1 仪器使用期间，每半年至少核查1次零点漂移、量程漂移，对于长期未使用的仪器（超过半年），应当在下次使用前核查零点漂移、量程漂移，核查结果应满足7.1.2 c）和7.1.2 d）的要求，否则应及时维护或修复分析系统。当仪器使用频次较高，或者现场监测条件较为恶劣时，应适当缩短核查周期，增加核查次数。

每年至少核查1次分析仪水分测定，或根据仪器使用频次适当增加核查次数，并根据核查结果适时校准。

注：零点漂移、量程漂移核查的测定时间需至少保持1 h。

12.2 样品测定前后应核查示值误差和系统偏差，应满足7.1.2 a）和7.1.2 b）的要求。若样品测定前不满足上述要求，应维护或修复仪器，直至满足要求方可测定样品；若样品测定后不满足上述要求，则样品测定结果无效。

注：可采取包括采样管、导气管、预处理装置和分析仪在内的系统测试模式的示值误差核查代替分析仪示值误差和系统偏差的核查，核查结果应满足7.1.2 a）的要求。

12.3 样品测定结果应处于分析仪校准量程的20%～100%之间，否则应重新选择量程并用
标准气体校准。如测定结果小于测定下限，且校准量程不大于 20 mg/m³，则无需重新选择校准量程。

13 注意事项

13.1 仪器使用过程中应保证分析仪的光源强度、干涉图性能及样品室温度等各项参数稳定，并在仪器使用说明书规定的环境温度和湿度条件下使用。
13.2 若开机预热完成后发现分析仪的干涉图性能未达到仪器使用说明书的要求，需使用零点气按仪器规定的流量清洗检测器和样品室。
13.3 需在测定前后立即用零点气充分清洗采样单元的管路和样品室，确保仪器示值回到零点附近并保持稳定。
13.4 使用前应检查颗粒物过滤器，若有沾污应及时清洁或更换滤芯，防止阻塞气路。
13.5 应选用抗负压能力大于排气筒负压的采样系统，保证采样流量不低于仪器规定的流量下限。
13.6 测定位置应避开烟道弯头和断面急剧变化的部位。
13.7 采样分析过程中要保证电源连续稳定供应。
表 A.1 给出了 6 家验证实验室使用标准气体样品测得的各目标化合物的方法精密度和正确度，表 A.2 给出了使用实际气体样品测得的方法精密度。

表 A.1 方法精密度和正确度（标准气体样品）

<table>
<thead>
<tr>
<th>序号</th>
<th>化合物名称</th>
<th>样品浓度（mg/m³）</th>
<th>实验室内相对标准偏差（%）</th>
<th>实验室间相对标准偏差（%）</th>
<th>重复性限（mg/m³）</th>
<th>再现性限（mg/m³）</th>
<th>相对误差（%）</th>
<th>相对误差最终值（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NH₃</td>
<td>5.00</td>
<td>0.26~2.3</td>
<td>7.2</td>
<td>0.2</td>
<td>1</td>
<td>0.60~12</td>
<td>5.3±8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0</td>
<td>0.25~0.63</td>
<td>5.6</td>
<td>0.2</td>
<td>3</td>
<td>1.4~11</td>
<td>4.7±6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.0</td>
<td>0.19~1.6</td>
<td>2.7</td>
<td>2</td>
<td>5</td>
<td>0.15~5.0</td>
<td>2.3±3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.12~0.63</td>
<td>1.1</td>
<td>0.9</td>
<td>3</td>
<td>0.17~1.6</td>
<td>0.95±1.0</td>
</tr>
<tr>
<td>2</td>
<td>HCl</td>
<td>5.00</td>
<td>0.77~2.0</td>
<td>6.1</td>
<td>0.2</td>
<td>0.8</td>
<td>1.6~16</td>
<td>9.3±11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.8</td>
<td>0.37~4.9</td>
<td>4.0</td>
<td>1</td>
<td>2</td>
<td>0.20~8.9</td>
<td>3.1±6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>147</td>
<td>0.07~0.87</td>
<td>2.3</td>
<td>2</td>
<td>10</td>
<td>0.20~3.7</td>
<td>1.7±2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>293</td>
<td>0.17~1.6</td>
<td>1.1</td>
<td>7</td>
<td>11</td>
<td>0.034~2.8</td>
<td>1.4±2.2</td>
</tr>
</tbody>
</table>

表 A.2 方法精密度（实际气体样品）

<table>
<thead>
<tr>
<th>序号</th>
<th>化合物名称</th>
<th>样品浓度（mg/m³）</th>
<th>实验室内相对标准偏差（%）</th>
<th>实验室间相对标准偏差（%）</th>
<th>重复性限（mg/m³）</th>
<th>再现性限（mg/m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NH₃</td>
<td>24.7</td>
<td>0.87~1.4</td>
<td>1.5</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.3</td>
<td>4.6~11</td>
<td>3.0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>HCl</td>
<td>5.94</td>
<td>16~20</td>
<td>13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61.1</td>
<td>2.6~4.0</td>
<td>6.5</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>
附录 B
(资料性附录)

样品测定前后仪器性能审核结果

测定地点：

仪器品牌、型号、编号：

仪器检定/校准有效起止日期：

仪器量程（μmol/mol，mg/m³）：

标准气体名称、生产单位及有效期：

测定人员：

表 B.1 系统误差测定结果记录表

<table>
<thead>
<tr>
<th>标准气体名称</th>
<th>监测前</th>
<th>监测后</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>测定值</td>
<td>平均值</td>
</tr>
</tbody>
</table>

注 1：测定模式：困境测定模式 □直接测定模式；
注 2：示值误差计算公式：□ (x_i - x) / x × 100% □ x_i - x。

表 B.2 系统偏差测定结果记录表

<table>
<thead>
<tr>
<th>标准气体名称</th>
<th>测定前</th>
<th>测定后</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>测定值</td>
<td>系统偏差</td>
</tr>
</tbody>
</table>

注 1：测定值 x_i 是标准气体直接插入分析仪的测定结果；测定值 x_i 是标准气体经采样管插入分析仪的测定结果；
注 2：系统偏差计算公式：□ (x_i - x_s) / C.S. × 100% □ x_i - x_s，C.S. 为校准量程。
表 B.3 零点漂移和量程漂移测定结果记录表

<table>
<thead>
<tr>
<th>名称</th>
<th>标准值</th>
<th>起始日期和时间</th>
<th>最终日期和时间</th>
<th>零点漂移</th>
<th>量程漂移</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>起始 (x_{i,0})</td>
<td>最终 (x_{i})</td>
<td>(\Delta x_{1} = x_{i} - x_{i,0})</td>
<td>(\Delta x_{1}/C.S.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：起始表示测定前，最终表示测定后。