《石油化学工业污染物排放标准》 (征求意见稿) 编制说明

《石油化学工业污染物排放标准》编制组 二〇一四年九月

目 录

1	项目	背景	1
	1.1	任务来源	1
	1.2	工作过程	1
2	行业	⊻概况	1
	2.1	行业在我国的发展概况	1
	2.2	行业在其他国家和地区发展概况	
3	标准	注制(修)订的必要性分析	5
	3.1	国家及环保主管部门的相关要求	5
	3.2	现行环保标准存在的主要问题	5
4	行业	k产排污情况及污染控制技术分析	6
	4.1	石油化学工业废水种类和水污染物	6
	4.2	典型石油化学工业水污染物的种类	
	4.3	石油化学工业排放大气污染物	22
	4.4	大气污染物控制技术	33
5	标准	E主要技术内容	54
	5.1		
		标准适用范围	54
	5.2	标准适用范围	
	5.2 5.3		54
	5.3 5.4	标准结构框架	54 54
	5.3 5.4 5.5	标准结构框架 术语和定义 污染物项目的选择 污染物排放限值的确定及制定依据	54 54 54
	5.3 5.4	标准结构框架	54 54 54
6	5.3 5.4 5.5 5.6	标准结构框架 术语和定义 污染物项目的选择 污染物排放限值的确定及制定依据	54 54 58 59
6	5.3 5.4 5.5 5.6	标准结构框架 术语和定义 污染物项目的选择 污染物排放限值的确定及制定依据 监测要求	54 54 58 59
6	5.3 5.4 5.5 5.6 主要	标准结构框架 术语和定义 污染物项目的选择 污染物排放限值的确定及制定依据 监测要求 医国家、地区及国际组织相关标准研究	54 54 59 59
6	5.3 5.4 5.5 5.6 主妻 6.1 6.2	标准结构框架	54 54 58 59 59 59
	5.3 5.4 5.5 5.6 主妻 6.1 6.2	标准结构框架	54 54 58 59 59 68
	5.3 5.4 5.5 5.6 主要 6.1 6.2	标准结构框架	54 54 59 59 59 65

《石油化学工业污染物排放标准》编制说明

1 项目背景

1.1 任务来源

- (1)原国家环保总局 2002 年度国家环境标准制(修)订项目计划(环办[2002]62 号文)。
- (2)中国石油集团公司和中国石油化工集团公司两大集团承担该系列石油、石化工业污染物排放标准的编制、起草任务,其中中国石油化工集团公司主要负责石油化学工业污染物排放标准的编制。

1.2 工作过程

- (1)首先进行了我国石油化学工业基本情况、国外石油化学工业污染物控制方法及相关污染物排放标准限值、石油化学工业涉及的污染物的监测分析方法标准、规范等相关资料查询;本标准制定过程中,在原中石化安环局牵头下曾多次召开专家研讨会,与会专家包括国家环保总局、中石化科技开发部、发展计划部、抚顺石油化工研究院、石油勘探开发研究院、扬子石化、燕山石化、齐鲁石化、金陵石化、天津石化、石家庄炼油厂、川维总厂、巴陵分公司、上海石化环保技术中心的有关专家。研讨内容涉及课题标准的制订技术路线、标准框架、标准限值的合理性、达标的可行性、经济成本的可行性等方面;同时针对生产工艺、污染物产生情况、污染物处理现状、污染监测状况等主要在中石化和中石油集团公司下属各石油化工化纤企业进行现场和问询调查。
 - (2) 标准开题论证会情况等。

中国石化集团公司已将该排放标准列入集团公司的科研计划(合同编号: 302032)。

2 行业概况

2.1 行业在我国的发展概况

2.1.1 乙烯

作为石油化学工业原料的乙烯工业近 20 年得到了长足发展,截止 2012 年底,中国石化 拥有 14 家乙烯生产企业(包括上海赛科、南京杨巴、福建联合和天津中沙),总乙烯生产能力 947.5 万吨/年,占中国大陆地区蒸汽裂解制乙烯生产总能力 1616.5 万吨/年(乙烯工业协会统计数据)的 58.6%。2012 年生产乙烯 945.4 万吨,占中国大陆地区蒸汽裂解制乙烯生产量 1478.9 万吨/年(全国乙烯工业协会统计数据)的 63.9%。中国石油拥有 11 家乙烯生产企业,乙烯产能 511 万吨/年,占总产能的 31.6%。2012 年生产乙烯 368.9 万吨,占 24.9%。我国石油化工行业现有和在建乙烯生产能力的不完全统计见表 1。生产设施的地理分布见图 1。其中 90%以上坐落于东部沿海省份,且多数企业的投产在 2000 年以后。所采用的工艺技术、生产设备基本上是引进国外的,主要生产工艺及主要产品见图 2。

	农工 国内乙烯项目的分型用处									
序号	所属集团	单位	地点	规模(万吨/年)	投产年份	备注				
1		燕山石化	北京市	80	2005					
2		北京东方石化	北京市	15						
3		上海石化	上海市	84.5	2002					
4		齐鲁石化	山东淄博市	80	1987					
5		扬子石化	南京市	70	1987					
6		扬巴	南京市	74	2005					
7	 中国石化	天津石化	天津市	120	2009					
8	下四47化	茂名石化	广东茂名市	100	1996					
9		广州石化	广东广州市	21	1997					
10		中原石化	河南濮阳市	18	1996					
11		上海赛科	上海市	114	2005					
12		福建联合石化	福建泉州市	80	2009					
13		武汉石化	湖北武汉市	80	2010					
14		镇海炼化	浙江宁波市	100	2009					

表 1 国内乙烯项目的分布情况

15		中科湛江	广东湛江市	100	_	在建
16		海南炼化	海南洋浦	100		在建
17		兰州石化	甘肃兰州市	70	1975	
18		辽阳石化	辽宁辽阳市	20	1980	
19		抚顺石化	辽宁抚顺市	80	2012	
20	中国石油	大庆石化	黑龙江大庆市	60	1986	在建 60 万吨/年
21		独山子石化	新疆独山子	120	2009	
22		吉林石化	吉林	85	2007	
23		四川石化	四川成都彭州	80	2013	在建
24	中国海洋石油	惠州乙烯	广东惠州市	80	2006	在建 100 万吨/年
25	地方石化	辽宁华锦化工	辽宁盘锦市	46	2010	
26	1 地刀石化	沈阳化工集团	辽宁沈阳市	15	2009	
		合计		错误!未指定书 签。	_	

经过数十年的发展,特别是在"十一五"期间,我国乙烯工业取得了举世瞩目的进步,同期世界新建的乙烯装置大多集中在中国。随着一系列乙烯装置的建成投产,到 2010 年底我国乙烯总产能达到 1494.9×10⁴ 吨/年,成为全球仅次于美国(2755.4×10⁴ 吨/年)的第二大乙烯生产国。

生产 100×10⁴ 吨乙烯约需 320×10⁴ 吨石油烃,其中 18%(约 57.6×10⁴ 吨)为加工过程 提供能源而消耗。预计未来我国乙烯基本能够实现自给,而当量消费缺口仍较大,约在 40% 以上,这表明我国乙烯工业仍有一定发展潜力。

炼油丙烯生产量较大,炼油聚丙烯所占份额会逐渐增加,由炼油丙烯、乙烯生产的下游产品在逐步增加。如:炼油厂生产环氧丙烷、苯乙烯的生产装置增加迅速,对石油烃裂解生产乙烯、丙烯的冲击正在形成。2012年底中国石化5家炼油企业苯乙烯产能约43万吨/年;中石化炼油企业丙烯产量约317万吨/年。另外有多家私营企业已建或在建乙烷脱氢制乙烯、丙烷脱氢制丙烯的装置能力正在增加(无统计数据),还有一些催化裂解制乙烯、丙烯的企业在建或已运行。

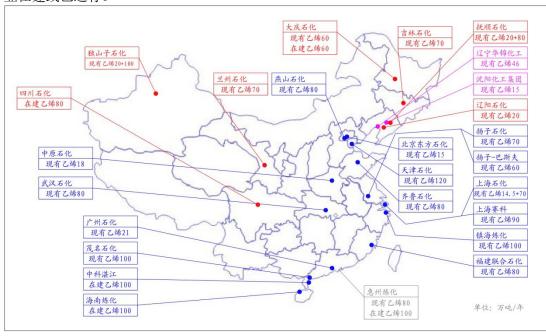


图 1 乙烯工业在我国大陆地区的区域分布

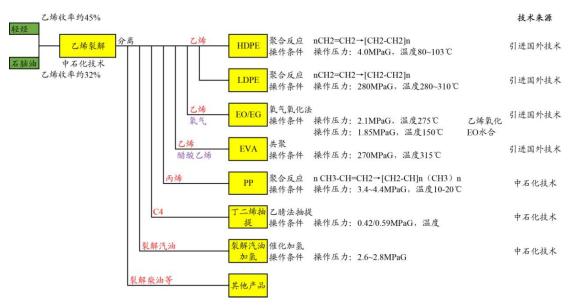


图 2 乙烯工业主要生产工艺及主要产品

2.1.2 芳烃

芳烃是石油化工生产的另一个基本原料, 芳烃产品主要包括: 苯、甲苯、对二甲苯、邻二甲苯、间二甲苯、苯乙烯等。

近几年中国大陆主要芳烃生产能力和生产企业地理分布见图 3 和图 4。

2.1.3 有机化学品及下游产品

以乙烯、丙烯、丁二烯、异戊二烯等烃类热裂解产品,苯、甲苯、二甲苯等芳烃产品经聚合、氧化、氧氯化、氨氧化、羰基合成、卤代、水解、醇解等等反应过程生产象聚乙烯、聚丙烯,顺丁橡胶、异戊橡胶、丁苯橡胶,醋酸、环氧乙烷、环氧丙烷、苯乙烯、丙烯酸,氯乙烯、环氧氯丙烷、对苯二甲酸,丙烯腈、己内酰胺,乙二醇、丙三醇、丁辛醇、丙醇、丁醛,醋酸乙烯等等基本有机化工原料中间体。再由这些化合物进一步反应生产各类日用化学品、合成纤维、合成树脂、合成橡胶、染料中间体、医药中间体等等。这些产品的生产能力和产量在此不一一陈述。

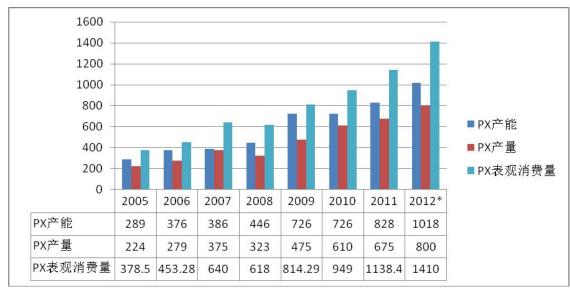


图 3 近几年我国大陆地区 PX 产能、产量和表观消费量

图 4 中国大陆地区主要芳烃生产企业分布

根据石油化工协会统计 2011 年我国石油化工企业总产值已超过 11 万亿元,生产化工产品 6 万多种。2011 年全国危化品普查数据显示,有机化学工业企业 28 万多家。

2.2 行业在其他国家和地区发展概况

2.2.1 行业内企业数量及地理分布状况

石油化工化纤在世界各国主要有以下各公司:

- (1) 阿根廷 PETROBRAS ENERGIA 公司 11 万吨/年的苯乙烯装置产能扩大为 16 万吨/年。该公司还拥有位于扎拉(ZARATE)的 6.5 万吨/年的聚苯乙烯装置阿根廷 PGI 公司。
- (2)阿根廷 PGI 公司位于阿根廷布宜诺斯艾利斯的丙纶纺粘无纺布生产线年产 3 万吨/年,为卫生用品市场提供优质床单和其他用于生产尿布的材料。该公司在美国、墨西哥、南美和中国都拥有纺粘装置,目前该公司正在扩大哥伦比亚卡利,美国北卡罗来纳州和中国苏州地区装置的产能。
- (3) 壳牌东方石油公司(SEPL)是一座综合性的石化产品和炼制大厂,壳牌公司对亚太地区和中东的化学业务投资逐渐增长。它将改进和增加 BUKOM 链厂的产能,新建的世界级规模的 MEG 厂将利用壳牌公司裕廊岛厂的专有技术。壳牌在新加坡乙烯厂每年 80 万吨的裂解能力完全可以给新的 75 万吨/年的 MEG 厂供应原料。

(4)阿曼聚丙烯公司

阿曼石油的子公司阿曼聚丙烯公司在阿曼苏哈尔 34 万吨/年装置产品包括薄膜级和纤维级聚丙烯、双轴向聚丙烯(BOPP)以及注塑级和拉丝级聚丙烯。

- (5) 印度 ASPET 公司在孟加拉邦哈尔迪亚一套年产 14 万吨/年升至 21 万吨/年 PET 装置,该树脂装置的产品主要用于出口。
 - (6) 印度信赖公司 2010-2011 年在古吉拉特邦建造一 100 万吨/年套裂解装置和 PE 及

MEG 装置。此装置将会建在 270 万吨的精炼厂旁边,另有一个 90 万吨的 PP 装置。现在公司出口其 40%(170 万吨)的 PP 和 20%(110 万吨)的 PE 产品。印度信赖每年生产 85 万吨的 MEG。

- (7) 美国氰特工业公司是一家生产专业化学品及材料的公司。在欧洲与北美拥有 10 套装置,总部设在亚力桑那州坦佩。
 - (8) 位于美国佛罗里达州的首诺公司年产 3.2 万吨/年尼龙 66 树脂及其复合物。
- (9)西班牙 REPSOL 公司位于塔拉戈纳省的 PO/SM 联合装置年产 20 万吨/年 PO 和 45.3 万吨/年 SM, 配套生产 13 万吨/年的多羟基化合物和 5 万吨/年的 MGP。
- (10) 日本石化巨头旭化成化学公司与泰国 PTT PCL 公司合资建设一套 20 万吨/年丙烯 腈(ACN)装置,一套 7 万吨/年 MMA 装置和一套 2.5 万吨/年聚甲基丙烯酸甲酯(POLYMMA)装置。
- (11)德国柏林的沃克菲尔工程有限公司是欧洲最大的生产轮胎帘线纤维的厂商,所产聚合物质量优良,生产成本及投资均低。
- (12)德国朗盛公司在印度的 ABS 树脂产能 10 万吨/年,同时该公司在泰国也有 ABS 工厂。该公司还将在华开办生产橡胶化学品和其他产品的工厂,并扩大印度马杜赖工厂的橡胶添加剂产能,以满足印度轮胎生产商的需求。

2.2.2 行业发展趋势预测

长期以资源提供者身份出现在国际市场上的产油国,于 2000 年前后,为了改变对资源出口的过度依赖,纷纷加大投资力度,向石油产业链的中下游扩张,并与中国一起成为近年来乙烯产能增长最迅速的地区。

2009年中东有922万吨乙烯新增产能将发挥作用(其中包括2008年第四季度投产的452万吨能力),同时有700万吨聚烯烃投产(含2008年第四季度的338万吨),此后的2010~2011年中东地区还将有1000万吨乙烯装置建成投产。

2009 年中东将释放 321 万吨聚丙烯产能,530 万吨聚乙烯产能,其中包括低密度聚乙烯 100 万吨、线型低密度聚乙烯 190 万吨、高密度聚乙烯 180 万吨,亚洲将是其新增产能的主要目标市场。

2011年中东地区聚乙烯、乙二醇和聚丙烯产能将分别达到 1600万吨、1000万吨和 760万吨,届时出口量将分别达到 1377万吨、995万吨和 482万吨。根据中东各国石化发展计划,未来 80%以上的乙烯用于生产聚乙烯和乙二醇,且出口比例在 60%以上; 2015年聚丙烯产能将达到 1000万吨/年,是目前的 3.6 倍,未来中东聚丙烯的供需格局将发生变化,大量出口。

正是鉴于中东石化企业的成本优势,近年来陶氏、巴斯夫等跨国化工巨头纷纷决定改弦易辙,打算放弃乙烯及聚乙烯等大宗化学品业务,改向附加值更高的精细化工、特种化工发展。2009年3月9日,陶氏宣布在4月1日前完成对特种化工品生产商罗门哈斯的收购,完成了其向特种化工供应商转型的第一步。日韩等石化生产商前期抛售乙烯也有这方面的考虑,它们在向附加值更高的产品转型。

3 标准制(修)订的必要性分析

3.1 国家及环保主管部门的相关要求

2013 年 9 月 10 日国务院发布了《大气污染防治行动计划》(国发[2013]37 号)。要求"加大综合治理力度,减少多污染物排放,加强工业企业大气污染综合治理";"推进挥发性有机物污染治理。在石化、有机化工、表面涂装、包装印刷等重点行业实施挥发性有机物综合整治,在石化行业开展"泄漏监测与修复"技术改造。积极推进加油站、原油成品油码头开展油气回收、加油站、储油库、油罐车于 2014 年底前完成油气回收治理";"全面推行清洁生产"。

