《全国生态状况调查评估技术规范——项目尺度生态影响评估（征求意见稿）》
编制说明

《全国生态状况调查评估技术规范》编制组
二〇二〇年七月
目录

一、项目背景情况

（一）项目背景

（二）主要工作过程

二、标准制修订必要性分析

三、国内外相关标准情况

（一）国外相关标准

（二）国内相关标准

四、基本原则和技术路线

（一）基本原则

（二）技术路线

五、主要技术内容

（一）适用范围

（二）规范性引用文件

（三）术语和定义

（四）总则

（五）明确项目尺度的范围

（六）初步调查与分析

（七）生态影响评估指标体系

（八）调查与评估技术方法

（九）评估结论与建议

六、与国内外同类标准或技术法规的水平对比和分析

七、实施本标准的管理措施、技术措施、实施方案建议
《全国生态状况调查评估技术规范——项目尺度生态影响评估（征求意见稿）》编制说明

为落实生态环境部“开展全国生态状况评估”职责，以及《全国生态状况定期遥感调查评估方案》（环办生态〔2019〕45号）“建立技术方法规范和质量控制规范，及时转化为行业技术规范和国家技术规范，指导生态状况调查评估规范化开展，保障调查评估成果质量”要求，现开展《全国生态状况调查评估技术规范》编制工作。本标准由生态环境部卫星环境应用中心和北京师范大学成立编制组，共同编制完成。

一、项目背景情况

（一）项目背景

党的十八大以来，中央对生态文明建设作出一系列决策部署，发布了《中共中央 国务院关于加快推进生态文明建设的意见》《生态环境监测网络建设方案》《中共中央 国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》等一系列重要文件。开展生态状况调查评估，是落实党中央、国务院决策部署的重要支撑。

2000年以来，生态环境部（原环境保护部、环境保护总局）联合中国科学院等相关部门完成了3次全国生态状况调查评估。分别是2000年全国生态环境调查、全国生态环境十年变化（2000-2010 年）遥感调查与评估、全国生态状况
变化（2010-2015年）调查评估。特别是2018年完成的全国生态状况变化（2010-2015年）调查评估，为生态保护红线划定、中央环境保护督察、“绿盾”国家级自然保护区监督检查专项行动、京津冀和长江经济带等区域生态环境保护规划编制提供了重要支撑。

本标准的任务来源主要是根据生态环境部“三定”职责，以及《全国生态状况定期遥感调查评估方案》（环办生态〔2019〕45号）中“建立技术规范”的要求，制定本标准。由生态环境部卫星环境应用中心和北京师范大学参与本标准的编制。2020年2月，自然保护司将关于技术规范申请绿色通道的请示报请黄润秋副部长，经黄润秋副部长审定，批准技术规范通过生态环境部绿色通道立项流程。

项目尺度生态影响评估是全国生态状况调查评估的重要组成部分，是针对建设项目对生态影响评估的技术规范。项目尺度生态影响评估的规范化开展对生态状况调查评估具有重要意义，对项目尺度生态影响评估的目标和范围、指标体系、技术方法等进行规定，由于评估的空间范围较小，目标明确，既作为较小尺度调查评估技术规范的必要补充，完善全国生态状况调查评估技术规范体系，也可为有针对性地开展生态环境保护监督管理，以及督察执法提供科学依据。

（二）主要工作过程

技术规范编制组在前期项目研究、文献资料分析和国内
外相关研究成果调研的基础上召开了研讨会，讨论并确定了开展技术规范编制工作的原则、程序、步骤和方法，形成了技术规范初稿。

2016 年 4 月，基于《全国生态环境十年变化（2000-2010 年）遥感调查与评估》项目，编制组形成了《全国生态状况定期调查和评估技术指南（初稿）》（以下简称《技术指南（初稿）》），于 27 日组织召开了专家咨询会，并根据专家意见进行了修改和完善。

2017 年 2 月，编制组基于《全国生态状况变化（2010-2015 年）调查评估》项目实施，对《技术指南（初稿）》进行了修改和完善。

2018 年，经过多轮内部讨论，编制组围绕《技术指南（初稿）》的内容和技术方法进行讨论，作了进一步的修改完善。

2019 年 4 月，编制组召开内部讨论会，围绕技术规范内容、技术方法等开展讨论，从技术规范的角度对《技术指南（初稿）》进行完善和格式统一，确定了技术规范编制整体框架。

2019 年 5 月，编制组召开内部讨论会，继续对技术规范格式、相关定义和内容设置作了进一步明确。

2019 年 8 月，编制组组织召开专家咨询会，主要邀请地方生态环境保护技术单位从事生态状况评估的专家开展咨询与讨论，从指导生态状况定期调查评估的各项具体工作角
度出发，详细梳理和讨论了技术规范中规定的具体内容、指标和技术方法等。

2019年11月，编制组组织召开专家研讨会，主要邀请高校、科研单位和相关行业的技术单位从事生态状况评估的专家开展咨询与论证，从技术规范编制的流程、形式，以及与行业已有标准的衔接等角度，对技术规范的定位、内容等进行了进一步明确。

2019年11月，编制组在“全国生态状况定期遥感调查评估技术培训班”上征求了省市级生态环境保护单位及下属技术支撑单位的意见，结合地方工作实际情况，从指标体系、技术方法和具体内容等方面对技术规范进行了修改完善。

2020年2月，自然保护司将关于技术规范申请绿色通道的请示报请黄润秋副部长，经黄润秋副部长审定，批准技术规范通过生态环境部绿色通道立项流程。

2020年3-4月，自然保护司以视频会议形式，不定期组织召开了4次技术规范编制讨论会，标准所技术负责相关同志参会并对现有标准存在问题和下一步工作流程进行了专题指导。编制组根据规范体系的内容对标准征求意见稿和编制说明进行修改完善，并形成工作时间计划表。