3.2 现行环保标准存在的主要问题

由于受到各种因素的制约和影响,从长期的实施过程来看,《污水综合排放标准》(GB 8978-1996)、《大气污染物综合排放标准》(GB 16297-1996)等现行国家污染物综合性排放标准,固然已经在我国宏观的环境管理中发挥了很好的作用,但是按照"统筹经济社会发展、统筹人与自然和谐发展"的新发展观的要求,已经不能完全满足当前的需要,特别是由于综合性强,对于行业的特点反映得不够突出,表现在:分类指导性不强,技术指标宽严程度不

准确,与技术经济条件结合不紧密,前瞻性不够,社会影响力较差。

因此,有必要根据石油、石化行业的特点,制定一系列技术上先进、环境上容许、经济上合理、实践上可行、符合清洁生产和可持续发展战略、并与国家环保法律、法规要求及石油、石化技术经济水平的现状和发展趋势相适应的工业污染物排放标准。

石油化学工业的原材料构成、生产工艺和产品结构都比较复杂,不少污染物具有明显的行业特征。而现行的污染物综合排放标准主要是针对一些具有共性的污染源和污染物而制定的,虽然在总体上比较适合,但是显得粗略,难以考虑石油化学工业的特殊性,有一些指标的取值和当前的技术水平脱节,缺乏针对性及可操作性。

为求得人类环境和石油化学工业的协调、均衡及可持续发展,国家环保总局编制和发布石油化学工业的行业性排放标准必将有利于国家行政部门和行业内部管理的需要。

4 行业产排污情况及污染控制技术分析

4.1 石油化学工业废水种类和水污染物

石油化学工业生产过程多种多样,按工艺过程分类有原料、中间品、产品的储存;反应过程,包括裂解、聚合、氧化、氨氧化、氧氯化、水解、醇解、羰基反应、酯化反应等等;产品精制过程,包括精馏、萃取、重力或离心分离等。产生废水的种类有:反应生成水(氧化反应),工艺物料洗涤水,工艺设备、管道清洗水,直接加热或作为反应介质蒸汽冷凝水,地面冲洗水和生产区域污染雨水等。

石油化学工业各生产企业产生废水中水污染物的种类与企业生产所用原料、生产工艺过程、和产品直接相关。即使使用相同的主要原料生产相同的产品,但工艺过程不同,生产单位产品产生废水的数量、污染物种类和废水中污染物浓度相差很大。

石油化学工业企业的生产设施一般集中布置在一个较小的地理区域内,生产过程产生的废水通过污水集输系统送到一起处理,因此,石油化学工业水污染物排放标准只设置排放标准。当生产废水中含有标准规定的一类污染物时,废水应在生产车间排水口前对一类污染物进行预处理,使生产车间排水口一类污染物达到标准要求的限值。

由于以上原因,不可能对石油化学工业制定统一的特征污染物排放标准,但可以制定统一的废水综合污染因子标准,如:化学需氧量(COD)、生物化学需氧量(BOD)、pH、悬浮物等。本标准结合我国受纳水体的要求和有机物对受纳水体水质的影响程度,提出了工业废水特征污染物。石油化学工业企业废水特征有机污染物因子可以在环境影响评价阶段,根据企业生产过程的原料、工艺过程和产品从工业废水特征污染物及其排放限值表中选出特定石油化学工业企业应控制的特征污染物因子,并经环保主管部门确认。

为了便于企业和政府环保管理部门明确哪些生产设施的排水中包含一类污染物,标准的附录 B(表 2)列出了工业废水特征有机污染物。

序号	特征有机水污染物	序号	特征有机水污染物
1	三氯甲烷(mg/L)	32	三氯乙烯(mg/L)
2	四氯化碳(mg/L)	33	三氯苯(总量,mg/L)
3	溴酸盐(mg/L)	34	六氯丁二烯(mg/L)
4	甲醛 (mg/L)	35	丙烯酰胺(mg/L)
5	挥发酚类(以苯酚计,mg/L)	36	四氯乙烯(mg/L)
6	氯化氰 (以CN-计,mg/L)	37	甲苯 (mg/L)
7	一氯二溴甲烷(mg/L)	38	邻苯二甲酸二(2-乙基己基)酯
,			(mg/L)
8	二氯一溴甲烷(mg/L)	39	环氧氯丙烷(mg/L)
9	二氯乙酸(mg/L)	40	苯(mg/L)
10	1,2-二氯乙烷(mg/L)	41	苯乙烯(mg/L)
11	二氯甲烷(mg/L)	42	苯并(a)芘(mg/L)
12	1,1,1-三氯乙烷(mg/L)	43	氯乙烯(mg/L)
13	三氯乙酸(mg/L)	44	氯苯(mg/L)

表 2 工业废水特征有机污染物

14	三氯乙醛(mg/L)	45	二(2-乙基己基)己二酸酯(mg/L)
		_	
15	2,4,6-三氯酚(mg/L)	46	二溴乙烯(mg/L)
16	三溴甲烷(mg/L)	47	二噁英(2,3,7,8-TCDD, mg/L)
17	七氯(mg/L)	48	土臭素(二甲基萘烷醇, mg/L)
18	五氯酚(mg/L)	49	五氯丙烷(mg/L)
19	六六六(总量, mg/L)	50	双酚A (mg/L)
20	六氯苯(mg/L)	51	丙烯腈(mg/L)
21	乙苯(mg/L)	52	丙烯酸(mg/L)
22	二甲苯(所有异构体,mg/L)	53	丙烯醛(mg/L)
23	1,1-二氯乙烯(mg/L)	54	四乙基铅(mg/L)
24	1,2-二氯乙烯(mg/L)	55	戊二醛(mg/L)
25	1,2-二氯苯(mg/L)	56	甲基异莰醇-2(mg/L)
26	1,4-二氯苯(mg/L)	57	多环芳烃(总量, mg/L)
27	萘酚-b(mg/L)	58	多氯联苯(总量, mg/L)
28	黄原酸丁酯(mg/L)	59	邻苯二甲酸二乙酯 (mg/L)
29	氯化乙基汞(mg/L)	60	邻苯二甲酸二丁酯(mg/L)
30	硝基苯(mg/L)	61	环烷酸(mg/L)
31	苯甲醚 (mg/L)		

4.2 典型石油化学工业水污染物的种类

4.2.1 蒸汽热裂解装置

(1) 含酚废水

含酚废水来自工艺水系统,工艺水与物料一起在系统中循环,所以其中含有少量有机成分,为了去除工艺水中杂质保证稀释蒸汽质量、减少对设备的腐蚀,对工艺水先进行汽提,塔底排出含酚废水。系统稳定运行,保证水系统循环平衡,则水量接近工艺指标,不会有较大波动。含酚废水与处理后的含硫污水汇合进入化工污水处理场。

(2) 含硫废水

含硫废水来自裂解气碱洗水洗塔的水洗段,目的是脱除含硫钠盐。乙烯装置废水中的硫含量以及酸性气体脱除工艺的选择都取决于原料种类。产生的含硫废水进入废碱塔下塔用二氧化碳中和,经汽提生成硫化氢进入火炬系统烧掉。

(3) 废碱液

废碱液来自裂解气碱洗水洗塔碱洗段。碱洗的目的是脱除硫化氢等酸性气体,有利于裂解气的分离精制、防止设备腐蚀和防止反应器催化剂中毒。用碱洗脱除二氧化硫和硫化氢,废液的种类、组成是不同的。产生的废碱液在装置内用裂解汽油萃取脱油,然后送油品车间贮存,沉降脱油,再送到废碱处理装置预处理后排入污水处理场。

(4) 汽包排污

汽包排污来自裂解炉高压蒸汽包和废热锅炉,目的是保持汽包液位稳定。操作稳定,水、 汽压力液位平衡,排污量则很少。

(5) 清焦废水

清焦废水排放量与裂解炉运行周期有关,主要是烧焦所用中压蒸汽凝液和水力清焦所用的消防水,此类废水经过滤清除焦渣后排入污水管线。精心操作,延长裂解炉运行周期是减少清焦废水的唯一途径。

(6) 蒸汽凝液

蒸汽凝液包括装置内压缩机高压蒸汽复水,其他气泵中压蒸汽凝液和伴热低压蒸汽凝液以及各种蒸汽凝液,凝液比较洁净,一般进入凝液回收系统,返回动力装置除氧器处理后继续用来发生蒸汽。

(7) 系统排水

系统排水是装置所有干燥器定期排水,干燥器主要干燥气体物料,此部分水要求进入污水管线。

(8) 火炬罐排水

火炬罐排水是火炬气水封罐排水,火炬气中部分烃溶入水中,火炬气压力大于水封压力时冲破水封溢流出来的水。系统平稳没有超压排放,减少溢流,则相应减少污水排放。这部分水进污水场。

某蒸汽裂解装置排水污染源数据见表 3。

序号	排放点	排污去向	去向排放形式	数量	COD_cr	油	酚
)1, 2	11.1次点	14777月	1 THE MIX NO IN	t/h	mg/L	mg/L	mg/L
1	含酚污水	污水场	连续	10	715	18.7	65
2	含硫污水	 先预处理然后去污水场	连续	5	1500	90	0.6
3	废碱液	元则处理然归云仍小坳	连续	6.5	1500	1000	0.6
4	废黄油	油品车间	连续	2.065	1500	6000	
5	汽包排污	污水场	连续间断	9.35	150-500		
6	清焦废水	污水场	间断	29	500		
7	凝液排放	污水场	连续	3	50-200		
8	系统排水	污水场	间断	微量	<50		
9	火炬罐排水	污水场	间断	3	200-1000		
10	生活污水	9#线	连续	10	50-300		
11	初期雨水	污水场	间断	120			

表 3 某 45 万吨/年 蒸汽裂解装置水污染源数据

4.2.2 芳烃生产装置

芳烃是指结构上含有苯环的烃。作为基本有机原料应用最多的是苯、乙苯、对二甲苯,此外还有甲苯和邻二甲苯。芳烃的来源有:炼油厂重整装置、乙烯生产厂的裂解汽油、煤炼焦时副产,目前通过煤炼焦获得的芳烃已不占重要地位。不同来源获得的芳烃其组成不同,因此获得的芳烃数量也不相同。裂解汽油中苯和甲苯多,二甲苯少;重整汽油是苯少,甲苯和二甲苯多;乙苯在这两种油中都少,这种资源与需求的矛盾促进了芳烃生产技术的发展。乙苯是制苯乙烯的原料,苯乙烯是聚苯乙烯、丁苯橡胶(在合成橡胶中产量最大)的原料,因此,乙苯通常采用合成法,即由乙烯和苯制成乙苯,再由乙苯制苯乙烯。甲苯资源较多,但应用较少,为弥补苯的不足,可由甲苯制苯。还应指出,二甲苯有三种异构体:邻二甲苯、间二甲苯、对二甲苯。对二甲苯需求量最大,邻二甲苯居中,间二甲苯最小;供应量却是间二甲苯最大,邻二甲苯和对二甲苯相近。为满足要求(主要是生产涤纶),首先把对二甲苯分离出来(采用吸附法和低温结晶法),通过异构化反应,把间二甲苯转化成对二甲苯。此外把资源较多的甲苯(由7个碳原子组成)和应用较少的碳九芳烃(由9个碳原子组成)进行反应,可制成碳八芳烃(二甲苯的混合物)。芳烃的制取方法说明:只有深入开展科学研究,掌握和利用规律,才能充分利用已有资源,满足人们日益增长的需求。

乙苯脱氢制苯乙烯是当前的主要生产方法(产量占 90%)。该工艺包括乙苯、乙苯脱氢和苯乙烯精馏等三个生产单元。乙苯单元是将乙烯和苯在沸石催化剂的作用下,发生烃化反应和反烃化反应,生成乙苯的过程。乙苯脱氢单元将乙苯和过热蒸汽混合,在温度 627℃和催化剂存在的条件下发生脱氢反应,生成苯乙烯(脱氢混合物)。苯乙烯精馏单元将脱氢混合物在减压条件下分离出苯、甲苯、乙苯、苯乙烯及少量焦油。

芳烃生产装置可能对水污染的因素有:

- A、油品采样,采样时将采样器中以前的油放掉,这样的地方有:对二甲苯、邻二甲苯、苯、甲苯、外供混合二甲苯等采样口。尽量减少油排放的时间,密闭采样法可减少污染。
- B、塔、罐、管线蒸煮置换,蒸气冷凝水去污水系统。将泵、塔、罐、管线中的物料倒空干净。对于在检修过程中从装置中排出的污油,应用专用的污油桶回收。
- C、地面最易污染的区域是泵部位,主要有 C8A 原料泵和 PDEB 解吸剂泵。加强对运行泵的巡检,对漏油的泵应及时切换检修。
- D、当发生设备、管线泄漏时,一方面要尽快组织检修,另一方面要及时妥善回收泄漏的物料。物料应优先回收到相应的排液系统中,其次的选择是进入污水处理系统。

表 4 对二甲苯装置废水污染源数据

	Ī	1		1				
序	 排放位置	排放量	水温	pH 值	污染物组成及浓	治理措	备注	
号	711/7人区丘	(kg/h) (°C) P □		Pi. III.	度(mg/L)	施	щи	
1	吸附分离装置水分	37.5	40	6~9	微量油	送污水	间歇	
	离罐	37.5	40	b′~9	1	系统	排放	
2	吸附分离装置抽余	0.22	40	C~ .0	微量油	送污水	间歇	
	液塔回流罐	8.33	40	6~9	100里在	系统	排放	
3	吸附分离产品塔回	49.98	66	6~9	微量油	送污水	间歇	
	流罐	49.96	00	0.39	100里在	系统	排放	
	装置其他排出口	1.50×10 ⁴ ~			6~9	油,10	送污水	
4		6.0×10 ⁴	常温	COD _{cr} , 500		系统		
		0.0×10			悬浮物,160	水 机		
					正磷≤2.0			
		1.39×10³∼			有机磷≤5.3~7.3	进入清	间歇	
5	机、泵循环水	3.47×10 ³	常温	8~9	总铁≤0.5	净下水	排放	
		3.4/*10			Cl⁻≤100	系统	14F/JX	
					生物粘泥≤10.0			

4.2.3 丙烯腈生产装置

丙烯腈是无色有毒液体,沸点 77.3℃。丙烯腈是合成纤维(腈纶)、合成橡胶(丁腈橡胶)、合成塑料(ABS)主要的单体,地位十分重要,还是生产多种有机化工原料的原料。

丙烯腈的工艺主要引进英国 BP 公司的专利技术,采用丙烯氨氧化法 (Sohio 工艺) 生产丙烯腈。主要由反应、回收、精制、空压制冷和工艺废水五部分所组成。反应部分主要以丙烯、氨和空气为原料,在催化剂的作用下,经流化床反应器氧化生成主产物丙烯腈及副产物氰氢酸、乙腈等。回收部分是使进入急冷塔的反应气体经过多层喷嘴喷淋使其骤冷,并将其中的重组份和废催化剂洗涤下来,过量的氨用硫酸中和,生成稀硫铵溶液。在吸收塔用水作为吸收剂完全吸收主产物和副产物,剩下的氮气、一氧化碳、二氧化碳、水蒸气及未参加反应的氧气和烃类由塔顶排气筒排入大气。精制部分是将吸收后的混合物溶液精馏分离出丙烯腈主产品及氰氢酸、粗乙腈副产品。本装置主要原料为丙烯、氨、空气,采用 C49MC 催化剂。主要产品丙烯腈,副产品氰氢酸、粗乙腈和稀硫铵。

丙烯腈主反应和副反应生成的水带至回收、精制系统,大量的水作为工艺吸收剂和萃取剂重复利用,系统多余的水被连续送至四效蒸发器使废水清浊分流,蒸出凝液除一部分送往水封罐作为补充水外,其余部分排到废水处理系统。必要时投加一定量的 H₂O₂降低排水 CN-浓度。废水污染源数据见表 5。

排放位置 排放量 m³/h 水温℃ 治理措施 污染物组成及浓度 mg/L рН COD 1700 CN-2.5 轻有机物汽提塔 生化处理 5 42 8 NH₃-N 20 ΑN 1

表 5 废水污染源数据

该装置可能对水污染的因素有:

A、机泵封水

丙烯腈装置机泵封水因含有毒物质浓度高,专门设有全封闭的输送系统。工艺设备排出的污水自流进入地下收集槽,间断排回系统作为工艺补充水重复利用。

- B、装置框架周边设有集水沟,地面冲洗水和地面被污染雨水自流进入污水处理场。
- C、罐区初期雨水。

D、装置检修

4.2.4 环氧乙烷和乙二醇装置

环氧乙烷是以乙烯为原料生产的产品,产量仅次于聚乙烯塑料。它是低沸点(10.4℃)的易燃易爆气体(在空气中含 3%-100%均可爆炸)。乙二醇是环氧乙烷与水的反应物,为毒性粘稠液体,沸点 197.6℃。除生成乙二醇外,环氧乙烷产量的 10%-20%用于生产表面活性剂及其他多种化工原料。乙二醇的主要应用是制取涤纶纤维和聚酯树脂,其次是用于汽车冷却系统的抗冻剂(与水混合后,结冰温度可以降至一700℃)以及溶剂、润滑剂、增湿剂、炸药等。环氧乙烷与乙二醇通常安排在一个装置生产。环氧乙烷的生产目前广泛采用的是在银催化剂存在下,用氧气直接氧化,反应温度为 250-290℃,反应压力为 2 兆帕。乙二醇的生产方法都是采用环氧乙烷与大量水在 150-200℃,2-2.5 兆帕的条件下直接水合。本工艺介绍为采用美国科学设计公司(简称 SD 公司)专利技术的纯氧氧化生产环氧乙烷、乙二醇工艺。

环氧乙烷、乙二醇的生产装置可分为两个单元,分别是:氧化单元和精制单元。

氧化单元主要是生成环氧乙烷产品。在一定的条件下,乙烯和氧气以一定浓度气相通过银催化剂固定床反应器进行氧化反应,部分生成环氧乙烷。反应气体经水洗将环氧乙烷与其他气体分离得到稀环氧乙烷水溶液,经解吸、再吸收过程得到 10%环氧乙烷水溶液,再经EO 进料汽提塔脱除大部分有机酸和 CO₂ 及烃类后,环氧乙烷水溶液分别送往环氧乙烷精制系统脱除水分和杂质制得环氧乙烷产品。

精制单元主要是生成乙二醇产品。环氧乙烷送往乙二醇反应蒸发系统进行加压水合反应,生成物经预效及六效蒸发提浓,然后脱水、精制、分离,分别获取一乙二醇、二乙二醇、三乙二醇产品及多乙二醇残余液。

该装置可能对水污染的因素有:

A、水处理再生排水槽

属工艺循环水处理系统的设置,是为了确保环氧乙烷吸收系统的循环水中所含乙二醇浓度得到控制并确保废水中的乙二醇含量减到最低程度。这股循环水抽出一小部分到工艺循环水处理系统脱除杂质后再使用,再生产的废水则排入污水系统,主要含钠盐及少量有机物。通过控制置换水量,保证置换效果来控制排放量。

B、脱醛塔废水

为了确保产品的质量,脱醛塔中的含醛蒸汽,由塔顶抽出经冷凝后排放到污水系统,主要含甲醛、乙醛等杂质。通过加强操作,控制工艺指标,保证产品质量的同时,降低排放量。

C、脱水塔废水

为了确保乙二醇产品的质量,乙二醇精制系统脱水塔顶的凝液部分回流,另一部分脱除的一些杂质,排入污水系统,主要含醛、酸类、少量有机物。通过加强操作,控制工艺指标,降低排放量。

环氧乙烷/乙二醇装置排水污染源数据见表 6。

	序号	名称	数量 t/h	温度 ℃	рН	污染物浓度 mg/L	处理方法	备注
	1	水处理再 生排水槽	6.2	45	6-7	乙二醇 1000	去公司一级 污水处理场	间歇 排放
	2	脱醛废水	5	45	6-7	乙二醇、醛 4000	去公司一级 污水处理场	连续 排放
•	3	脱水塔 废水	13	45	6-7	乙二醇、醛 2000	去公司一级 污水处理场	连续排放

表 6 环氧乙烷、乙二醇装置水污染源数据

4.2.5 苯酚丙酮装置

本装置采用异丙苯法生产苯酚、丙酮。该工艺以苯和丙烯为原料,装置由异丙苯单元和苯酚单元两个单元组成,苯酚单元又可分为氧化分解、苯酚丙酮精制和回收三个部分。

异丙苯单元的功能是以苯和丙烯为原料,经烃化、反烃化反应生成粗异丙苯,沉降、水

洗、中和后, 再经多级精馏, 分离出高纯度的异丙苯。

在氧化分解部分,异丙苯与空气中的氧气反应,生成过氧化氢异丙苯(CHP),提浓后进入分解釜,在硫酸催化剂的作用下,CHP分解为含苯酚和丙酮的分解液。

在苯酚丙酮精制部分,分解液经精馏得到产品苯酚和丙酮。

回收部分主要是对苯酚丙酮精制部分切出的含有用成分的馏分进行萃取、精馏、加氢等操作,回收苯酚、丙酮、异丙苯等有用组分,同时进行废水的预处理。

丙酮装置水污染源分析:

- A、水洗塔: 经烃化、反烃化反应后产生的烃化液中含有少量的 AlCl₃、HCl 等腐蚀性物质。在烃化液水洗塔中进行水洗,油从底部、水从上部分别加入,两相接触过程中除去上述杂质。
- B、碱沉降罐:经水洗后的烃化液,与 NaOH 水溶液混合搅拌,中和残存的酸性物质后进入碱沉降罐。
 - C、烃化尾气水洗塔: 从顶部加入纯水对烃化尾气进行水洗,除去酸性物质。
- D、异丙苯加料洗涤罐:用 NaOH 水溶液洗涤氧化塔进料异丙苯中含有的少量的酚和酸性物质。
 - E、氧化塔:加入稀 Na₂CO₃ 水溶液中和掉反应副产的微量有机酸,稳定反应系统。
- F、氧化液沉降槽:氧化液在氧化液沉降槽中分离掉 Na₂CO₃ 水溶液后,加入新鲜 Na₂CO₃ 水溶液对残存的微量有机酸及其盐类进行洗涤,再沉降分离。
- G、中和罐:加入稀 Na_2CO_3 水溶液对中和后分解液中残存的微量硫酸及盐类进行洗涤,再沉降分离。
- H、丙酮拨顶塔:分解液经初步精制后,丙酮馏分中含有少量的醛类物质。为使醛类与丙酮分离,在接近丙酮拨顶塔的塔釜处加入稀 NaOH 溶液,使醛类与丙酮缩合,生成高沸点组分B-羟基丙酮,从而与丙酮分离。
- I、苯酚萃取塔: 烃塔塔顶馏分冷凝后的油层含有少量苯酚。在苯酚萃取塔中用稀 NaOH 溶液进行萃取。稀 NaOH 溶液从塔顶加入,油层从塔釜加入,二者逆流接触。

全装置排水污染源数据见表 7。

序号 水污染源 水量(t/h) 苯(mg/L) 苯酚(mg/L) 丙酮(mg/L) рН 水洗塔 1 5.034 500 5 碱沉降罐 2 600 2.569 11 烃化尾气水洗塔 1.502 3 6 4 异丙苯废液洗涤罐 2.516 300 8 5 异丙苯加料碱洗罐 0.774 13 6 中和罐 0.497 6000 24000 7 7 烃塔收集器 1.341 6000 50200 7 精丙酮塔 8 0.807 _ 26000 13

表 7 苯酚丙酮装置水污染源数据

4.2.6 聚氯乙烯装置

聚氯乙烯的聚合方法一般分为悬浮聚合,溶液聚合,本体聚合,乳液聚合等,其中悬浮聚合是主要的聚合方法。

本装置采用悬浮聚合法间歇生产工艺,是从日本信越化学工业株式会社引进的专利和专利技术。该工艺由化学品配制单元、聚合单元、氯乙烯回收单元、干燥单元、产品处理单元和公用工程单元组成。电子计算机系统对聚合的全过程进行自动控制,并对全装置进行监视。

氯乙烯和热脱盐水以及相应的配制好的化学品助剂由泵加入聚合釜中,单程聚合率为80%-90%,未反应的单体从聚合釜顶部排出,经氯乙烯回收单元回收再用于聚合生产。干燥单元是将从聚合釜底部排出的浆料经汽提,由卧式、沉降式离心机除去水份,再进入带内加热器和冷却器的卧式沸腾干燥器。干燥后的成品经气流输送至产品处理单元,经包装称重后码垛储存于仓库中。

聚氯乙烯装置水污染源分析:

A、聚合釜排水

一釜料聚合反应完成,聚氯乙烯浆液排完后,对聚合釜进行冲洗,排水中主要含聚氯乙烯树脂及化学品助剂。

B、气体洗涤塔排水

从聚合釜出来的未反应的氯乙烯经洗涤塔洗涤除去所带的聚氯乙烯飞沫,洗涤塔排水主要含聚氯乙烯颗粒。

C、排放汽提塔排水

把氯乙烯回收单元含有氯乙烯单体的污水都汇集在一起,并在汽提塔内用蒸汽和氮气汽提直至废水中氯乙烯单体浓度小于 10mg/L。

D、离心机排水

经汽提后的浆液被打入离心机,离心后的湿树脂含水量降到 23%~27%。离心机废水其水质较好,主要含少量聚氯乙烯颗粒。建议可以采取措施,将其过滤后作为工业循环冷却水的补充水。

E、软化水塔排水

软化水塔排水是阴离子塔、阳离子塔再生时所排酸、碱性废水。

聚氯乙烯装置排水污染源数据见表 8。

序号	废水来源	水污染源名称	水量 t/h	去向	处理后污染物组成
1	聚合单元	聚合釜	5.5		PH: 6-9;
2	 氯乙烯回收单元	气体洗涤塔	4.7	总	悬浮物<250mg/L;
3	录石炉凹収平儿 	排放汽提塔	0.1	废	BOD₅<300 mg/L;
4	干燥单元	离心机	43.8	水	$COD (KMnO_4) < 300mg/L;$
5	公用工程单元	软化水塔 15.6		池	CL ⁻ : 1500-3000mg/L; 单体(VCM)<10mg/L

表 8 聚氯乙烯装置水污染源数据

4.2.7 己内酰胺-锦纶装置

(1) 己内酰胺装置

己内酰胺装置的类型有: 苯法、甲苯法两种。

这里介绍的是采用甲苯法生产己内酰胺的工艺装置,其中包括甲苯氧化、苯甲酸加氢、 氨氧化、酰胺化、硫铵结晶、己内酰胺萃取、精制、硫酸制备等八个单元组成。

甲苯氧化单元的功能是以甲苯为原料与空气中的氧发生反应,生成粗苯甲酸,经精馏分离出高纯度苯甲酸。

苯甲酸加氢单元的功能是以苯甲酸为原料与氢气反应生成环己烷羧酸(CCA)经分离蒸发得到较高浓度的环己烷羧酸,做为下一步反应的原料。

氨氧化单元是氨与空气中氧进行反应再用 H₂SO₄ 吸收生产亚硝基硫酸 (NOHSO₄)。

酰胺化单元是将环己烷羧酸与烟酸反应生成混合酸酐,然后在九级酰胺化反应器内与亚硝基硫酸(NOHSO₄)反应生成己内酰胺硫酸盐,经水解得到己内酰胺的酸溶液(酸闭)。

硫铵结晶单元是酸团在硫铵结晶器内用氨气中和生成硫铵悬浮液后与酰胺油分离。

己内酰胺萃取精制单元是将酰胺油经氨吸收、苛化、甲苯蒸馏、(后改为苯蒸馏)、三效蒸发、轻副产物蒸馏、重副产物蒸馏等过程进行提纯、精制,最终得到己内酰胺产品。

硫酸制备单元是将硫磺熔融、燃烧生成 SO₂,经过五床转化器生成 SO₃,经 30%的发烟硫酸、98%的硫酸吸收分别制成 30%烟酸、98.5%硫酸、21.5%烟酸。

己内酰胺装置主要原料:甲苯、氢气、硫磺、氨,主要产品为己内酰胺,副产硫酸硫铵。 (2)锦纶装置

锦纶装置是利用己内酰胺为原料生产聚酰胺切片、锦纶长丝、加弹丝、牛津布、塔夫绸等产品。其中包括聚合、前纺、加弹、织造四个工序。

聚合工段是以液态己内酰胺为原料、水为催化剂使己内酰胺开环聚合生产聚合切片。 前纺工段共有四条纺丝线。一条生产预取向丝(POY),一条生产粗旦全牵伸丝(FDY), 另两条生产全牵伸丝(FDY)。聚合切片经螺杆挤压机熔融挤压、纺丝组件喷丝、上油器上油、 卷绕辊卷绕生产出 POY, FDY 生产线在卷绕辊卷绕之增加牵伸辊牵伸其余与 POY 流程相同。

加弹工段是以 POY 为原料经 TG-30 型摩擦牵伸变形机假捻—解捻使纤维螺旋状卷曲,获得高蓬松性、弹性及可伸缩性,产品称 DTY 丝。

织造工段是以 FDY 经经丝、整经、浆纱、并轴、穿综、穿筘、织造七道工序生产塔夫绸和牛津布。

综上所述甲苯法生产己内酰胺的工艺流程长、过程复杂,采用酸碱等高腐蚀性物质,原材料、中间产品等具有毒性,而产品己内酰胺又极易溶于水,中间产品苯甲酸、环己烷羧酸等物料在水中有一定的溶解性且为苯类物质;锦纶装置同样有己内酰胺物料,因此工艺的水污染治理任务非常艰巨。

(3) 己内酰胺-锦纶装置水污染源分析:

A、甲苯氧化单元醋酸水

本单元是原料甲苯与空气在催化剂的作用下发生反应生成苯甲酸,经苯甲酸蒸馏、精馏分离出苯、甲苯后,从滗析器出来的含甲苯和醋酸的水送污水处理场进行处理。

分离过程中控制滗析器内的油水界面很重要,尽量减少甲苯带入醋酸水中。工艺设计采用重力分离甲苯和醋酸水,自动液位控制,液位达到设定值时,泵自动启动排水。

B、氨氧化蒸馏酸水

氨氧化单元是气氨与空气中的氧反应生成一氧化氮、二氧化氮和水,经换热、分离出来的稀硝酸冷凝液被送到浓缩塔中浓缩,蒸馏产物部分用于塔回流,其余的送污水处理场或外销。

工艺过程控制硝酸浓缩塔底水中硝酸的浓度,脱去反应过程中的水。

C、硫铵结晶冷凝液

硫铵结晶单元的任务是从酰胺化单元送来的酸团中分离粗己内酰胺并产生硫铵。从酰胺化单元来的酸团所含的硫酸在硫胺结晶器中与氨中和,得到硫铵结晶,沉淀在结晶器的底部。酸团中的己内酰胺留在液相的酰胺油中,结晶器顶部抽真空蒸汽经冷凝后收集于滗析器中。在滗析器中回收的正己烷送回酰胺化单元处理,水溶液除部分用于饱和硫铵溶液的稀释外,其余送至污水处理单元。

滗析器中水溶液液位通过分程控制外部系统的蒸汽凝结水补充量和至 44 单元污水生化处理场的出水量来调节。为减少废水量,一定要稳定结晶器进料、顶部真空度及温度,使结晶器顶蒸汽凝液连续稳定进入滗析器,避免或减少滗析器补充系统蒸汽凝结水。

D、己内酰胺精制单元三效蒸发蒸出水

来自己内酰胺萃取单元的己内酰胺水溶液通过三级蒸馏浓缩使己内酰胺浓度由35%提高到73%,蒸发出来的水含有少量己内酰胺,部分送至萃取单元回收,其余送至污水处理场。

E、锦纶排污

锦纶工艺污水为聚合装置己内酰胺回收单元浓缩塔、蒸馏塔顶水凝液。以上废水经地沟 汇集于地槽由泵送至污水处理场。

F、其他水污染因素分析及对策

地面含油污水。各装置地面排放的含油污水经地沟汇集进入污油提升池,经初步隔油后进入污水处理场。这部分污水一般为装置水封溢流、机泵及其他密封点的泄漏、紧急停工处理的非正常排放物、装置冲洗地面废水等。这部分水量的弹性较大,需通过加强现场监督和管理。如:调节水封使其微溢流;消灭装置泄漏点;紧急停工时,将系统内物料打入容器储存,第一次、第二次冲洗水要储存,只有较干净的冲洗水方可排放等措施来加强控制。

己内酰胺-锦纶装置排水污染源数据见表 9。

表 9 己内酰胺-锦纶装置水污染源数据

mg/L

序号	水污染源名称	水量 t/h	PH	COD _{cr}	BOD ₅	氨氮	TKN	OIL
1	甲苯氧化醋酸水	4.5	<3	30000	1500 0	/	/	/
2	氨氧化蒸馏酸水	2.1	>1	/	/	/	/	/
3	硫铵结晶冷凝液	2	3-4	5826	2687	/	2455	/
4	三效蒸发出水	15	6-8	6200	3100	/	62	/