2020年5月，自然保护司以视频会议的形式召开了全国生态状况调查评估技术规范征求意见稿专家技术审查会，标准所技术负责相关同志参会。经专家审查打分，技术
规范征求意见稿全部通过，同时，专家对技术规范征求意见稿提出了修改建议，编制组根据专家意见和建议对技术规范和编制说明征求意见稿进行了修改完善。

二、标准制修订必要性分析

全国生态状况变化调查评估技术规范包括生态系统遥感解译与野外核查技术规范；森林、草地、湿地和荒漠生态系统野外观测技术规范；数据质量控制与集成技术规范；生态系统格局、质量、服务功能和问题评估技术规范；以及项目尺度生态影响评估技术规范。项目尺度生态影响评价技术规范是全国生态状况调查评估技术规范体系之一，本标准的制定具有极为重要的意义，主要体现在以下几个方面：

（1）定期开展全国生态状况调查评估的要求

生态状况遥感调查评估（以下简称调查评估）是一项重要的基础国情调查，对于全方位支撑生态环境监督管理、推动优化国土空间开发布局、有针对性地实施生态保护修复工程、维护国家和区域生态安全、建设美丽中国具有重要意义。机构改革后，调查评估也是生态环境部的重要职责之一。因此，统一规范技术体系，明确任务分工，可为定期开展生态状况调查评估提供有力保障。

（2）完善生态状况调查评估指标体系与制度的要求

研究建立遥感解译、野外观测与验证、生态状况评估、项目尺度生态影响评估、数据质量控制与集成等技术体系，
可以及时转化提升为行业技术规范和国家技术规范，指导生态状况调查评估规范化开展，保障调查评估成果质量。

（3）规范化开展项目尺度生态影响评估的要求

项目尺度生态影响评估主要针对某些开工建设或已建成的土地开发工程占地类建设项目对生态环境造成的影响开展评估。虽然生态环境等部门已陆续发布了建设项目环境影响评价等相关的技术导则和规范，但更加侧重于建设项目对周围大气、水、土壤和生态等环境影响评价，对生态要素和生态系统服务功能的专项评估相对较少。所以为了规范化开展项目尺度生态影响评估工作，目前仍需制定一套针对项目尺度上的生态影响评估技术规范。

三、国内外相关标准情况

（一）国外相关标准

目前，从环境影响评价角度，国际上先后确立和发布了多个针对或适用于项目尺度的环境影响评价法律法规和评价体系，具有代表性的有1969年美国颁布《国家环境政策法》（NEPA）确定了环境影响评价（EIA）制度，以及在此基础上提出的战略环境评价（SEA）体系，以及国际影响评价协会（IAIA）等民间组织确定的评价程序和内容。此外，荷兰、加拿大、欧盟、澳大利亚、英国、日本等国家和国际机构也进行了环境影响评价立法，目前已有100多个国家建立了环境影响评价制度。
美国《国家环境政策法》（NEPA）是1969年世界上首次建立了环境影响评价制度的法律法规。之后美国环境品质委员会（CEQ）与联邦各机关本身配合完善了政策法，主要采用环境影响评价（EIA）中的方法和内容。EIA是1964年在加拿大召开的国际环境质量评价会议上被首次提出，在防治建设项目污染和推进产业的合理布局与优化选址，预防开发建设活动可能产生的环境污染和破坏，加快污染治理设施的建设，防止或减轻新的环境污染和生态破坏等方面，都发挥了积极作用。EIA主要采用分层评估、范围确定、意见征询等方法和步骤，对建设项目的大气、水、噪声、生态等方面的环境影响进行评价与预测，以及对重大决策环境影响进行评价。

欧洲SEA指令和联合国欧洲经济委员会SEA协议是两个专门为战略环境评价（SEA）设置国际规则框架的法律文件。从环境评估的进化角度来说，SEA是在决策制定过程中继EIA之后的第二代程序，主要基于既定战略目标的前提下将SEA引入决策制定的过程，将评价的对象在进行项目评价的基础上上升到法律政策、规划和计划的水平上。解决了单个项目的环境影响评价覆盖面窄且不能解决项目之间相互制约，以及建设开发过程中产生的宏观影响、二次影响、累积影响的问题。

加拿大SEA虽然在1992年的环境评价法中限定于应用
在单个项目，但包含了评估累积影响和资源可持续利用的要求。1999年，加拿大政府发布《关于建议政策、计划、规划进行环境评估的1999指令》，该指令的主要作用在于明确各有关部门和机构在战略环境评价中的职责，同时把环境评估和可持续发展相联系，从而强化环境评估在战略决策水平的作用。

荷兰SEA自1987年以来要求对废物处理、饮用水供应、能源电力供应和一些土地利用规划或计划进行正式的SEA。法规要求SEA应分析计划所产生的影响范围和程度，SEA的结果最终由一个关于EIA的特别委员会审核，大多数的战略层次均进行公众讨论和参与。荷兰现有的SEA系统已经扩大其应用范围，并使它们与可持续发展的原则更加密切地联系在一起。这些变化在1989年的国家环境政策计划（NEPP）及1990的修正版中得以确立。NEPP包含了A141和A142两个与SEA相关内容，A141要求评估现行政策，以确定他们完成可持续发展目标的程度，主要涉及健康政策、住房、技术、能源、科学、交通、财政政策、农业、教育和工业。A142要求为那些可能对环境产生严重后果的政策提案提供环境影响的资料。

国际影响评价协会（IAIA）于1980年创建于美国，是一个致力于推广环境影响评价最佳实践经验、推动环评技术创新与发展的民间学术交流机构，在国际环评领域有广泛而
深远的影响。国际上普遍认可的国际影响评价协会（IAIA）所公布的环评的定义，与我国环评导则上的定义基本相同，IAIA 同时也规定了国际上普遍认可的环境影响评价，具体内容见表 1。

<table>
<thead>
<tr>
<th>评价步骤</th>
<th>评价内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>初步审核</td>
<td>此环节包括审查项目是否具备进行环境影响评价的条件，以及是否需要进行环评；环境影响评价的等级，特殊性等</td>
</tr>
<tr>
<td>考察环评选址、范围、情况</td>
<td>对项目涉及的影响范围和敏感点进行排查，确定环评开展的范围和重点，并确定环评主要涉及的分类章节（如大气、地表水、地下水等）</td>
</tr>
<tr>
<td>项目方案比选</td>
<td>从“对环境最无害”、“最有益于可持续发展”的角度，选择适合的项目方案</td>
</tr>
<tr>
<td>环境影响分析</td>
<td>识别、分析和预测项目有可能造成的环境、社会及其他相关影响</td>
</tr>
<tr>
<td>措施和控制</td>
<td>建立必要的措施，以避免、减少或抵消所预测的那些不利影响，这些措施应落实到项目管理体系或当地环境管理体系中</td>
</tr>
<tr>
<td>重点影响评价</td>
<td>对于那些各项环保措施都无法缓解的不利影响或者剩余影响，要确定其对环境的重要性和可接受性</td>
</tr>
<tr>
<td>完成环境影响评价报告</td>
<td>完成环评报告，需要清楚且公正地记录项目所可能造成的影响，提出建议和措施，并分析措施能带来的预防效果或缓解程度。同时，报告应该考虑到受众群体，以及公众所感兴趣的问题</td>
</tr>
<tr>
<td>报告评审</td>
<td>判断报告的评价范围和评价程度合理，提供的影响预测和建议是否有说服力，并且是否包含了项目决策所需的信息</td>
</tr>
<tr>
<td>项目决策</td>
<td>从环评的角度，批准或拒绝项目提议，或者有条件的发展项目</td>
</tr>
<tr>
<td>后续调查</td>
<td>以确保环评中的建议和措施得以落实，监控后续项目发展，衡量措施的有效性，以加强未来环评工作的合理程度。优化审计和环境管理</td>
</tr>
</tbody>
</table>

（二）国内相关标准

我国于 1989 年颁布实施了《中华人民共和国环境保护法》，并在 2014 年进行了修订，已经在 2015 年起实施。我国针对建设项目发布了一系列环境评价相关的法律法规和管理条例，如《建设项目环境保护管理条例》《环境影响评
《中华人民共和国环境影响评价法》等。此外，生态环境等相关部门也陆续发布了一系列生态环境影响评价相关技术规范和技术导则。

《中华人民共和国环境影响评价法》是为了实施可持续发展战略，预防因规划和建设项目实施后对环境造成不良影响，促进经济、社会和环境的协调发展制定的法律。第三章规定了建设项目的环境影响评价，对可能造成重大环境影响的需要编制环境影响报告书，具体内容见表2。

《建设项目环境保护管理条例》由中华人民共和国国务院于1998年11月29日发布，为防止建设项目产生新的污染、破坏生态环境制定。第二章为环境影响评价，规定建设项目对环境可能造成重大影响的，应当编制环境影响报告书，对建设项目产生的污染和对环境的影响进行全面、详细的评价，具体内容见表2。

《中华人民共和国环境影响评价法》《建设项目环境保护管理条例》均对环境影响评价文件做了明确的要求，建设项目可能造成重大环境影响的和轻度环境影响的，应当编制环境影响报告书和环境影响报告表，内容包括建设项目评价内容、评价标准、评价范围等。由于建设项目的类型不同，对环境的影响也不尽相同，环境影响报告书的编制内容也有所不同，目前以现状调查、污染源调查、影响预测及评价分章编排的居多，具体见表2。
表 2 环境影响报告书主要指标和评价内容