5	聚合己内酰胺回收单元浓缩塔	5	>6.5	3000	2300	/	186	/
6	聚合蒸馏塔顶水凝液	2	>6.5	3000	2300	507	186	/
7	地面含油污水	15	6-9	4485	2200	40	471	150
8	生活污水	20	6-9	600	200	24	50	/
9	雨水	10	7-9	400	150	/	40	150

4.2.8 合成橡胶装置

合成橡胶是由人工合成方法而制得的,采用不同的原料(单体)可以合成出不同种类的橡胶。

(1) 顺丁橡胶

顺丁橡胶具有特别优异的耐寒性、耐磨性和弹性,还具有较好的耐老化性能。顺丁橡胶绝大部分用于生产轮胎,少部分用于制造耐寒制品、缓冲材料以及胶带、胶鞋等。顺丁橡胶的缺点是抗撕裂性能较差,抗湿滑性能不好。

顺丁橡胶生产装置以丁二烯为原料,铝、硼、镍为催化剂,分为聚合、溶剂回收、凝聚和后处理四部分。聚合是将丁二烯聚合成顺丁胶液。回收是将聚合未反应的丁二烯和溶剂油精馏分离并回收。凝聚过程采用水析法除去胶液中的溶剂油及未反应的丁二烯。后处理过程包括洗胶、干燥、压块、包装等几道工序,洗胶过程是指用水洗法洗去胶粒中残存的催化剂、碱及分散剂等杂质;干燥过程通过挤压脱水机和膨胀干燥机除去胶料中的水份;压块和包装过程是将胶料称重后压制成块型,并以内薄膜、外纸袋进行包装。

顺丁橡胶装置水污染源分析:

A、丁二烯脱水塔回流罐、丁二烯回收塔回流罐、切割塔回流罐和脱水塔回流罐的底部均有一"水包"起到静态分离水和油的作用。每隔三小时放水一次。

B、凝聚水罐排水。

胶液经静态混合器后喷入装有热水的凝聚釜内,胶液中的溶剂油气化,和水蒸气从凝聚釜顶排出。通过空冷、水冷后,含油水进油水分层罐,油排入油罐,水罐中的水大部分用于凝聚热水系统补水,剩余部分从水罐排放至污水处理场。

水罐排水量取决于凝聚釜内加热蒸汽,蒸汽量大,则水罐排水量相应增多。

C、凝聚油罐排水。

凝聚油罐排水主要是油水分层罐中油所夹带的游离水,在油罐中累积后,从油罐罐底排放。油水分层罐效果的好坏,决定油罐污水的排放量。

D、碱洗塔排水。

碱烯塔的目的是中和胶罐中酸性油气,降低胶罐尾气回收设施的腐蚀,碱洗塔排水属间 歇性排放,控制碱洗塔排水为偏碱性。

E、凝聚热水罐排水。

凝聚热水罐内热水作为凝聚釜补水,当凝聚加蒸汽时,凝聚热水罐内的水从溢流管线排入污水线。

F、洗涤水罐排水。

洗涤水罐至洗胶罐的水循环使用, 当系统需要补充水时, 洗涤水罐内洗涤水从溢流管线排入污水线。

G、挤压脱水机排水。

胶粒经振动筛脱水后,胶粒中仍含有 40-50%的水份,经挤压脱水机再脱水后,胶中含水降至 8-13%。脱除的水份全部排出,污水排至污水场。

H、膨胀干燥机冷却水。

膨胀干燥机冷却水采用的是循环水冷却,冷却后的循环水全部排放。膨胀干燥机吃料不好,发生堵料时以及正常生产停车时,要对膨胀干燥机筒体进行降温处理。控制循环水排放的主要手段有,减少堵料次数和冷却达到标准时及时关闭冷却水。

装置水污染源数据见表 10。

表 10 顺丁橡胶装置水污染源数据表

单位: mg/L

序号	水污染源	水量(m³/h)	pH 值	油	CODcr

1	切割塔回流罐	0.0006	6-9	5.0	70
2	脱水塔回流罐	0.0035	6-9	5.0	80
3	丁二烯脱水塔回流罐	0.0005	6-9	5.0	70
4	丁二烯回收塔回流罐	0.0012	6-9	5.0	60
5	凝聚水罐	0.5	6-8	0.7	203
6	凝聚油罐	180 t/a	9	1.0	-
7	碱洗塔	360 t/a	8-10	1.0	-
8	凝聚热水罐	0.05	9-10	0.8	24.41
9	洗涤水罐	0.05	9	0.5	67
10	挤压机	3.6	7-8	1.6	58.64
11	干燥机冷却水	250m³/a	7	-	-

(2) 丁基橡胶

丁基橡胶是由异丁烯和少量异戊二烯共聚而成的,主要采用淤浆法生产。透气率低,气密性优异,耐热、耐臭氧、耐老化性能良好,其化学稳定性、电绝缘性也很好。丁基橡胶的缺点是硫化速度慢,弹性、强度、粘着性较差。丁基橡胶的主要用途是制造各种车辆内胎,用于制造电线和电缆包皮、耐热传送带、蒸汽胶管等。

丁基橡胶装置是从意大利 PI 公司引进的专利技术,主要原料为异丁烯、异戊二烯,主要辅助原料为氯甲烷、无水三氯化铝,产品为丁基橡胶。

装置分为制冷、聚合、回收、后处理四部分。制冷部分主要包括乙烯、丙烯压缩机为聚合部分提供-100℃的冷源。聚合部分包括单体溶液的配置、催化剂溶液的配置、聚合、闪蒸等。它以异丁烯和异戊二烯为原料,氯甲烷为稀释剂,无水三氯化铝做催化剂,在-98-99℃下进行反应。所得的聚合物胶浆,经过脱气、汽提除去氯甲烷及残余异丁烯、异戊二烯。回收主要对未反应的单体和氯甲烷进行回收。后处理为胶浆存储、挤压脱水、干燥、压块包装。

丁基橡胶装置水污染源数据见表 11。

序号 排水点 规律 水量 t/h 主要污染物 mg/L 处理方法 氯甲烷 20 mg/L 经废水沉降槽预处理后去 异丁烯 20 mg/L 振动筛排水 生产污水池,最后送污水 1 连续 15 异戊二烯 10 mg/L 处理厂 硬脂酸钙 100mg/L 甲醇 150kg/d 去生产污水池后送污水处 2 碱洗塔排水 间断 4t/天 氯甲烷 50 mg/L 理厂 氯化钠 1500kg/d 氯甲烷 20 mg/L 去生产污水池后送污水处 1次/ 3 氯甲烷中和塔塔釜 4t/次 Al(OH)3105kg 月 理厂 氯化钠 245kg 装置区围堰内初期雨水 间断 205m³/次 去废水池后送污水处理厂 4 5 装置区内生活污水 间断 去废水池后送污水处理厂 6 CODcr100mg/L

表 11 丁基橡胶装置水污染源数据

4.2.9 石油化学工业废水的特点、污水处理工艺及排水现状

一般一家石油化学工业企业中生产多种产品,但生产污水会集中处理。石油化学工业废水的特点如下:

A、废水量大

石油化学工业废水除了在生产过程中所产生的废水外,还有冷却水及其他用水。国外年产 35 万吨乙烯及其衍生物的工厂每天排出的废水量为 1.6×10⁴m³。

B、废水组分复杂

石油化工产品繁多,反应过程单元操作复杂,废水性质复杂。具体见表 12。

C、有机物特别是烃类及其衍生物含量高 石油化工废水有机物含量高表现为废水中的 COD 和 BOD 高。

D、含有多种重金属

这主要由于生产中使用多种金属催化剂所致。

表 12 石油化工污染来源及污染物

生产过程	污染来源	污染物质
烯烃生产加工		
原油处理	原油洗涤	无机盐、油、水溶性烃类
	初馏	氨、酸、硫化氢、烃类、焦油
热裂解(包括蒸馏和净化)	裂解气及碱处理	硫化氢、硫醇、溶解性碳氢化合物、
		聚合物、废碱、重油和焦油
催化裂解	催化剂再生	废催化剂、碳氢化合物、一氧化碳、
		氮氧化物
脱硫	分离器	硫化氢、硫醇
卤素加成	氯化氫吸收	废碱液
卤素取代	洗涤塔	氯、氯化氫、废碱液、烃类、有机氯化
		物、油类
	脱氯化氢	稀盐水
聚乙烯生产	催化剂	格、镍、钴、钼
环氧乙烷乙二醇生产	生产废液	氯化钙、废石灰乳、烃类聚合物、环氧
		乙烷、乙二醇、有机氯化物
丙烯腈生产	生产废液、废水	氰化氢、未反应原料
聚苯乙烯生产		
乙烯烃化		焦油、盐酸苛性钠
乙苯脱氢	催化剂	废催化剂(铁、镁、钾、钠、铬、锌)
, ,, ===,	喷淋塔凝液	芳烃 (苯乙烯、乙苯、甲苯)、焦油
苯乙烯精馏	釜液	重焦油
聚合	催化剂	废酸催化剂(磷酸)、三氯化铝
		醛类、酮类、酸类、烯烃、二氧化氮
烃类生产及加工		烃类、脂肪酸、芳香烃及其衍生物、焦
硝化	生产废液	油
异构化	生厂及被 废釜液	可溶性烃、醛类
羧化	凌垂微 冷却、骤冷	炭黑
炭黑生产	生产废液	丙酮、甲醇、乙醛、甲醛、高级醇、有
从碳氢化合物制醛、醇、酸、酮		机酸
		烃类聚合物、烃类氯化物、甘油、氯化
		钠
芳烃生产及加工		
催化重整	冷凝液	
芳烃回收	水萃取液	催化剂(铂、钼)、芳烃、硫化氢、氨
	溶剂提纯	芳烃
硝化		溶剂、二氧化硫、二甘醇
磺化	废碱液	硫酸、硝酸、芳烃
氧化制酸和酸酐	釜底残液	废碱
氧化制苯酚丙酮	倾析器	酸酐、芳烃、沥青、甲酸、烃类
丙烯腈、己二酸生产	生产废液	有机和无机氰化物
尼龙 66 生产	生产废料	己二酸、丁二酸、戊二酸、环己烷、己
		二胺、己二腈、丙酮、甲乙酮、环己烷

		氧化物
碳四馏分加工 丁烷丁烯脱氢 丁烯萃取和净化 异丁烯萃取和净化 丁二烯吸收 丁二烯萃取蒸馏 丁苯橡胶 共聚橡胶	骤冷水 溶剂及碱洗 生产废料 生产废料	焦油、烃类 丙酮、油、碳四烃、苛性钠、硫酸 废酸、碱、碳四烃 溶剂、油、碳四烃 溶剂、碳四烃 油、轻质烃、低分子聚合物 丁二烯、苯乙烯胶浆、淤泥
公用工程	锅炉排液 冷却系统排液 水处理	总溶解固体、磷酸盐、鞣酸 磷酸盐、铬酸盐 氯化钙、氯化镁、硫酸盐、碳酸盐

以某石油化学工业企业污水处理为例,其处理工艺介绍如下:

(1) 碱渣废液预处理装置

湿式氧化废碱液处理装置,对来自乙烯装置的废碱液进行处理,在乙烯装置内还设置了汽油洗涤进行预处理,以利于后续的处理。

汽油洗涤单元预处理后的废碱液分别由输送泵进入废碱液储罐,废碱液在其中可停留三天时间。废碱液经泵提升至废碱液氧化系统。废碱液首先经氧化进/出料换热器,氧化反应器中出来的氧化后的废碱液预热至 75±15℃。接着在混合器中与蒸汽和空气混合混合(空气量由装置内的压缩机来供给,蒸汽外供)。混合后废碱液由底部进入反应器,反应压力在 0.82±0.1MPa 的范围内,氧化反应器的入口温度需要达到为 75±15℃,反应温度 110~140℃。氧化反应器均由塔盘分成几个反应区以保证碱液和空气的充分分配,在塔内,硫化钠被空气氧化成硫代硫酸钠,并进一步氧化成硫酸钠。由于该反应是放热反应,废碱液的温度升高,温度升高的程度取决于进料中的硫化物浓度。

氧化后的产物从反应塔顶离开反应器,混合后并在进/出料热交换器中被输送来的废碱液冷却,进而废碱液在氧化后碱液冷却器中被冷却水进一步冷却,离开的废碱液约为 60℃,然后进入中和罐。

废碱液在中和罐中被硫酸中和。中和后的废碱液被送入气提塔。在气提塔中,残余烃类被一股与中和后废碱液逆向流动的空气所气提,从其顶部吸入喷射器进入焚烧炉,焚烧去除碳氢化合物后达标排放。中和后的废碱液从气提塔的底部循环泵排入污水生化处理系统。

废碱液湿式氧化处理装置的处理效果受到很多因素的影响,一般的碱洗塔出口的废碱液中含有一些游离的碳氢化合物,沸点在 C4与汽油之间。这些碳氢化合物不除去会引起氧化后废碱液污染,此外,在碱液塔中发生聚合反应会产生一些低聚物(黄油),它会引起下游设备的堵塞。因此,这些物质必须在湿式氧化前予以去除。低聚物在碱洗塔下部黄油分离设施中除去,为了除去废碱液中碳氢化合物,在湿式氧化单元废碱液储槽前设置了汽油洗涤过程,洗涤过程将废碱液与少量加氢汽油混合,废碱液与汽油在汽油分离罐中得到分离,然后废碱液送入废碱液处理装置的废碱液储罐。水质条件如下:

总碱度≤8Wt%, 硫化物≤20000mg/L

湿式氧化的工艺原理为在一定的温度与压力下,废碱液中的硫化钠被空气氧化成硫代硫酸钠,并进一步氧化成硫酸钠与空气充分混合,发生氧化作用,去除大部分硫化物;并用气提法去除挥发性的碳氢化合物,从而使水体得到净化。

反应是放热反应,将使废碱液的温度上升(温度上升程度取决于进料中的硫化物浓度)。

$$2Na_2S + 2O_2 + H_2O = Na_2S_2O_3 + 2NaOH$$

装置的硫化物平均去除率 99.7%,总碱度平均去除率 66.2%。 碱渣废液预处理装置运行状况见表 13。

表 13 碱渣废液预处理装置运行状况统计表

处理量(m³/h)	污染物名称	进水	出水	去除率(%)
/				

		平均值	最大值	平均值	最大值	
12.8(平均)	硫化物(mg/L)	5391.85	8246.7	14.79	35.9	99.7%
12.8(十均) 17.9(最大)	总碱度(wt%)	3.90	5.83	1.32	3.63	66.2%
17.9(取入)	油*	193.78	906	-	-	-

(2) PTA 氧化及聚酯污水预处理系统(氧化污水处理站)

氧化废水处理站处理工艺为活性污泥法(缺氧/好氧加生物膜法氧化沟工艺),其设计规模为8400(m³/d),进水CODcr为3000(mg/L)、pH为5.5-8;出水CODcr<500(mg/L)、pH为6-9。污染物去除率均达90%以上。设计处理能力为170t/h,进水CODcr为2200 mg/L,这两个装置的废水也随之纳入氧化废水站处理。鉴于活性污泥法工艺有着不耐冲击、剩余污泥量大、出水达标率低、处理成本高等问题,采用无剩余污泥法A/O膜法工艺对其进行改造,工艺变为现在的缺氧/好氧加生物膜法氧化沟工艺,其设计规模为8400(m³/d),进水CODcr为3000(mg/L)、PH为5.5-8;出水CODcr<500(mg/L)、pH为6-9。污染物去除率均达90%以上。

氧化污水处理站工艺流程见图 5。

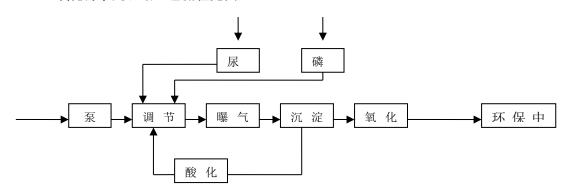


图 5 氢化污水处理站工艺流程图

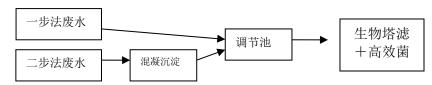
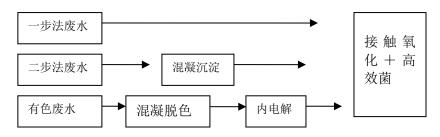



图 6 含腈污水处理工艺流程图

(3) 腈纶污水预处理系统

目前腈纶污水预处理系统分为一步法含腈污水、二步法含腈污水、一步法酸碱污水、二步法酸碱污水、有色污水。污水系统的主要流程,经生化塔处理后,排到接触氧化池处理后,进入排泥沟;酸碱污水经低聚物去除装置后或进入接触氧化池进行处理或直接排入接触氧化池;接触氧化池出水和其他排入排泥沟的废水混合后一起排到二级生化,含腈废水通过絮凝沉淀预处理后与一步法含腈废水一起进入生化塔处理,一步法酸碱废水经过中和处理后进入接触氧化池进行生化处理,二步法酸碱废水絮凝沉淀经过预处理后排放或进入接触氧化池预处理。