<table>
<thead>
<tr>
<th>要点</th>
<th>调查与评估指标</th>
<th>调查与评估内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>总论</td>
<td>环境影响评价项目的目的由来</td>
<td>说明建设项目立项始末，批准单位及文件，评价项目的委托，完成评价工作的概况</td>
</tr>
<tr>
<td></td>
<td>编制环境影响报告书的目的</td>
<td>结合评价项目的特点，阐述环境影响报告书的编制目的</td>
</tr>
<tr>
<td></td>
<td>编制依据</td>
<td>环境影响评价委托合同或委托书、建设项目建议书的批准文件或可行性研究报告的批准文件、《建设项目环境保护管理条例》等等</td>
</tr>
<tr>
<td></td>
<td>评价标准</td>
<td>评价标准一般应包括大气环境、水环境、土壤、环境噪声等环境质量标准，以及污染物排放标准</td>
</tr>
<tr>
<td></td>
<td>评价范围</td>
<td>评价范围可按空气环境、地表水环境、地下水环境、环境噪声、土壤及生态环境分别列出，并应简述评价范围确定的理由</td>
</tr>
<tr>
<td></td>
<td>污染控制及环境保护目标</td>
<td>主要是排放量特别大或排放污染物毒性很大的污染源</td>
</tr>
<tr>
<td>建设项目概况</td>
<td>建设规模</td>
<td>应说明建设项目的名称、建设性质、厂址的地理位置、产品、产量、总投资、利税、资金回收年限、占地面积、土地利用情况、建设项目平面布置、职工人数、全员劳动生产率。如果是扩建、改建项目，应说明原有规模</td>
</tr>
<tr>
<td></td>
<td>生产工艺简介</td>
<td>对扩建、改建项目，还应对原有的生产工艺、设备及污染防治措施进行分析</td>
</tr>
<tr>
<td></td>
<td>原料、燃料及用水量</td>
<td>应给出原料、燃料的组成成分及百分含量，以表列出原料、燃料、用水量的消耗量</td>
</tr>
<tr>
<td></td>
<td>污染物排放情况</td>
<td>应列出建设项目建成投产后，各污染源排放的废气、废水、废渣的数量，以及排放方式和排放去向。当有放射性物质排放时，应给出种类、剂量、来源、去向。对设备噪声源应给出设备噪声功率级，对振动源应给出振动级，并说明噪声源在厂区内和距离厂界的距离</td>
</tr>
<tr>
<td></td>
<td>拟采取的环保措施</td>
<td>对建设项目拟采取的废气和废水治理方案、工艺流程、主要设备、处理效果、处理后排放的污染物是否达到排放标准，投资及运行费用等要详细介绍</td>
</tr>
<tr>
<td></td>
<td>工程环境影响因素分析</td>
<td>根据污染源、污染物的排放情况及环境背景状况，分析污染物可能影响环境的各个方面</td>
</tr>
<tr>
<td>环境概况</td>
<td>自然环境状况调查</td>
<td>评价区的地形、地貌、地质概况；评价区内的水文及水文地质情况；气象与气候；土壤及农作物；森林、草原、水产、野生动物、野生植物、矿藏资源等</td>
</tr>
<tr>
<td>要点</td>
<td>调查与评估指标</td>
<td>调查与评估内容</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>环境概况</td>
<td>社会环境状况调查</td>
<td>评价区内的行政区划、人口分布、人口密度、人口职业构成与文化构成；现有工矿企业的分布概况及评价区内交通运输情况、文化教育概况、人群健康及地方病情况、自然保护区、风景旅游区、名胜古迹、温泉、疗养区以及重要政治文化设施。</td>
</tr>
<tr>
<td></td>
<td>评价区内环境质量现状调查</td>
<td>对环境空气、地表水、地下水和噪声的环境质量现状进行描述，对照当地环保局确定的有关标准说明厂区周围的环境质量状况。</td>
</tr>
<tr>
<td>污染源调查与评价</td>
<td>污染源调查</td>
<td>污染源排放污染物的种类、数量、方式、途径及污染源的类型和位置，直接关系到它的危害对象、范围和程度。</td>
</tr>
<tr>
<td></td>
<td>污染源调查与评价方法</td>
<td>分别列表给出评价区内大气污染源、水污染源、废渣污染源的污染物排放量、排放浓度、排放方式、排放途径和去向，评价结果，从而找出评价区内的主要污染源和主要污染物。</td>
</tr>
<tr>
<td>预测与评价</td>
<td>环境影响预测与评价</td>
<td>环境影响预测与评价包括：大气环境影响预测与评价、地表水环境影响预测与评价、地下水环境影响预测与评价、噪声环境影响预测及评价、生态环境影响评价。</td>
</tr>
<tr>
<td>环保措施的可行性及经济技术论证</td>
<td>大气污染防治</td>
<td>给出建设项目废气净化系统和除尘系统的工艺，设备型号、效率、运行费用和排放标志；分析排放指标是否符合排放标准，论述拟选处理工艺及设备的可行性，分析排气筒是否符合有关规定。</td>
</tr>
<tr>
<td></td>
<td>废水治理</td>
<td>给出废水治理措施的工艺原理、流程、处理效率、排放指标，分析排放指标是否符合排放标准，阐述拟选废水治理工艺的可行性。</td>
</tr>
<tr>
<td></td>
<td>废渣处理</td>
<td>提出废渣的排放去向、处理处置方法，如果是危险固体废物，必须按照有关规定进行申报，并委托有资质的单位处理，不得私自处理或非法转移。</td>
</tr>
<tr>
<td></td>
<td>减振防噪</td>
<td>提出减少振动、降低噪声的具体措施，分析拟采用措施的可行性。</td>
</tr>
<tr>
<td></td>
<td>绿化</td>
<td>提出建设项目的绿化措施，说明绿化面积、绿化植物的选择，分析项目绿化率是否达到有关要求等。</td>
</tr>
<tr>
<td>损益分析</td>
<td>环境影响经济效益分析</td>
<td>从社会效益、经济效益和环境效益三方面对项目在区段的环境影响经济效益进行定性或定量分析，从而分析项目建设的可行性。</td>
</tr>
<tr>
<td>建议</td>
<td>实施环境监测的建议</td>
<td>提出项目建成运营后，环境管理计划、环境管理机构的设备和人员配置、环境监测规划等。</td>
</tr>
</tbody>
</table>

《HJ 192-2015 生态环境状况评价技术规范》主要基于土地覆盖类型、水资源、气体排放、固废排放、降水量等数据，计算出生物丰度指数、植被覆盖指数、水网密度指数、土地退化指数和环境质量指数5个指数，最终将5个指数加权相加，获得生态环境状况指数（EI），用以综合评价生态环境状况及变化趋势，主要适用于县级及以上的区域，对项目尺度上的生态影响评估并不适用。

《生态环境损害鉴定评估技术指南》包括总纲和损害调查两个技术指南，主要调查污染环境、破坏生态行为与生态环境损害情况；分析污染环境或破坏生态行为与生态环境损害间的因果关系；评估污染环境或破坏生态行为所致生态环境损害的范围和程度；确定生态环境恢复至基线并补偿期间损害的恢复措施；量化生态环境损害数额等过程。调查的内容主要有基线水平信息、污染源信息、环境质量信息、生物信息、生态系统服务信息、生态环境恢复措施与费用信息和生态环境恢复效果信息等。技术指南规定的内容更加侧重污
染排放等对大气、地表水、沉积物、土壤、地下水等环境介质的质量的影响，以及对生物的类型、结构和数量变化的影响等。