图 7 酸碱废水、有色废水处理工艺流程

二级生化污水处理装置采用二段活性污泥法。一段装置采用鼓风曝气推流式曝气池,二段装置为三槽式氧化沟。一段装置主要去除有机物,在较高的有机负荷条件下,微生物在好氧情况下吸附降解有机物,污水经过第一段装置的生化处理,可去除60~80%的BOD5,各类有毒物质亦基本去除,然后进入第二段装置。一段装置在较低的有机负荷条件下,污水中的有机物和氨氮通过活性污泥的生化作用被进一步降解或转化,从而达到净化的目的,符合国家相关的排放标准。三槽式氧化沟可根据工艺要求选择多种运行方式。本装置为分期建设改造而成。

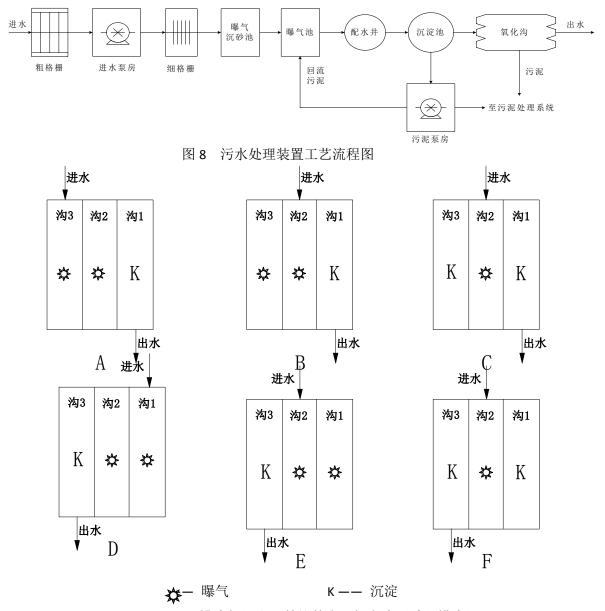


图 9 三槽式氧化沟目前的基本运行方式(硝化模式)

污水处理装置设计处理能力 4167m³/h,实际运行能力 3125 m³/h(主要由于进水正常运行水质 COD 由设计的 500mg/L 上升为 700mg/L)。目前,装置实际处理能力 2365m³/h(均值),装置负荷为 75.7%。COD 去除率 87.45%,氨氮去除率 88.57%,油去除率 76.39%。见表 14。

表 14 污水处理装置运行状况统计表

处理量(m³/h)	污染物名称	进水	出水	去除率(%)

		平均值	最大值	平均值	最大值	
	рН	8.14	9.57	7.39	7.86	-
2365(平均)	COD (mg/L)	518.33	914.00	65.05	122.00	87.45
5000(最大)	氨氮(mg/L)	31.86	99.40	3.64	37.50	88.57
	油(mg/L)	6.64	14.20	1.57	3.30	76.39

根据对某集团公司所属单位的排污情况调查,企业废水污染物浓度排放情况具体见表 15。

表 15 某石化相关企业排放废水污染物浓度

序	光	石氵	曲类	C	ODcr	氨	.氮	挥发	 发酚	氰	化物	悬	 浮物	硫化	化物
号	单位名称	均值	最大值	均值	最大值	均值	最大值	均值	最大值	均值	最大值	均值	最大值	均值	最大值
1	Α	1.1	2.00	108	143	2.4	12.1	0.11	0.18	0.03	0.20	-	-	0.04	0.06
2	В	4.12	7.20	79.4	170	29.1	69.3	0.08	0.13	0.005	0.010	19.8	44	0.02	0.20
3	С	3.42	29.28	53	543	-	-	0.021	0.065	0.019	0.065	44	63	-	-
4	D	6.3	15.4	106	161	12.2	23.9	0.088	0.331	-	-	20.4	27.0	0.009	0.05
5	E	0.433	1.33	45.8	84.29	0.336	1.95	0.004	0.005	0.002	0.002	25.4	37.38	0.083	1.0
6	F	2.546	10.0	102	120	10.8	30.0	0.001	0.50	-	-	-	-	0.16	1.0
7	G	0.854	6.90	102	192	23.2	48.6	0.05	1.28	0.004	0.004	40.2	132	0.053	0.35
8	Н	2.289	3.88	68.6	93.44	4.76	13.7	0.093	0.101	0.01	0.107	23.6	51.1	0.03	0.05
9	1	1.7	9.00	101	150	5.25	30.0	0.005	0.44	0	0	33.9	61. 0	0.021	0.062
10	J	1.04	6.00	25	40	-	-	-	-	-	-	28	15-35	-	-
11	K	0.8	1.00	53	88	4	8.0	0.05	0.10	-	-	3	1-5	0.5	1.0
12	L	1.27	1.96	69.5	95	2.745	16.60	0.029	0.346	0.0426	0.0942	16	51	0.0716	0.3510
13	M	3.26	10.0	87.7	150	25.22	50	0.1	2.0	0.005	0.01	12	20	0.005	0.10
14	N	3.81	11.8	95.32	197	21.53	42.3	0.045	0.43	-	-	32.1	116	0.056	0.715
15	0	1.2	4.00	41	67	0.373	2.37	0.016	0.128	-	-	29	4-84	0.01	0.02
16	Р	0.928	-	66.92	-	0.7625		0.0185		0.024	-	12.1		0.012	
17	Q	0.48	0.62	85.5	95.7	1.103	2.7	0.006	0.01	-	-	23.5	33.5	0.027	0.032
18	R	1.16	4.46	48.1	70.0	5.95	15.0	-	-	-	-	10	26	0.044	-
19	S	-	-	251	350	45.5	70.0	-	-	-	-	-	-	-	-
20	T	5.17	9.85	90.9	139	23.8	38.8	0.09	0.362	-	-	48.7	89.2	0.38	-
21	U	2.92	6.45	58.1	89.7	3.43	10.1	0.05	0.2	0.007	0.02	9.0	5-26	0.02	-

4.3 石油化学工业排放大气污染物

4.3.1 大气污染物的排放过程和污染物种类

石油化学工业大气污染物排放源有燃烧源、工艺源和面源。燃烧源主要有工艺加热炉、 裂解炉等烟气。主要污染物为二氧化硫、氮氧化物;工艺源包括氧化反应、氧氯化反应、氨 氧化反应工艺尾气,固体颗粒物料输送尾气等,主要污染物是有机物;面源包括储罐呼吸排 气、设备阀门泄漏、采样过程、序批式反应器的进料、出料及惰性气体保护过程、设备阀门 检维修过程、非正常工况等,主要污染物是有机物。

由于石油化学工业产品种类、生产工艺众多,通过研究,根据生产过程污染物排放源种类酚类制定污染物排放标准,可以涵盖石油化学工业生产过程污染控制的各个方面,因此基于生产设施要素,将石油化学工业(含各类化工企业、装置)VOCs 废气排放源解析为 9 种,可涵盖任何石油化学工业企业的生产过程中 VOCs 排放,见表 16 和图 10。

过程解析	排放形式
原料、产品装卸过程	无组织
原料、半成品、产品储存、调和过程	无组织
生产设备机泵、阀门、法兰等动、静密封	无组织
生产过程(如氧化、干燥)等的尾气	有组织
废水和固体废物集输、储存、处理处置过程	无组织
生产装置非正常生产工况排放	有组织
热(冷)供给设施燃烧烟气	有组织
设备、管线检维修过程	无组织
采样过程	无组织

表 16 化工过程 VOCs 排放污染源归类解析表

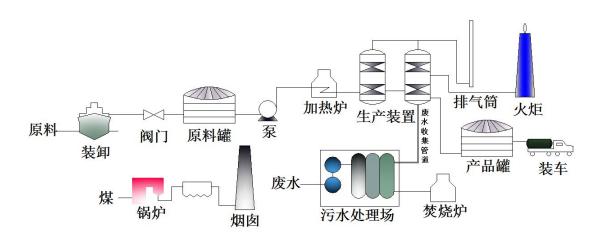


图 10 典型石油化学工业生产企业设施图

这9类污染源的具体内涵及排放函数关系如下:

- 1)原料、产品装卸过程。石化企业原料卸车(船)过程本身不产生挥发性有机物排放,液体有机产品装车、装船、灌装(小包装)产生挥发性有机物排放,其排放量是装、灌方式、液体有机产品的性质的函数。
- 2)原料、半成品、产品储存、调和过程(有机液体储罐)。有机液体储罐是化工企业数量最多的设备,从原料储存、中间品储存、产品调和到产品储存,主要包括固定顶罐、浮顶罐(内浮顶罐、外浮顶罐)、可变空间储罐(气柜)、压力储罐四种,储存的物料有纯有机化学品和混合物两类,其排放量可以根据储存液体的物理性质(蒸汽压)、储存温度、物料周转量、储罐的结构、环境温度变化、光线辐射强度等参数进行较准确数值模拟估算。
 - 3) 生产设备机泵、阀门、法兰等动、静密封。每一个化工生产工艺装置都是由压缩机、

泵、阀门、法兰等设备组成,用于有机液体介质的机泵、阀门、法兰动、静密封泄漏排放受设计、施工标准,维护保养水平有关,很难用一种数学模型量化,对于这样的设施挥发性有机物排放监管和控制,只能采用监测和加强维护程序的方法。

- 4)生产过程(如氧化、干燥)等的尾气:生产过程尾气是一种有组织排放源,其挥发性有机物的排放受工艺条件、物料性质限制,是容易监测和控制的排放源。
- 5) 废水和固体废物集输、储存、处理处置过程:废水、固废的集输、储存和处理设施主要是敞开式的沟/渠、池/罐。废水、固废沟/渠、储存池/罐的排放主要是表面蒸发,排放量是储存废水、固废性质、储存温度、气候条件的函数;废水浮选处理、好氧生物处理过程挥发性有机物的排放是强制气提、吹脱和表面蒸发造成的,挥发性有机物的排放量是污水中挥发性有机物的性质、气提强度的函数。
- 6)生产装置非正常生产工况排放:化工行业一般指火炬系统。这个过程可通过增加回收设施、加强管理达到减小排放的目的。
- 7) 热(冷)供给设施燃烧烟气:主要是指化工企业为物料提供热源、冷源所燃烧燃料的排放,主要设备有锅炉、加热炉、燃气轮机、燃油动力设备,一般属于有组织排放过程。
- 8)设备、管线检维修过程:设备、管线维修过程是化工企业正常生产的一部分,其排放过程包括卸料、设备、管线吹扫气体放空。通过加强管理和增加必要的设施可以有效控制挥发性有机物的排放。
- 9) 采样过程:排放过程主要发生在采样管线内物料置换和置换出物料的收集储存过程,可以通过增加设施,加强管理控制挥发性有机物的排放。

石油化学工业工艺加热炉和裂解炉的燃料一般选用天然气或裂解干气,燃烧烟气的污染物种类主要是二氧化硫和氮氧化物。

石油化学工业废气中有机污染物种类随企业生产使用的原料、生产过程遵循的反应原理和产品种类变化,为了方便本标准选用非甲烷总烃和特征有机物为指标控制含有机污染物废气的排放。根据特征污染物对环境空气质量的影响选取特征有机污染物的种类。

4.3.2 蒸汽裂解装置的废气种类和污染物

A、燃烧烟气

裂解炉、蒸汽过热炉加热用燃料燃烧废气。裂解炉能同时使用重油、燃料气和天然气三种燃料,尽量使用清洁燃料,可减少废气中 SO₂、烟尘和氮氧化物等有害物质的排放。另外可增设强制通风,提高燃料燃烧效率,降低烟尘排放量。

B、清焦废气

由于裂解料在反应过程中聚合在废热锅炉和炉管内表面生成大分子的焦状物,影响工艺控制,所以裂解炉必须进行定期烧焦、清焦。在烧焦、清焦过程中生成二氧化碳、水蒸气,排入大气。

C、火炬尾气

火炬尾气主要是来自废碱处理塔的酸性气体和系统不平稳超压排出的工艺气。现已实现 火炬排放气体回收用做燃料,但少量酸性气体由于对管道和设备的腐蚀目前还没有更好的解 决办法,只能排入火炬烧掉。采用有乙烯开车,可缩短从投油到合格产品的时间。采用计算 机控制开车程序,尽可能减少排放量。

- D、其他大气污染因素分析及对策
- 安全阀、调压阀的临时放空和事故停车放空。安全阀、调压阀的临时放空和事故停车(主要从急冷水塔后和丙烯压缩机的压力调节阀放空)引起损失很可观,排放量只能由系统恢复正常的时间决定。因此,减少装置的停车和操作波动排放是控制装置污染源的关键。
- 取样置换工艺废气。此部分微量废气来自分析取样过程,主要污染物为轻烃,取样置换后排入大气。
- 装置停工检修。检修过程中煮塔易产生大气污染,尽量密封蒸煮,排空冷却后再进 行氮气、空气置换。

乙烯装置大气污染源数据见表 17。

表 17 蒸汽裂解装置大气污染源数据

序号	排放点	种类	排放量 (Nm³/h)	主要成分	排放高度 (米)	形式	原因	去向
1	裂解炉	烟道气	64.55	CO_2 , H_2O , N_2	35	连续	-	大气
2	裂解炉	清焦气	1.0	$H_2O_{\scriptscriptstyle N}$ $O_2_{\scriptscriptstyle N}$ $N_2_{\scriptscriptstyle N}$ CO_2	35	连续	-	大气
3	火炬尾气	-	25	N_2 , CO_2 , H_2O	120	连续	-	大气
4 ⁽¹⁾	急冷水塔	裂解气	214	烃类 100%	120	间断	事故停车	火炬
5 ⁽¹⁾	丙烯压缩机	丙烯气	258	258 丙烯 100%		间断	事故停车	火炬

注: (1)表示事故停车的最大排放量。

4.3.3 对二甲苯装置

A、吸附分离放空罐和歧化装置放空罐

一般情况下,装置去放空罐的残气很少,残气中的 N_2 主要来自装置用于氮封的 N_2 ,微量芳烃主要来自装置塔、罐的气相,残气收集在放空罐内,放空罐顶部设置水冷器,其中冷凝液回收到装置内,气相送入火炬系统。

B、加热炉烟气

烟气中的 SO_2 与燃料中的硫含量有关,燃烧气及低硫燃料油会大大降低 SO_2 的排放量。 NO_2 与燃料中的 N_2 含量及燃烧火嘴的结构有关,加热炉燃烧的烟道废气直接排放到大气中。

C、脱庚烷塔回流罐和异构化反应器尾气

装置正常情况下,只有脱庚烷塔回流罐的气相(异构化反应的轻组分)去燃料气系统;装置非正常情况(开、停车)下,异构化反应器排放氡去燃料气系统。

- D、其他大气污染因素分析及控制对策
- 停工检修时,反应器及精馏塔系统置换废气送火炬系统,精馏塔蒸煮废气直接排入 大气。
- 装置事故时,安全阀起跳。所有安全阀排放气、液相直接送往火炬系统。 大气污染源数据见表 18。

序号	排放位置	排放量 (Nm³/h)	废气组成及浓度	治理措施
1	吸附分离 放空罐	28.00	主要为 N ₂ 、含微量芳烃	送火炬系统
2	歧化装置 放空罐	26.00	主要为 N ₂ 、含微量芳烃	送火炬系统
3	异构化反 应器	0-2000	主要为 H ₂	保持反应所需 H ₂ 纯度而排放的 低纯 H ₂ 并入燃料气系统
4	脱庚烷塔 回流罐	2400	主要为 H_2 、 C_1 、 C_2 和 C_3 烃组分	反应副产物在脱庚烷塔顶形成 的不凝性干气并入燃料气系统
5	装置加热 炉烟囱	4.27×10 ⁵	主要为 N ₂ 、CO、CO ₂ 、SO ₂ , 以及微量的氮化物。	排放高空

表 18 对二甲苯装置废气污染源数据

4.3.4 丙烯腈装置

A、吸收塔尾气

吸收塔顶排出的尾气中主要含有少量的烃类、丙烯腈和氢氰酸等污染物质。装置非正常状况或开停工时,因吸收塔操作不稳,吸收效果差,瞬时尾气排放含 AN、CN·浓度高达 200mg/m³左右。

B、脱氢氰酸塔不凝气

脱氢氰酸塔采用负压操作,真空泵抽出不凝气含氢氰酸浓度高,直接导向氢氰酸火炬燃烧。

C、成品塔不凝气

成品塔顶真空泵排出含有丙烯腈废气送入水封罐,再经水封罐排至工艺火炬燃烧。

D、停工检修大气污染预防措施

氢氰酸全部切入焚烧炉焚烧。精制系统工艺设备内物料完全退尽后,再用水冲冼二、 三遍。原料系统残留丙烯引向工艺火炬燃烧;残氨通过气相通道卸向装水的槽车内。 大气污染源数据见表 19。