《HJ 130—2019 规划环境影响评价技术导则》主要适用于国务院有关部门、设区的市级以上地方人民政府及其有关部门组织编制的土地利用的有关规划，包括区域、流域、海域的建设、开发利用规划，以及工业、农业、畜牧业、林业、能源、水利、交通、城市建设、旅游、自然资源开发的有关专项规划的环境影响评价，与国际上战略环境评价（SEA）类似。规划环境影响评价主要技术流程是基于规划分析和现状分析摸清资源、生态、环境制约因素，结合“三线一单”（生态保护红线、环境质量底线、资源利用上线和生态环境准入清单）确立环境目标和评价指标体系，评估区域资源与环境承载力并分要素进行环境影响预测与评价，经过规划方案综合论证，对推荐规划优化调整等。规划环境影响评价技术导则主要用于土地或其他专项规划中环境影响评价，从而达到规划优化调整的目的，相对于项目尺度环境影响评估有借鉴作用，但不完全合适。

《HJ 2.1-2016 建设项目环境影响评价技术导则》代替《HJ 19-2011 环境影响评价技术导则》执行，规定了建设项目环境影响评价的一般性原则、通用规定、工作程序、工作内容及相关要求，主要用于需要编制环境影响报告书和环境
影响报告表的建设项目环境影响评价。建设项目环境影响评价工作程序主要包括调查分析和工作方案制定阶段、分析论证和预测评价阶段和环境影响报告书（表）编制三个阶段。第二阶段主要规定了建设项目工程分析、环境现状调查与评价和环境影响预测与评价等要求，包含了调查和评价的因素、内容和方法等，内容概况见表3。

表3 建设项目环境影响评价技术导则第二阶段主要调查评价内容

<table>
<thead>
<tr>
<th>项目</th>
<th>调查评价项</th>
<th>主要内容</th>
</tr>
</thead>
</table>
| 建设项目工程分析 | 建设项目概况 | 以污染影响为主的建设项目：明确项目组成、建设地点、原辅料、生产工艺、主要生产设备、产品（包括主产品和副产品）方案、平面布置、建设周期、总投资及环境保护投资等。
以生态影响为主的建设项目：明确项目组成、建设地点、占地规模、总平面及现场布置、施工方式、施工时序、建设周期和运行方式、总投资及环境保护投资等。
改扩建及异地搬迁建设项目：现有工程的基本情况、污染物排放及达标情况、存在的环境保护问题及拟采取的整改方案等。 |
| 影响因素分析 | 污染影响因素分析：绘制生产工艺流程图；污染物产生、排放情况；噪声、放射性及电磁辐射等污染的来源、特性及强度；项目消耗的原料、辅料、燃料等的种类、构成、数量、理化性质、毒理等特征等。
生态影响因素分析：结合建设项目特点和区域环境特征，分析建设项目建设和运行过程对生态环境的作用因素与影响源、影响方式、影响范围和影响程度。
| 污染源源强核算 | 根据污染物产生环节、产生方式和治理措施，核算建设项目有组织与无组织、正常工况与非正常工况下的污染物产生和排放强度，给出污染因子及其产生和排放的方式、浓度、数量等。
对改扩建项目的污染物排放量的统计，应分别按现有、在建、改扩建项目实施后等几种情形，综合污染物产生量、排放量及其变化量，核算改扩建项目建成后最终的污染物排放量。
污染源源强核算方法由污染源源强核算技术指南具体规定。 |
<table>
<thead>
<tr>
<th>项目</th>
<th>调查评价项</th>
<th>主要内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>环境现状调查与评价</td>
<td>基本要求</td>
<td>对与建设项目有密切关系的环境要素应全面、详细调查，给出定量的数据并作出分析或评价。对于自然环境的现状调查，可根据建设项目情况进行必要说明。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>充分收集和利用评价范围内各例行监测点、断面或站位的近三年环境监测资料或背景值调查资料，当现有资料不能满足要求时，应进行现场调查和测试，现状监测和观测网点应根据各环境要素环境影响评价技术导则要求布设，兼顾均布性和代表性原则。</td>
</tr>
<tr>
<td></td>
<td>环境现状调查与评价内容</td>
<td>环境现状调查方法由环境要素环境影响评价技术导则具体规定。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>自然环境现状调查与评价：包括地形地貌、气候与气象、地质、水文、大气、地表水、地下水、声、生态、土壤、海洋、放射性及辐射（如必要）等调查内容。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>环境保护目标调查：调查评价范围内的环境功能区划和主要的环境敏感区，详细了解环境保护目标的地理位置、服务功能、四至范围、保护对象和保护要求等。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>环境质量现状调查与评价：根据建设项目特点、可能产生的环境影响和当地环境特征选择环境要素进行调查与评价；评价区域环境质量现状。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>区域污染源调查：选择建设项目常规污染因子和特征污染因子、影响评价区环境质量的主要污染因子和特殊污染因子作为主要调查对象。</td>
</tr>
<tr>
<td>环境影响预测与评价</td>
<td>基本要求</td>
<td>环境影响预测与评价的时段、内容及方法均应根据工程特点与环境特性、评价工作等级、当地的环境保护要求确定。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>预测和评价的因子应包括反映建设项目特点的常规污染因子、特征污染因子和生态因子，以及反映区域环境质量状况的主要污染因子、特殊污染因子和生态因子。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>须考虑环境质量背景与环境影响评价范围内在建项目同类污染物环境影响的叠加。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>对于环境质量不符合环境功能要求或环境质量改善目标的，应结合区域限期达标规划对环境质量变化进行预测。</td>
</tr>
<tr>
<td></td>
<td>环境影响预测与评价方法</td>
<td>预测与评价方法主要有数学模式法、物理模型法、类比调查法等。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>应重点预测建设项目生产运行阶段正常工况和非正常工况等情况的环境影响。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>当建设阶段的大气、地表水、地下水、噪声、振动、生态以及土壤等影响程度较重、影响时间较长时间，应进行建设阶段的环境影响预测和评价。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>可根据工程特点、规模、环境敏感程度、影响特征等选择开展建设项目服务期满后的环境影响预测和评价。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>当建设项目排放污染物对环境存在累积影响时，应明确。</td>
</tr>
<tr>
<td>项目</td>
<td>调查评价项</td>
<td>主要内容</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>环境影响</td>
<td>环境影响预测与评价内容</td>
<td>累积影响的影响源，分析项目实施可能发生累积影响的条件、方式和途径，预测项目实施在时间和空间上的累积环境影响</td>
</tr>
<tr>
<td>预测与评价</td>
<td></td>
<td>以生态影响为主的建设项目应预测生态系统组成和服务功能的变化趋势，重点分析项目建设和生产运行对环境保护目标的影响</td>
</tr>
<tr>
<td></td>
<td></td>
<td>存在环境风险的建设项目应分析环境风险源项，计算环境风险后果，开展环境风险评价。存在较大潜在人群健康风险的建设项目应分析人群主要暴露途径</td>
</tr>
</tbody>
</table>

总体上，国外相关法律法规和标准体系主要是环境影响评价（EIA）体系，以及在此基础上融入战略规划的战略环境评价（SEA）体系。EIA 主要考虑各自国家项目建设及生产过程中对环境要素，例如大气、水、生态环境的影响和破坏，及重大决策环境影响评价，对生态系统要素及生态功能考虑较少；SEA 主要对重要战略规划进行环境评价，将环境、社会和经济综合在一起考虑，服务于战略规划设计，对生态系统要素及生态功能的专项评价较弱。从区域适宜性来讲，美国、英国、欧盟、法国等多个国家或联盟根据国家战略规划或项目建设特点，制定了相应的环境影响评价法律法规和指标体系，评价制度和指标体系具有区域特性，并不具有普适性。

我国较早发布了环境保护法，生态环境部门也发布了相应生态环境影响评价标准体系。但由于服务目标不同，评价内容和指标也不尽相同。例如《建设项目环境保护管理条例》《生态环境损害鉴定评估技术指南》《环境影响评价技术导
则》等相关条例和技术规范，重点评估项目建设地点、原料和辅料、施工方式、生产工艺、设备和产品企业对周围环境的污染损害情况，更多侧重对环境要素（水、气、土）的风险评估，对生态系统，特别是生态系统功能评估考虑不足。

而《HJ 192－2015 生态环境状况评价技术规范》建立了EI指数来对县域生态环境状况进行评价，尽管考虑了生态系统类型要素，也在一定程度上通过定量和定性相结合的指标反映了生态系统功能，但评价指标的计算方法仍然侧重环境要素，权重设置主要以经验和定性表征为主，生态系统功能特征仍以土地覆盖类型的面积来表征，生态学意义仍然偏弱。因此，对项目尺度上发生的生态挤占和破坏带来的生态功能变化评估适用性不强。

四、基本原则和技术路线

（一）基本原则

（1）适用性、可操作性原则

本标准的内容应具有普遍适用性，方法应具有可操作性，能为相关生态环境保护工作的实施提供技术参考。

（2）科学性、先进性原则

本标准在编制过程中应积极借鉴和利用国内外相关研究成果，运用可靠的原理、成熟先进的技术和科学的方法，保证制定的规范具有科学性和先进性。

（3）经济技术可行性原则
标准中采用的技术方法应经济可行，确保按照该规范开展全国生态状况调查评估时，涉及到的数据源比较容易获取、方法比较容易实现，成本较低，经济可行。

（二）技术路线

项目尺度生态影响评估通过收集资料，明确项目尺度的范围，了解项目及建成后的情形，结合生态环境状况和工程及建设情况初步调查，构建生态影响评估指标，生态影响评估包括生态空间占用评估、生态系统服务损失评估、生态风险评估三大部分。具体项目尺度生态影响评估技术流程见图1。

图 1 项目尺度生态影响评估总体技术流程

五、主要技术内容

（一）适用范围

本标准规定了项目尺度范围、生态环境和工程建设情况分析、生态影响评估指标体系、调查与评估技术方法、结论
和建议等内容。

本标准适用于各类法定禁止开发区外，对于开工建设或已建成的土地开发工程占地类建设项目，开展区域生态影响后评估，服务于生态环境保护综合监督管理。

（二）规范性引用文件

本标准内容引用了下列文件或其中的条款。凡是不注明日期的引用文件，其有效版本适用于本标准。

HJ 2.1 建设项目环境影响评价技术导则 总纲
HJ 19 环境影响评价技术导则 生态影响
LY/T 1721 森林生态系统服务功能评估规范
SL 773 生产建设项目土壤流失量测算导则
生态环境损害鉴定评估技术指南 总纲（环办政法〔2016〕67号）
生态保护红线划定指南（环办生态〔2017〕48号）

（三）术语和定义

（1）生态系统服务 ecosystem service

生态系统服务反映生态系统对人类社会提供赖以生存环境的能力，参考《LY/T 1721 森林生态系统服务功能评估规范》和全国生态状况五年、十年变化调查评估工作基础进行定义，具体是指人类从生态系统获取的利益，主要包括防风固沙、土壤保持、水源涵养、生物多样性维持等方面的服务。
（2）生态影响评估 ecological impact assessment

生态影响评估反映建设项目对生态影响的评估，主要参考《HJ 19-2011 环境影响评价技术导则 生态影响》进行定义，具体为评估特定的过程或措施对生态系统或其组成可能带来的各种影响进行的调查、监测和分析活动。