表 19 丙烯腈装置废气污染源数据

序号	排放位置	排放量 (m³/h)	排放温度 (℃)	排放高度 (m)	废气组成及含量	治理措施
1	吸收塔尾气	39900	37	64	AN 29.4 mg/m³ HCN 15.7 mg/m³ 总烃 5500 mg/m³	高位放空
2	脱氢氰酸塔 不凝气	28	-8	64	HCN 17.85 %	送氢氰酸火炬燃 烧
3	成品塔不凝气	32	15	64	AN 21.9 %	送工艺火炬燃烧

4.3.5 环氧乙烷/乙二醇装置

A、再吸收塔尾气

再吸收塔顶主要脱除的是氧化反应副反应产生的副产物二氧化碳,部分利用,大部分排入大气。

B、解析塔顶尾气

解析塔顶排放的废气,是系统中残留的少量乙烯、甲烷,其中乙烯、甲烷回收利用。

C、过热炉烟气

蒸汽过热炉燃烧燃料气产生蒸汽供给装置使用,产生的废气中含微量的 SO_2 和微量的 NO_x ,排入大气。

- D、其他大气污染及防治对策
- 故障或意外状况下的非正常排放采用紧急泄放、安全阀起跳等措施,精心操作,确保平稳操作,减少和杜绝非正常排放情况。
- 停车检修及有计划抢修时,主要是反应器部分的置换气,成份大部分是 N₂,和少量甲烷,放空。
- 减排措施:做好综合利用工作,对废气中的有用成分加以回收利用,对多乙二醇等物质进行开发利用,减少或消除对环境的污染。

大气污染源数据见表 20。

表 20 环氧乙烷、乙二醇装置大气污染源数据

序号	名称	排放量 m³/h	温度℃	污染物浓度 mg/L	处理方法	备注
1	再吸收塔尾气	2900	常温	CO ₂ : 90.8% H ₂ O: 9.2% C ₂ H ₂ : 0.01%	排大气 部分回收	连续排放
2	解析塔顶尾气	980	常温	乙烯: 24% 甲烷: 0.23%	综合利用	连续排放
3	过热炉烟气	1.5	337	SO ₂ : 微量 NO _x : 微量	排大气	连续排放

4.3.6 苯酚、丙酮装置

A、烃化尾气

主要为烃化反应器和反烃化反应器产生的尾气,除了含有 N_2 外,还含有丙烷、HCI、苯等。烃化反应器的尾气首先在冷凝器中冷凝回收大部分苯后,与反烃化反应器的尾气汇合,依次进入多聚物洗涤塔、水洗塔、碱洗塔。在多聚物洗涤塔中,用二异丙苯吸收尾气中所含的苯;在水洗塔中,水洗除去尾气中的 HCI;在碱洗塔中,用稀 NaOH 水溶液进一步中和残存的微量 HCI。以上三个塔均为拉西环填料塔。除去了苯、HCI 等物质的尾气用压缩机加压

后作为燃料气。

用沸石代替 $AICl_3$ 催化剂后,烃化液经闪蒸精馏分离出的烃化尾气,直接送入火炬系统作为燃料。另外沸石催化剂再生时,也产生一部分废气,其主要成分为 N_2 ,并含少量的烃类物质,也进入火炬系统。

B、氧化尾气

由氧化塔塔顶来的尾气,主要成分是 N_2 ,少量 O_2 和微量异丙苯。经水冷却器、液态丙烯冷却器冷却,冷凝除去所含的水、异丙苯、CHP 及有机酸后,仍含有 $200\sim300ppm$ 的异丙苯。此废气再经过一个预热器,然后进入催化燃烧器,同时加入很少量的乙苯作为辅助燃料,在钯催化剂的作用下,催化燃烧,将异丙苯转化成水和二氧化碳,然后送至空气压缩机上的透平机回收动能,最后排入大气,或部分代替装置生产用的氮气。

C、加氢尾气

加氢反应中未反应的氢气大部分循环使用。由于氢气中含有少量以甲烷为主的杂质,若全部循环的话,杂质就会在系统中积累,为此,一部分氢气经密封罐排出。

D、其他大气污染因素分析及对策

其他大气污染因素主要是无组织排放,包括塔、罐等的呼吸、动静设备密封点的泄漏和 污水池、污水沟散发的气味等。

- 塔、罐等的呼吸:对于轻质油品贮罐,如苯罐,采用浮顶罐代替拱顶罐,可显著减少呼吸气体的排放。对贮存丙酮含量较高物料的贮罐,如分解液罐和丙酮成品罐,可以通过在呼吸阀出口处增加水吸收设施的途径,减少丙酮的挥发损失。
 - 密封点的泄漏:加强现场管理,及时消除漏点,降低密封点的泄漏率。
 - 污水: 防止污水散发气味的主要途径是对污水池、污水沟尽可能密闭化。
- 装置停工检修:容易产生大气污染的因素主要是对贮罐的蒸煮。对策是蒸煮时密闭化,减少蒸发。

大气污染源数据见表 21。

排放量(kg/h) 气污染源 温度(℃) 排气筒高度(m) 组成 以丙烷为主的烃类约占 60%, 烃化尾气 作燃料气 211 常温 氮气约占 40% 异丙苯约 20ppm, 氮气 93.5%, 氧化尾气 11000 50 15 氧气 5.1%,其余为 CO2 和水 甲烷约 80%, 氢气约 20% 加氢尾气 常温 10 15

表 21 苯酚丙酮装置大气污染源

4.3.7 聚丙烯装置

A、颗粒干燥器排气

干燥器通过颗粒干燥器排风扇连续排气,将水下切粒时吸附在颗粒表面的水,蒸发成水蒸气排入大气。

B、循环气压缩机排气

聚合 4*釜下料时排出的气体,经泄压管排入循环气分离器,循环气压缩机将其压缩后,应用于**釜转动设备的冲洗,多余的送乙烯装置回收或火炬。

C、粉料干燥器排气

向粉料干燥器中加入 100℃以上的热氮气,将粉料中夹带的丙烯和少量己烷,蒸发出去,连续排放到火炬。为减少废气排放,氮气加入量要严格控制。

D、气蒸罐排气

向气蒸罐中加入蒸汽,将粉料中夹带的微量丙烯和微量己烷进一步蒸发出去,并杀害粉料中未能反应的催化剂,气体直接排放大气。

E、其他大气污染

- 装置由于事故而引起的反应器排放的废气,经管线送火炬。
- 停工检修时,反应器内未能反应的物料经管线送火炬。在停车时,尽量将反应后的物料倒空,以减少氮气置换次数,从而减少废气排放。

● 采样造成的大气污染物料,采样时,必须排放一段时间,采样接管内原有物料排尽,取现在物料样。为了减少对大气的污染,缩短采样接管。

表 22 聚丙烯装置大气污染源数据

序号	排注	放位置	排放量	温度 (℃)	废气组成	排放去向
1	颗粒干	燥器排气	13750m³/h	85	水蒸气, 空气	大气
2	循环生	气压缩机	$100{\sim}200$ m $^3/h$	40	氢气~1.5wt% 乙烯~2.5wt% 丙烯 10~75 wt% 丙烷 10~45 wt% 乙烷 0.2~0.9 wt% 氮气 7~26 wt%	至火炬(或 乙烯装置)
3	粉料	干燥器	450m³/h	100	丙烷 1wt% 丙烯 5 wt% 乙烯<1 wt% 已烷 4 wt% 氮气 90 wt%	至火炬
4	气蒸罐 14		1440kg/h	100	已烷 18 kg/h 氮气 1422 kg/h	排入大气
5	聚合釜事	外部火灾	60t/h	-	丙烯、氢气、己烷	排到火炬
	故气	停电、停水	200t/h	_	丙烯、氢气、己烷	排到火炬

4.3.8 聚氯乙烯装置大气污染源分析及对策

A、聚合釜排气

经过回收,聚合釜内充满了氮气和含水蒸气的氯乙烯单体,气体采用带压出料技术,全部回收到单体气柜中。

B、浆料槽排气

用水蒸汽把氯乙烯从浆料中汽提到大气中,为自然排空。通过技术改造,采用带压出料技术,将该股气体全部回收到单体气柜中。

C、干燥系统放空

从汽提过程到离心机的进料淤浆中,聚氯乙烯的氯乙烯单体最大含量为 400ppm(wt%)。在干燥器中,经加热把几乎全部的氯乙烯单体从聚氯乙烯产品中汽提回收,经汽提后的淤浆中氯乙烯残留量降为 10ppm,放空气中氯乙烯大大减少,废气中氯乙烯小于 1ppm (v%)。

大气污染源数据见表 23。

表 23 聚氯乙烯装置大气污染源数据

序号	名称	排放点	排放量 万 Nm³/h	排放高度 m	成分	含量 ppm
1	工艺废气	聚合单元聚合釜	间断排放 2.4	-	氯乙烯	10~50000
2	工艺废气	干燥单元浆料槽	0.006~0.06	-	氯乙烯	500~200000
3	工艺废气	干燥单元干燥器	20	25	氯乙烯	约 20

4.3.9 聚苯乙烯装置

A、导生炉烟气 加热炉烟气。

B、密封液罐尾气

密封液罐尾气主要来源于冷凝及真空单元的不凝气,含有少量的苯乙烯和溶剂乙苯。通过控制冷凝温度、设置除雾器回收液滴等措施可降低不凝气中的污染物浓度。

C、模头尾气

模头尾气源于模头挤料时从聚合物中挥发出来的小分子物质和粉尘,被引风机抽出排放。提高脱挥发系统的效率,降低聚合物中溶剂乙苯和未反应苯乙烯的含量,可降低尾气中污染物浓度。

- D、可能的大气污染
- 无组织排放。主要包括中间罐等设备内物料的挥发排放及隔油池污油的挥发污染,控制措施有:苯乙烯储罐采用乙二醇冷冻液低温储存,以减少挥发量;加强隔油池清理,及时回收污油。
- 停工检修期间易产生的大气污染。主要是装置停车过程中的设备吹扫放空,控制措施:将吹扫尾气引入火炬系统。

聚苯乙烯装置大气污染源数据见表 24。

序号 名称 排放量 排放高度 m 主要污染物 CO 36.3 mg/m³ 导生炉烟气 1 $1.86 \times 107 \text{ m}^3/\text{a}$ 18 NOx 5.22 mg/m³ SO_2 10.62 mg/m³ 乙苯 0.13kg/h 2 密封液罐尾气 1130 m³/h 15 苯乙烯 0.08kg/h 模头尾气 微量粉尘 3 1300 m³/h

表 24 聚苯乙烯装置大气污染源数据

4.3.10 己内酰胺-锦纶装置

A、加热炉烟气

甲苯氧化反应导热油加热炉使用的燃料为工艺过程产生的重副产物,经燃烧后排空尾气含氮氧化物,达标排放。

经过改造喷油火嘴,尽量充分燃烧,控制排放污染物。

B、芳烃尾气吸附

甲苯氧化反应生成物经分离器分离后,含甲苯、苯的气相经冷凝反回反应器 未凝气经活性炭吸附后直接排空,吸附效果良好。

为保证吸附效果,吸附了一定的甲苯、苯的活性炭,通过蒸气回收其中吸附的甲苯、苯,同时使活性炭再生。

C、脱氮氧化物塔尾气

氨氧化反应制备 NOHSO4 过程中排放少量的氮氧化物用稀的 NOHSO4 和 98%的浓硫酸进行洗涤,吸收其中的 NO_x组分后,排入大气。

调整工艺参数,由于亚硝基硫酸遇水分解产生氮氧化物,因此控制亚硝基硫酸与水接触的机会是降低氮氧化物排放的重要手段。

D、洗气塔

硫铵结晶单元中硫铵干燥部分产生的尾气中含有大量的硫铵粉尘,设计中采用旋风分离器回收粉尘后,尾气进入洗涤塔用水进行洗涤。

工艺中尽量加大洗涤水的喷淋,增设填料,增加气液接触面积,使尾气中的硫铵全部被吸收,洗涤水进硫铵母液回收罐回收硫铵。

E、制硫尾气

本单元采用硫磺生产硫酸,在 SO₂ 吸收转化过程中未被吸收的 SO₂ 气体通过烟囱排放到大气中,尾气中 SO₂ 的浓度小于 200ppm。

工艺中设计了尾气吸收部分,通过 30%的发烟硫酸、98%的硫酸吸收,再进入除雾器分离,使尾气中的 SO₂尽量降低。

F、废液焚烧尾气

本单元是通过高温焚烧分解,化学还原、吸收及氧化等手段将甲苯法生产己内酰胺工艺过程中产生的高浓度的有机废液无害化,回收硫酸铵,然后通过50米烟囱达标排放。

G、其他大气污染

● 装置停工检修时不产生过多的大气排放

● 废气的无组织排放

● 甲苯氧化单元热有机罐、加氢单元的甲苯酸储罐再第一个开工周期由于原设计安全 膜片破裂使气相有机物料泄露形成无组织排放点。原因是外方设计出现缺陷:储罐设计压力 太小,而实际操作的压力波动大经常超出安全膜片的设计压力。

● 装置易泄露

己内酰胺-锦纶装置废气污染源数据见表 25。

表 25 己内酰胺一锦纶装置废气污染源数据

名称	小白 开山 <i>松</i> 张 平江		地名芹	烟囱 m		温度	排放量	烟气组成 (mg/m³)		
石 你	/ / / / / / / / / / / / / / / / / / /	炉型 燃料 热负荷 <u>直径 C m³/h SO₂ NOx</u>	粉尘							
加热炉尾气	立式	重副产	-	44.7	1250	261	11900	399	190	2.38
芳烃尾气吸附	-	-	-	25	200	25	11950	微量	甲苯	-
脱氮氧化物塔尾气	-	-	-	35	600	55	11572	0	3857	-
洗涤塔	-	-	-	24	1000	34	60850	0	27	-
制硫尾气	-	-	-	34	1300	80	36000	567	9	0.09
废液焚烧炉尾气	-	-	-	50	600	200	11367	0	151	-

4.3.11 顺丁橡胶装置

A、溶剂回收装置丁二烯回收塔、脱水塔、丁二烯脱水塔塔顶排气

溶剂回收装置的丁二烯回收塔、脱水塔、丁二烯脱水塔塔顶不凝气全部排入该装置尾气 回收设施中,经过尾气回收系统即加压盐冷和冷油吸收回收尾气中的丁二烯,降低排气中丁二烯含量。

B、后处理尾气冷凝器排气

此股尾气来自后处理部分,其油水分层罐气相和油罐气相经尾气冷凝器冷却后,冷凝下来的油流入油罐,不凝气从冷凝器放空管线排出,丁二烯浓度约33%。

排出废气的量与分层罐和油罐的温度有关。夏季气温高,空冷器能力下降,水冷后温度偏高,至使少量丁二烯气体从尾气冷却器放空管线排出。治理措施主要有降低釜温、增开风机、清洗空冷器等。

C、热水罐排气

后处理部分从 **1#**脱水振动筛分离出的热水进入热水罐,热水罐是散口容器。因水温较高,水蒸汽从热水罐罐口直接排入大气。

D、筛分排气筒排气

胶粒进入筛分筛时,大量的水蒸汽以及热水中残留的游离态油气化后,通过排气筒直排 大气。

E、干燥箱排气

胶料经膨胀干燥机高温高压处理后,从干燥机模头喷出,胶料内部的不饱和油闪蒸出来,被干燥箱热风带出干燥箱,排气中总烃含量 3000mg/m³。为使排气达标排放,设有活性碳纤维吸附处理设施,含烃尾气经活性碳纤维吸附处理后,其排气中总烃含量降至 100~300mg/m³。

F、检修时,各胶罐、凝聚釜蒸煮气中含溶剂油,为减少污染回收物料,将这部分气送凝聚装置尾气回收设施中进行回收处理。聚合釜吹扫置换、蒸煮时排气现场排空。

本装置大气污染源数据见表 26。

表 26 顺丁橡胶装置大气污染源数据

序号	排放位置	排放量	排放高度	污染物组成	治理措施
	7計/(人)立. 直.	(m³/h)	(m)	(mg/m³)	石生泪心

1	丁二烯回收塔、脱水 塔、丁二烯脱水塔尾气	10.2	-	丁二烯 4%	冷冻回收
2	尾气冷凝器	0.8	40	丁二烯 33%	排空
3	凝聚热水罐	400	10	溶剂油 300	排空
4	1#筛排气筒	600	40	溶剂油 1000	排空
5	干燥箱	16000	40	溶剂油 3000	碳纤维吸附后排空

4.3.12 丁基橡胶装置

A、乙烯、丙烯制冷单元不凝气

乙烯压缩机入口为负压操作,在操作过程中会吸入不凝气,为防止系统中氧含量超高, 需将不凝气排放,含有少量乙烯、丙烯的不凝气排热火炬燃烧消除乙烯、丙烯的污染。

B、氯甲烷精制塔顶排气

氯甲烷精馏塔顶不凝气夹带少量氯甲烷排放至冷火炬。

C、干燥塔再生气

碱洗塔干燥再生时,再生氮气中夹带少量氯甲烷排放制冷火炬。

D、干燥器废气

丁基胶通过挤压后需干燥,该股尾气来自干燥箱,通过旋风分离器排大气。 装置大气污染数据见表 **27**。

序号	名称	排放点	规律	气量 m³/h	主要污染物	处理方法
1	乙烯丙烯不 凝气	乙烯丙烯制冷	间歇	不定	乙烯、丙烯	热火炬
2	氯甲烷废气	氯甲烷精制塔顶	连续	230	氯甲烷 7wt% 异丁烯 0.5wt% N₂: 92.5wt%	冷火炬排入 大气
3	干燥塔 再生气	碱洗塔	峰值 2h	4500Nm³/d	氯甲烷<10% N₂: 90%	冷火炬排入 大气
4	干燥器废气	X701 通风机	连续	54000	氯甲烷: 痕量	排入大气

表 27 丁基橡胶装置大气污染源数据

4.3.13 丁苯橡胶装置

A、煤油吸收塔排气

回收丁二烯贮罐气相可分为两部分,一部分是丁二烯,一部分是不凝气体(包括 N_2 、 O_2 等),通过煤油吸收系统可回收其中绝大部分丁二烯,而极少量丁二烯以及不凝气体作为废气高空排放。加强对回收系统氧含量的管理,减少负压系统的泄漏,提高丁二烯回收率可有效地减少废气排放量及废气中丁二烯含量。

B、干燥箱排气

干燥箱用于对脱水后的胶粒进行干燥,其加热介质为空气,这部分空气适当循环后就高空排放。该股废气的主要组成是空气、少量水份、极少量的丁二烯、苯乙烯等。通过加强对回收系统的工艺管理,可提高回收效果,从而减少干燥箱废气中的污染物含量;通过提高加热空气的循环使用率,可极大地减少干燥箱废气的排放量。

C、其他大气污染

- 无组织排放废气
- 回收丁二烯系统氧含量高时,经批准后通过回收丁二烯贮槽气相排空管线排放至废气总管,由气柜岗位进行冷凝回收。
 - 停工检修排放废气
- 停工检修时,新鲜丁二烯贮槽、回收丁二烯贮槽、脱阻聚剂泌析器、脱碱泌析器倒空置换产生的含丁二烯废气通过废气管线排放。

大气污染源数据见表 28。

表 28 丁苯橡胶装置大气污染源数据

序号	排放位置	排放量/m³/h	排气筒高度/m	主要污染物组成
1	煤油吸收塔顶	11.9	20	空 气 97%(V) 丁二烯 3%(V)
2	干燥箱	121000	110	空 气 96.9%(V) 水 分 3.1%(V) 苯乙烯 70mg/L 丁二烯 30mg/L 杂 质 50mg/L
3	回收丁二烯贮槽	500m³/a	密闭回收	氮 气 96%(V) 丁二烯 4%(V)
4	新鲜、回收丁二烯贮槽,脱 阻聚剂泌析器,脱碱泌析器	每次检修 1000m³	密闭回收	氮 气 96%(V) 丁二烯 4%(V)

4.3.14 石油化学工业废气的特点

石油化学工业的大气污染物主要有以下三种:

- (1) 工艺加热炉排气筒排放的大气污染物,主要包括 SO₂、NOX 等;
- (2) 石油化工物料储罐排放的污染物,主要为挥发性有机物(VOCs);
- (3) 石油化工化纤工业工艺废气,主要为挥发性有机物(VOCs)。

部分储罐呼吸阀气体直接排向大气,造成大气污染;装置停车期间大气污染更为严重;装置在异常状态下,安全系统泄放物料时存在一定的大气环境污染隐患,主要由于在安全阀起跳后,泄放物料的储罐容积偏小,热的物料未经冷却直接排入大气环境,将会造成环境污染。

表 29 某石化相关企业废气污染物浓度排放情况

	单			污迹	杂物排放 量	量(吨/年)		
序号	位名称	用途	烟尘	SO ₂	NO _x	工业 粉尘	总烃	特征污染 物	总量
		燃料燃烧废 气	_	445.8	425.93	40.98	_	_	912.72
1	А	生产工艺排	_	1145.6	269.16	690.67	_	2206.35	4312.68
		其他	4381	8221	8359	_	_	_	20961.0
		合计	4381	9812.37	9054.09	732.55	_	2206.35	26186.37
		燃料燃烧废 气	39.01	22.33	164.89	_	_	_	226.23
2	В	生产工艺排气	390.30	5318.77	308.88	_	_	_	6017.95
		合计	449.31	5341.10	473.77	_		_	6244.18
		燃料燃烧废 气	1426.337	10665.112	8672.991	_	26.301	_	20790.741
3	С	生产工艺排	_	3300.904	452.673	571.4	_	_	4324.977
		其他	_	_	_	_	_	529	529
		合计	1426.337	13966.016	9125.664	571.4	26.301	529	25644.718
4	D	燃料燃烧废 气	241.935	2147.107	1118.532	_	_	_	3507.574
		生产工艺排	398.682	5709.245	2944.254	_	_	_	9052.181

		气							
		合计	640.617	7856.352	4062.786	_	_	_	12559.76
		燃料燃烧废气	10685.34	28182.13	22751.43	_	157.76	_	61776.66
5	E	生产工艺排气	_	1804.52	_	_	_	_	1804.52
		合计	10685.34	29986.65	22751.43	-	157.76	-	63581.18
		燃料燃烧废 气	15.40		_	l	_	_	15.40
6	F	生产工艺排	426.5	328.8	_	ı	_	448	1203.3
		合计	441.9	328.8	_		_	448	1218.7
		燃料燃烧废 气	299.2	3527.2	207.1	_	192.5	_	4226.1
7	G	生产工艺排气	0.0	1697.9	75.4	_	195.5	_	1968.7
		合计	299.2	5225.1	282.5	_	388.0	_	6194.8
		燃料燃烧废气	7.78	12.52	-	_		_	20.303
8	Н	生产工艺排	_	_	_	_	5.086	_	5.086
		合计	7.78	1.52	_		5.086		25.389
9	I	燃料燃烧废气	1208	4636	4375	_	_	_	10219
		生产工艺排气	_	308	1071	ı	_	_	1379
		合计	1208	错误!未 指定书 签。	错误! 未 指定书 签。		_	_	11598
		燃料燃烧废 气	29.7	163.7	53.2		_	_	246.6
10	J	生产工艺排	153.0	2705.8	4.6	_	1359.0	_	4222.4
		合计	182.7	2869.5	57.8	_	1359.0	_	4469.0
		燃料燃烧废	4852.34	72859.05	24202.64	_	1.63	_	101915.66
11	K	生产工艺排	427	4626	_	21.243	789.67	8.47	6792.383
		合计	5279.34	77485.05	24202.64	21.243	791.3	928.47	108708.04 3
		燃料燃烧废 气	3747.93	25102.13	22058.41	_	_	_	50908.47
12	L	生产工艺排	40.2	89	477.9	_	3.54 ×10 ⁻⁴	198.02	805.12
		合计	3788.13	25191.13	22536.31	0	3.54 ×10 ⁻⁴	67063.94	51713.59
13	М	燃料燃烧废 气	28.51	44.79	867.52	_	8.57	_	920.21
	IVI	生产工艺排	0.27	32.44	6.2	_	10.48	_	38.91

		合计	28.78	77.23	873.72	_	19.05	_	959.122
		燃料燃烧废气	5087.07	27395.52	10761.17	_	_	_	43243.76
14	N	生产工艺排	30.61	40.01	11.31	_	635.29	88.45	805.67
		合计	5117.68	27435.53	10772.48	_	635.29	88.45	44049.43
		燃料燃烧废 气	1395.2	1730.1	6233.9	_	_	_	9359.2
15	0	生产工艺排气	260.5	377.1	140.3	_	_	_	777.9
		合计	1655.7	2107.2	6374.2	_	_	_	10137.1
		燃料燃烧废气	10685.34	28182.13	22751.43	_	157.76	_	61776.66
16	Р	生产工艺排气	/	1804.52	/	_	_	_	1804.52
		合计	10685.34	29986.65	22751.43	_	157.76	_	63581.18
		燃料燃烧废气	207.38	566	1141.9	_	_	_	1915.28
17	Q	生产工艺排	100.4	25.86	391.68	23.74	20.5	86.02	648.2
		合计	307.78	591.86	1533.58	23.74	20.5	86.02	2563.48
		燃料燃烧废气	45.9	700.2	192.2	_	_	_	938.3
18	R	生产工艺排	32.9	152.5	276.4	_	_	_	461.8
		合计	78.8	852.7	468.6	_	_	_	1400.1
		燃料燃烧废气	446.7	1848.7	1635.7	_	_	_	3931.1
19	S	生产工艺排	47.5	1896	154	_	_	_	2097.5
		合计	494.2	3744.7	1789.7	_	_	_	6028.6
		燃料燃烧废气	2802.32	12525.1	4374.1	_	_	_	19701.52
20	Т	生产工艺排	0.044	2194.52	391.48	18.06	517	15	2986.104
		合计	2802.364	14719.62	4765.58	18.06	517	15	22837.62
		燃料燃烧废 气	4.41	9.69	_	_	_	_	14.1
21	U	生产工艺排	51.15	202.64	_	_	_	_	253.79
	沪	合计 一	55.56	212.33	_	_	_	_	267.89

注:烟尘、二氧化硫、氮氧化物主要是石油化学工业燃煤锅炉排放。

4.4 大气污染物控制技术

石油化学工业生产过程中排放废气的点源很多,如工艺加热炉排气筒排放的燃烧废气; 生产过程中工艺设备排气筒排放的工艺废气;还有某些习惯上归类于面源、但又是集中的连续排放源,如石油化工物料、中间产品和产品储罐呼吸排放的废气;工艺废水集输和处理过程排放的废气。还有一些分散的、突发性的排放,如设备、管线、阀们泄漏排放的废气等。各废气排放口的排放方式及废气中污染物的种类各不相同,污染控制的技术特点又很不一样,再次具体的对下列排放大气污染物的排气筒和生产过程的控制技术进行简介。

- (1) 工艺加热炉排气筒:
- (2) 石油化工物料储罐;
- (3) 石油化学工业工艺废气。

4.4.1 工艺加热炉排气筒的污染控制技术

石油化学工业工艺加热炉其燃料有燃料油、油气混合以及用燃气的。用燃料油燃烧过程大气污染物的排放取决于燃料的等级和燃料的组成,工艺加热炉的类型和规模,使用的火嘴和负荷,以及设备维护的水平。由于馏分油和渣油的燃烧特性不同,它们的燃烧可以产生显著不同的大气污染物排放。一般来讲,标准规定的污染物的排放基准是未控制燃烧源的排放物。未控制源是没有附加空气污染控制设备或用于排放控制的其他改进的燃烧。对于二氧化硫(SO₂)和颗粒物(PM)的排放基准也可以从测量空气污染控制(air pollution control,APC)设备的上游烟气获得。

工艺加热炉排放大气污染物的种类:

A、颗粒物排放

颗粒物被分为可过滤物和可冷凝物两种类型。可过滤颗粒物一般被认为是被玻璃纤维过滤器捕捉的颗粒物。蒸气和小于 0.3 微米的颗粒通过过滤器。可冷凝颗粒物是以蒸气状态排放然后冷凝形成均相和/或非均相气溶胶颗粒。从燃烧气或油的工艺加热炉排放的可冷凝颗粒物主要是无机物。

可过滤颗粒物排放主要取决于燃烧燃料的等级。较轻的馏分油燃烧与比较重的渣油燃烧相比 PM 的排放显著低。

一般来讲,可过滤 PM 排放取决于燃烧的完全程度和油的灰分含量。燃烧馏分油的工艺加热炉排放的 PM 主要由油的不完全燃烧生成的炭质颗粒组成,与燃料油的灰分或硫含量无关。然而,从渣油燃烧排放的 PM 与油的硫含量有关。这是因为低硫油,无论是从天然低硫原油生产的还是经过几个脱硫工艺生产的,表现为充分降低了粘度和减少了沥青质,灰分及硫含量,因此,产生更好的雾化和更完全的燃烧。

加热炉负荷也影响燃油工艺加热炉可过滤颗粒物排放。在低负荷条件下(最大负荷的50%),从工艺加热炉的颗粒物排放可以降低30%至40%,小的工艺加热炉可以降低60%。然而,对于燃烧较轻级别燃料油的工艺加热炉观察到低负荷下没有显著减少颗粒物排放的趋势。在很低负荷的条件下(约最大负荷的30%),难以保持适当的燃烧条件,颗粒物排放可能显著增加。

B、硫氧化物排放

燃料油燃烧过程中由于燃料中所含硫的氧化造成硫氧化物的排放。从传统的燃烧系统排放的硫氧化物主要以二氧化硫的形式存在。未控制的硫氧化物排放几乎完全取决于燃料的硫含量,不受锅炉的大小,火嘴形式,或燃烧燃料级别的影响。一般来讲,燃料中大于95%的硫转化为二氧化硫,约1%至5%被进一步氧化为三氧化硫,1%至3%以硫酸盐颗粒物排放。三氧化硫容易与水蒸气(空气中和燃烧气中)反应形成硫酸雾。

C、氮氧化物排放

在燃烧过程中生成氮氧化物(NO_x)是由于在燃烧空气中氮的热氧化(thermal NO_x)或在燃料中化合态的氮的转化(fuel NO_x)。 NO_x 指的是一氧化氮(NO)和二氧化氮(NO_2)。试验数据表明多数的开放式化石燃料燃烧系统,排放氮氧化物(NO_x)的 95%以上是一氧化氮(NO)。一氧化二氮(N_2O)不包括在 NO_x 中,但由于对大气的影响,最近已受到关注。

热 NO_x 生成的试验测量表明 NO_x 的浓度与温度成指数关系,与火焰中的 N_2 浓度成正比,与火焰中的 O_2 浓度的平方根成正比,与停留时间成正比。因此有四个因素影响热 NO_x 的形成:(1)火焰最高温度;(2)燃料中氮浓度;(3)火焰中氧浓度;(4)暴露在最高温度下的时间。由于这些因素的变化产生的排放趋势对所有锅炉来讲是一致的:火焰温度的升高,氧浓度增加,和/或在高温下的停留时间延长都导致 NO_x 产生量的增加。

在以渣油为燃料的工艺加热炉中,燃料中氮的转化生成 NO_x是重要的。它可以达到总 NO_x排放的 50%。燃料中氮转化为 NO_x的百分数变化很大,然而,一般燃料油中的氮 20%到 90%转化为 NO_x。除在一定规模的工艺加热炉有高的峰值火焰温度外,或燃烧低氮含量的渣油,一般来说,燃料 NO_x生成的量大于总 NO_x生成量的 50%。换一句话讲,在燃烧馏分油的工艺加热炉,热氧化是 NO_x生成主导因素,这是由于在这些较轻的油中氮含量非常低。由于燃烧馏分油的工艺加热炉通常是较小的并且有较低的热释放速率,它们生成的热 NO_x的量比

燃烧渣油的较大单元少。

生成 NO_x 的这两个机理的变量因素很多。一个重要的变量是燃烧器构造。总的来说,切线燃烧器工艺加热炉的 NO_x 排放低于水平燃烧器工艺加热炉。工艺加热炉中实用的燃烧器也是重要的因素。低过剩空气燃烧器(LEA),燃烧气循环(FGR),分段燃烧(SC),减少空气预热(RAP),低 NO_x 火嘴(LNBs),油/水乳化燃烧(OWE),或它们的结合可以减少 NO_x5%到 60%。负荷降低可以减少 NO_x 的产生量。负荷相对于满负荷每降低一个百分点可以减少 NO_x 排放 0.5%到 1%。应该注意到除过剩空气外,这些变量的多数只影响大型燃油工艺加热炉的 NO_x 排放。低过剩空气燃烧器在许多小工艺加热炉上是可能的,但导致的 NO_x 减少不显著。

D、一氧化碳的排放

燃烧源一氧化碳(CO)的排放速率取决于燃料的氧化效率。由精细控制燃烧过程可以减小 CO 排放。如果不适当地操作或不很好地维护装置,将导致 CO(以及有机化合物)浓度增加几个数量级。较小的工艺加热炉比较大的工艺加热炉排放更多的 CO 和有机物。这是因为较小的装置与较大的相比,通常有较高的热传递表面积与火焰体积比率;这导致了火焰温度和燃烧强度降低,因而降低了燃烧效率。