（3）生态敏感目标 ecological sensitive targets

生态敏感目标反映对维护区域或国家生态安全具有重要作用，受保护的各类生态目标，包括国家公园、自然保护区等各类自然保护地，生态保护红线、保护物种和特有种的栖息地、饮用水源地等，主要参考《HJ 2.1-2016 建设项目环境影响评价技术导则 总纲》和全国生态状况五年、十年变化调查评估工作基础进行定义。

（4）水源涵养 water conservation

水源涵养反映生态系统涵养水源的能力，主要参考《LY/T 1721 森林生态系统服务功能评估规范》和《环办生态〔2017〕48 号 生态保护红线划定指南》进行定义，具体指通过其结构和过程拦截滞蓄降水，以增强土壤下渗，涵养土壤水分和补充地下水，调节河川流量，增加可利用水资源量等。

（5）土壤保持 soil conservation

土壤保持反映生态系统保护土壤、减少侵蚀的能力，主要参考《LY/T 1721 森林生态系统服务功能评估规范》和《环
办生态〔2017〕48号 生态保护红线划定指南》进行定义，具体指通过其结构与过程保护土壤，以降低雨水的侵蚀能力，减少土壤流失，防止泥沙淤积等。

（6）防风固沙 wind break and sand fixation
防风固沙反映生态系统固定风沙的能力，主要参考《LY/T 1721 森林生态系统服务功能评估规范》和《环办生态〔2017〕48号 生态保护红线划定指南》进行定义，指通过增加土壤抗风能力，以降低风力侵蚀和风沙危害等。

（7）生物多样性维持 biodiversity conservation
生物多样性维持反映维持生态系统多样性水平的能力，主要参考《LY/T 1721 森林生态系统服务功能评估规范》和《环办生态〔2017〕48号 生态保护红线划定指南》进行定义，具体指能够为野生动植物提供栖息地，以维持物种多样性水平的功能。

（8）项目尺度 project dimension
项目尺度反映生态影响评估中的建设项目尺度，主要参考《HJ 2.1-2016 建设项目环境影响评价技术导则 总纲》和日常项目建设对生态影响评估工作进行定义，具体指某些城市开发、资源开发等项目造成生态环境影响的局部区域尺度。

（四）总则
（1）目标和范围
1）目标
项目尺度是一种特定的评估尺度，需对评估的目标和评估的范围做界定。

目标主要是：评估项目工程对评估区的生态环境影响。具体是生态环境状况初步调查、工程及建设情况初步分析的基础上，利用遥感技术、GIS 技术以及生态评估方法，评估建设项目对工程区及周围的生态影响情况。

2）范围

范围主要分为时间范围和空间范围。时间范围主要根据项目工程实施情况确定。空间范围主要根据建设项目可能的生态影响范围确定。一般而言，针对一般类项目，其生态影响评估范围应不小于主体工程、附属工程、直接干扰区（如取弃土场等临时工程区），以及周边 500 m 的区域。如果主体工程、辅助工程、直接干扰区等周边 500 m 至 1000 m 范围内存在生态敏感目标，从生态系统完整性出发，应全部纳入评估范围。

（2）内容

针对评估区域和范围，开展生态空间占用情况、生态系统服务损失评估、生态风险评估，提出对策建议。

（五）明确项目尺度的范围

在开始项目尺度生态影响评估之前，应先明确项目的范围，具体为明确某些城市开发、资源开发等项目造成生态环境影响需要评估的尺度范围。
（六）初步调查与分析

明确项目尺度的范围后，应对项目工程及建设、工程周围环境进行一个初步的调查分析，以了解项目及周边环境整体状况，包括生态环境状况初步调查和工程及建设情况初步调查。

（1）生态环境状况初步调查

采用收集资料法、现场调查法、遥感和地理信息系统分析等方法，调查分析建设项目及周边自然环境现状；评价范围内植被生态与动物生态情况；评价范围及周边重要生态保护区域的类型、数量、时间与空间分布动态等；以及评价分析项目周边已存在的制约本区域的主要生态问题等内容。

（2）工程及建设情况初步调查

采用实地调查与资料收集等方法，调查分析项目类型与性质，项目占地规模、建设内容组成、项目设计情况，明确项目建设是否符合当地区域规划，是否超越批复范围，是否存在重大建设变更，并调查分析主体工程配套的污染防治设施建设与运行情况与生态保护措施的设计与执行情况等。

（七）生态影响评估指标体系

根据项目尺度上生态状况调查评估工作所需指标，参考2000年全国生态环境调查、全国生态环境十年变化（2000-2010年）遥感调查与评估和全国生态状况变化（2010-2015年）调查评估等工作基础，以及工程建设对生
态破坏等的监管依据，结合项目尺度的特征，本标准制定了适用于项目尺度上的生态影响调查评估内容，包括生态空间占用、生态系统服务损失、生态风险，规范了对小尺度（项目尺度）上的生态影响评估具体内容和方法。根据项目尺度需要评估的内容和生态状况调查评估的工作内容，本标准选择制定了相应的评估指标体系，其中，项目尺度上的生态空间占用主要评估生态系统类型转移、不透水地面面积、项目占生态系统类型面积情况；生态系统服务损失主要评估水源涵养量、土壤保持量、防风固沙量、生物多样性维持四大生态系统服务功能的损失情况；以及生态系统受到的威胁的可能性和项目与生态敏感目标的临近关系等生态风险的评估，具体见下图。

图 2 项目尺度生态影响评估指标体系
（八）调查与评估技术方法

项目尺度生态影响评估主要针对工程项目，对工程项目生态空间占用、生态系统服务损失、生态风险等内容进行调查评估。根据项目尺度生态影响评估指标设置情况，针对三大调查评估内容中的每个野外观测指标，制定了具体的调查评估技术方法，具体如下。

（1）生态系统类型转移

指标定义：指项目建设前后生态系统类型之间相互转变的定量描述。

评估方法：构建生态系统类型转移矩阵，分析生态系统类型的转化情况，包括转化量与转化率，尤其是要明确高生态服务功能地类向低生态服务功能地类的转化情况，从而分析生态系统结构的变化。

（2）不透水地面面积

指标定义：主要指项目建设后被水泥等所硬化的地面面积。

评估方法：采用面积统计等方法，调查明确项目建设导致的不透水地面面积增加情况。

（3）项目占生态系统类型面积

指标定义：工程及建设项目占用生态系统的面积，包括森林、湿地、草地等的面积与比例构成。
评估方法：明确项目占地总量与不同生态系统的类型与比例，尤其是要分析具有较高生态服务功能的地类，如森林、湿地、草地等的面积与比例构成，同时要明确项目实施的生态补偿量，分析实际占用量。

（4）水源涵养量

指标定义：生态系统通过其结构和过程拦截滞蓄降水，增强土壤下渗，涵养土壤水分和补充地下水，调节河川流量，增加可利用水资源量的功能。

评估方法：采用降水贮存量法计算水源涵养量。

（5）土壤保持量

指标定义：生态系统通过其结构与过程保护土壤，降低雨水的侵蚀能力，减少土壤流失，防止泥沙淤积的功能。

评估方法：运用修正通用土壤流失方程（RUSLE）计算土壤保持量，具体方法参见技术规范中附录 B。

（6）防风固沙量

指标定义：生态系统通过增加土壤抗风能力，降低风力侵蚀和风沙危害的功能。

评估方法：运用修正风力侵蚀模型（RWEQ）计算防风固沙量，具体方法参见技术规范中附录 B。

（7）生物多样性维持

指标定义：生态系统为野生动植物提供栖息地，以维持物种多样性水平的功能。
评估方法：运用生境不可替代性指数、物种丰富度和珍稀濒危物种数量综合评估。

生境不可替代性指数：运用 Marxan 选址运算模型计算生境不可替代性指数，具体方法参见技术规范中附录 B。

物种丰富度：采用样方调查方法统计生态系统群落中物种数目的多少。

珍稀濒危物种数量：采用调查统计的方法，统计区域内国家重点保护野生物种名录中及 International Union for Conservation of Nature （IUCN）红色名录中的极危、濒危级别物种的数量。

（8）生态系统威胁可能性

指标定义：建设项目诱发生物物种、种群和生态系统不利的可能性。

分析方法：生态系统威胁可能性主要采用定性分析的方法，侧重对建设项目在建设期和运营期可能诱发对生物物种、种群和生态系统不利生态效应的可能性与强度的定性分析。识别建设项目造成的工程占地、污染排放等威胁生态的要素，分析生物物种、种群和生态系统可能遭受的急性和累积性生态风险。

（9）生态敏感目标临近关系

指标定义：项目场地与周边生态敏感目标的临近关系

分析方法：生态敏感目标临近关系主要采用定性分析的
方法，明确描述项目场地与周边包括生态保护红线在内的生态敏感目标的临近关系，描述项目场地距离下游饮用水水源地和水生态保护地的临近关系，生态敏感目标类型依据 HJ 19 和 HJ 2.1 相关要求执行。

（九）评估结论与建议

项目尺度生态影响评估需要对项目尺度具体对生态造成影响的程度得出结论，并给出生态修复、补偿等对策建议。首先，要明确建设项目在生态空间占用、生态系统功能损失和生态风险等方面的影响程度，再结合工程及建设情况详细分析，从项目运行规范、空间管控、生态保护、生态修复、生态补偿等方面提出减缓生态影响、维护生态系统结构与功能的对策建议。

六、与国内外同类标准或技术法规的水平对比和分析

国外 EIA 和 SEA 等评价体系主要根据各自国家特点进行建设项目对环境影响评价和战略规划环境影响评价，评价内容涵盖了项目建设前后、生产过程、工艺流程污染排放等对周围大气、水、生态、土壤等的环境影响，从区域特点和评价内容上并不适用于我国项目尺度生态影响评估工作。与国外相比，本标准主要针对项目尺度，设置了项目开发建设生态影响评价的内容、指标、程序方法和技术要求，服务于我国生态环境保护综合监督管理工作。因此，针对建设项目对生态影响的评估，本标准更加具有针对性和适用性，主要
服务于我国地区项目尺度生态评估和监督管理工作。

国内其他针对项目尺度的环境评价相关标准规范的评价指标和内容与国际上相似，多设置调查项目的建设地点、原料和辅料、施工方式、生产工艺、设备和产品等内容，评价在此过程中等对土壤、水、大气和生态的破坏和影响。与其他环境影响评价技术规范相比，本标准的评价指标和评价内容更具有针对性，主要针对开工建设或已建成的开发工程占地类建设项目，开展区域生态影响后评估，服务于生态保护综合监督管理。本标准针对项目尺度的生态影响，设置了项目基本情况、生态空间占用、生态系统服务损失（水文涵养、土壤保持、防风固沙、生物多样性等物质量和价值量）、生态风险评估等的评估指标，更加具有针对性和适用性。

七、实施本标准的管理措施、技术措施、实施方案建议

本标准首次建立了面向全国生态状况调查评估的技术规范，和其他生态系统遥感解译、生态系统野外观测和调查评估等技术规范，共同构建生态系统综合调查评估体系。本标准可有效提高全国和区域生态系统研究相关基础能力和生态系统调查评估综合能力，便于生态环境保护等相关单位使用。

本标准由生态环境部自然生态保护司、法规与标准司组织制订，由生态环境部卫星环境应用中心和北京师范大学起
草，由生态环境部解释，建议尽快采用本标准。