燃烧系统尾气中存在 CO 主要由燃料不完全燃烧所致。有几个因素导致不完全燃烧,包括供氧不足;燃料/空气混合不好;冷壁火焰熄灭;降低燃烧温度;减少燃烧气停留时间;负荷降低(即降低燃烧强度)。由于针对 NOx减少的各种各样的燃烧改进可以导致以上条件的一个或多个发生,针对环境,能源效率和操作,增加 CO 排放的可能性就成了一个焦点。

E、有机化合物排放

燃烧过程排放少量的有机化合物。与 CO 排放相同,有机化合物的排放速率一定程度上取决于工艺加热炉的燃烧效率。因而,任何降低燃烧效率的燃烧改进都将增加燃烧气中有机化合物的浓度。

总有机化合物(TOCs)包括 VOCs,半挥发性有机化合物和可冷凝有机化合物。标准规定未燃烧的气相烃类污染物为 VOCs 排放。未燃烧的烃排放可以包括所有的从燃烧源排放的气相有机化合物。这主要是在燃烧气温度下存在在气相的脂肪族氧化物和低分子芳香族化合物。这些排放包括所有的链烷烃、链烯烃、醛、羧酸和苯系物(即苯、甲苯、苯乙烯和乙基苯)。

剩余的有机物组成了从燃烧源排出的冷凝相。这些化合物可以被分类为已知的多环有机物(POM)和叫做多环芳香烃(PAH or PNA)的化合物集,也有氮杂环类。文献上可得到的POM 化合物的信息一般归属于 PAH 组。

包括煤和油在内的烃基燃料燃烧过程中生成并排放甲醛,甲醛存在在燃烧气的气相,甲醛属于氧化物并且在燃烧过程中遇到高温分解,因此充分燃烧(适当的空气和燃料比,一致的高燃烧室温度和相对长的气体保留时间)的较大的装置与较小的不充分燃烧的装置比有更低的甲醛排放速率。

F、微量元素排放

油的燃烧也排放微量元素。进入燃烧装置的微量金属的量仅仅与燃料组成有关。从燃烧源排出的微量金属的量取决于燃烧温度、燃料组成和燃料进料方式。温度确定了含在燃料中特定组分的挥发。燃料进料方式影响排放物分离为底灰和飞灰。一般来讲,任何给定金属的排放量取决于元素自身的物理和化学性质、燃料中金属的浓度、燃烧条件和使用的颗粒物控制装置的类型及它作为颗粒大小的函数的收集效率。

G、温室气体

在燃料油燃烧过程中产生二氧化碳(CO_2)、甲烷(CH_4)和一氧化二氮(N_2O)。燃烧过程中几乎所有的燃料中的碳(99%)被转化成 CO_2 ,这个转化与火嘴的结构无关。尽管一氧化碳(CO)的形成减少了 CO_2 的排放,但生成一氧化碳(CO)的量与产生的二氧化碳(CO_2)的量相比是微乎其微的。燃料中碳不转化为 CO_2 的主要原因是燃料的不完全燃烧。

由于复杂的系列反应导致了在燃烧过程生成 N_2O , N_2O 生成量与许多因素有关。当燃烧温度保持在高位(1475OF 以上)和过剩空气保持在低水平(少于 1%)时 N_2O 的生成被减少。需要另外的采样和研究来完全说明 N_2O 的排放和理解 N_2O 的生成机理。不同装置甚至相同的装置不同的操作条件时 N_2O 的排放变化很大。

甲烷的排放随着燃料类型和火嘴结构的变化而变化,但在不完全燃烧或低温燃烧过程中

是最高的,如:燃油工艺加热炉开车或停车过程。一般来讲,生成 N_2O 的最好条件也是 CH_4 生成的最好条件。

工艺加热炉排放大气污染物的控制:

燃料油燃烧污染物的控制技术可以分为三个大类: 更改/改质燃料,改进燃烧,联合燃烧控制。象颗粒相中的金属这样的非标准规定的污染物排放通过对标准规定污染物的联合燃烧控制技术而得到控制。更换燃料减少 SOx 和 NOx 分别涉及降低燃料的硫、氮含量,当燃烧较轻级别的燃料油时颗粒物也将被减少。重油燃料的改质包括使用乳化剂更好地分散、混合重油与水和降低燃烧温度,在一些条件下,可以显著减少 NOx、CO2 和 PM 的排放。燃烧改进包括任何工艺加热炉物理或操作的改变,主要被应用于 NOx 的控制目的,对于小工艺加热炉,通过改进燃烧可能达至一些 PM 排放的减少。联合燃烧控制是燃料燃烧后用于控制 PM、SO2 和 NOx 排放的装置。

A、颗粒物控制

用改进燃烧器的维护,改进油的分散和燃烧动力学,使用火焰保持装置,漩涡和/或再循环优化燃烧空气动力学被认为是朝向达到降低 PM 排放,降低 NO_x排放和提高热效率三个目的的途径。

大型的工艺加热炉一般设计优良,维护良好,可以减少飞灰和可冷凝有机化合物的排放。颗粒物排放多数是由飞灰和炭粒造成的。因而,可以使用联合燃烧控制(机械收集器,ESP,纤维过滤器)或改进/更换燃料的方法减少从这些源的排放。

机械收集器,主要用于吹灰过程中不正常条件或燃烧高灰分重油时产生的颗粒物控制。高效旋风收集器可以达到85%的颗粒物控制。在正常燃烧条件下或燃烧清净的燃料油时,由于排放的小颗粒(直径小于3微米)的百分比高,旋风收集器达不到那样的高效。

静电沉淀器(ESPs)一般被用于燃油电厂。较老的沉淀器,通常是小型的,一般能脱除 PM 的 40%到 60%。由于油的低灰分,不需要更大的收集效率。新型的或重建的 ESPs 可以达到 90%的收集效率。

纤维过滤器,是把大量的过滤组件(过滤袋)安装在一个主壳内。纤维过滤系统的颗粒物脱除效率取决于颗粒和操作特性的变化,包括颗粒直径分布,颗粒的凝聚特性,和颗粒的电特性。影响收集效率的操作参数包括操作压降、反洗频率、两次反洗的间隔和反洗强度等。纤维过滤器的结构、纤维组成和袋的性质也影响收集效率,袋式除尘的收集效率可以大于99%。

洗涤系统被安装在燃油工艺加热炉上,以控制二氧化硫和颗粒物。这些系统可以达到90%至95%的SO₂去除率和50%到60%的颗粒物控制效率。使用乳化剂把重油和水混合的改质燃料,能显著降低PM排放的特性。

B、SO2控制

工业化的联合燃烧气脱硫工艺(FGD)使用一个碱性试剂吸收燃烧气中的 SO₂,生产硫酸钠或硫酸钙。然后在下游设备中脱除这些固体硫酸盐。燃烧气脱硫技术被分为湿式、半干式和干式,这取决于试剂离开吸收器时的状态。

湿式可再生工艺(FGD)有吸引力是由于它有高于95%的硫脱除效率,小的废水排放和生产可出售的硫产品。而常用的非再生钙基工艺可以生产可出售的石膏产品。

现在,普遍采用湿式系统。湿式系统一般使用碱性浆液作为 SOx 吸收介质,可以设计成去除 90%以上的进口 SOx 系统。已工业应用并成熟的湿式 FGD 系统有石灰/石灰石洗涤器、钠洗涤器和双碱洗涤。这些装置的效率不仅取决于控制装置的设计,也取决于操作水平。

C、NOx控制

以原油或渣油为燃料的工艺加热炉,由于燃料氮氧化物的生成量占总生成氮氧化物量的60%到80%,为了达到希望的氮氧化物减少水平,燃料氮氧化物的控制是重要的。燃料氮转化为NO_x很大程度上取决于燃烧区的燃料和空气比,与热NO_x生成相比,燃烧区温度的小幅变化对NO_x的生成量影响不大。一般来讲,燃料和空气混合程度增加,燃料氮转化为NO_x增加。这样,为了减少燃料NO_x生成,最普通的燃烧改进技术是控制燃烧空气水平在完全燃烧理论需要空气量以下。氧的减少创造了还原条件,在高温下停留足够时间,使挥发性燃料氮转化为N₂而不是NO。

几个技术被用于减少燃料油燃烧系统的 NO_x排放。燃烧低氮燃料,燃料改质包括燃烧乳化的重油和水的混合物。除这些以外,主要技术都可列入两个本质不同的方法一燃烧控制和

联合控制。燃烧控制用抑制燃烧过程中 NO_x 生成减少 NO_x 排放,而联合控制是在 NO_x 生成后降低 NO_x 排放。燃烧控制是在所有类型锅炉中被广泛使用的控制 NO_x 生成的方法,包括低过剩空气、免维护火嘴、切线火嘴、燃烧气再循环、过热空气和低 NO_x 火嘴。联合控制方法包括选择非催化还原(SNCR)和选择催化还原(SCR),这些控制技术可以分别使用或结合到一起使用以便达到更大的 NO_x 消减。

在低过剩空气下操作涉及降低燃烧空气量到保持锅炉效率和环境承受力的最低水平。由于在燃烧区的低氧浓度抑制了 NOx 的生成。免维护火嘴涉及抑制燃料流过火嘴顶排的部分或全部,只允许空气通过。这个方法模拟空气分段或过热空气调节,在燃烧区降低氧浓度限制 NOx 生成。切线火嘴涉及在较低排的火嘴比上排的火嘴的燃料比例大。这个方法提供了空气分级的形式,用限制燃烧区氧量的方法抑制 NOx 生成。这些方法可能改变正常的锅炉操作,效率随锅炉的变化而变化,这些技术的实施也可能降低操作弹性,然而,这些技术可以降低10%到 20%的 NOx。

燃烧气再循环涉及从废气预热器部分或空气加热套引出部分燃烧气通过风口重新导入炉中。这个方法降低了燃烧区的氧浓度,同样的条件下可以降低 40%到 50%的 NO_x。

过热空气是一个技术,在这个技术中把总燃烧空气的一定比例注入燃烧火嘴的顶区。过热空气用下列方法限制 NO_x ,(1)由部分延迟和延长燃烧过程造成低强度燃烧和低火焰温度抑制热 NO_x 生成;(2)降低火焰温度限制热 NO_x 生成;(3)减少在峰值温度段的停留时间,这样也限制热 NO_x 生成。

低 NO_x 火嘴可应用于各种规模的切线锅炉。它们作为花样翻新的 NO_x 控制设施已经被用于现有工艺加热炉,可以达到比未控制水平减少约 35%到 55%,它们也被用于新锅炉以满足 NSPS 限制。低 NO_x 火嘴可以与过热空气结合达到更大的 NO_x 减少(基于未控制水平减少约 40%到 60%)。

SNCR 是一种联合控制技术,涉及把氨或尿素注入炉子上部或对流段的特定温度区。氨或尿素与燃烧气中的 NOx 反应生成氮气和水。SNCR 的效率与试剂注入区的温度、试剂在燃烧气中的混合程度、试剂在要求温度区的停留时间、试剂与 NOx 的比例和燃料的硫含量(可以造成含硫化合物在下游设备的堆积)相关。没有更多的基于广泛锅炉类型的效率变化的工业经验;然而在有限的应用中,已经达到 25%到 40%的 NOx 减少。

SCR 是另一个联合控制技术,它涉及在催化剂存在下把氨注入燃烧气中,以还原 NO_x 为 氮气和水。SCR 反应器可以坐落在过程的各种各样的位置,包括空气加热器和颗粒物控制装置以前,或空气加热器、颗粒物控制装置和燃烧气脱硫系统的下游。燃烧气温度、燃料硫含量、氨与 NO_x 的比、NO_x 浓度、空速和催化剂影响 SCR 的表现。在美国正在工作的燃油锅炉使用 SCR 已经达到减少 NO_x 排放 75%到 85%。

燃料改质降低 NO_x包括使用油一水乳化燃料。在控制试验中,用石油基乳化剂把 9%的水混合入燃料油中,与未改质的同样燃料相比,NO_x生成基于热量降低 36%,基于体积降低 41%。降低主要是由于改进了分散和减少了过剩的燃烧空气,降低火焰温度的贡献少。

4.4.2 石油化工物料储罐的控制标准

(1) 石油化工液体储罐介绍

石油化工液体储罐通常使用六种基本设计:固定顶罐(立罐和卧罐)、外浮顶罐、穹顶(加盖)外浮顶罐、内浮顶罐、可变蒸发空间罐和压力(低压和高压)罐。下面提供每一种罐的简单描述。

A、固定顶罐

图 11 示出了一种典型的立式固定顶罐。这种类型的罐由一个圆柱形的钢制外壳和一个永久固定的顶组成,这个固定顶在设计时可以是锥顶,拱顶或平顶。由于温度、压力和液位的改变造成固定顶罐内储存物的损耗。

固定顶罐是自由排放的或装备有压力/真空排放口。后者允许罐在稍微内压或真空条件下操作,防止温度、压力或液位发生很小变化时的蒸汽释放。常用的罐中,固定顶罐的建设费用最低,对于储存有机液体一般认为是可以接受的设备。

建设卧式固定顶罐用于地上和地下设施,通常用钢,钢和纤维玻璃覆盖的钢或强化纤维玻璃聚脂材料建造。卧罐一般是容量小于 100m³的小储量罐。为了保证结构稳定,建造的卧罐长度不超过六倍的罐直径。卧罐通常装备有压力一真空排放口,检查口,采样口和进入到罐内的人孔。

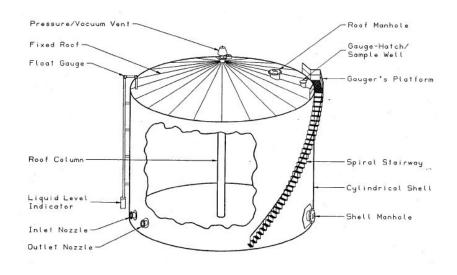


图 11 立式固定顶罐简图

地面上卧罐的潜在排放源与立式固定顶罐相同,地下储罐的排放主要与罐中的液位变化 有关。由于土壤环绕限制了日间温差,地下罐由于温度或大气压力的改变损耗小。

B、外浮顶罐

一个典型的外浮顶罐(EFRT)(见图 12 和图 17)由一个开口的圆柱形钢壳和浮在储存液体表面上的一个浮盘组成。浮盘由顶板、配件、边缘密封系统组成。浮盘一般用焊接钢板制作,浮盘有两种形式,浮筒型和双盘型外浮顶罐。所有的外浮顶罐顶都随罐内液位上升和下降。一个边缘密封系统安装在外浮盘上,边缘密封系统被固定在浮盘的周边与罐壁接触,浮顶和边缘密封系统的作用是减少储存液体的蒸发损失。密封系统和罐壁之间保持一定的环形空间,当浮顶上升和下降时密封系统沿着罐壁滑动,浮盘也装备配件,配件透过浮盘服务于操作功能,以限制储存液体的蒸发损失,减少边缘密封系统和浮盘配件损失和液体在罐壁上的暴露损失。

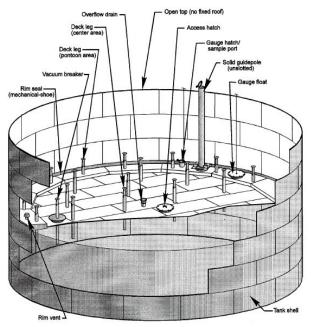


图 12 外浮顶罐结构简图

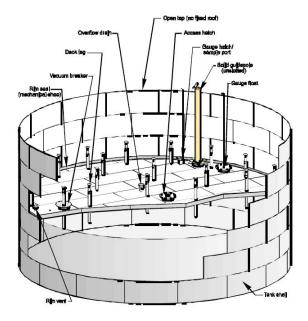


图 13 双甲板外浮顶罐结构简图

C、内浮顶罐

一个内浮顶罐(IFRT)有永久固定顶和一个内浮顶。内浮顶罐有两个基本形式,一种是固定顶由罐内的竖直柱支撑,另外一种是自支撑固定顶,没有内支撑柱。固定顶罐被改造成使用内浮顶是第一种典型的类型。典型的外浮顶罐被改造成内浮顶罐有一个自支撑顶。新建造的内浮顶罐可能是其中的任意一种。随着液位的起落,内浮顶罐内的浮盘直接漂浮在液体表面(接触浮盘)或安装在浮筒上,在液体表面几英寸上(非接触浮盘)。正在使用的内浮顶多数是非接触浮盘。一种典型的内浮顶罐示于图 14。

接触浮盘可以是: (1) 用螺栓固定在一起的带有蜂窝铝芯的铝夹心板漂浮在液体表面; (2) 带或不带浮筒的鼓型钢浮盘漂浮在液体表面; (3) 树脂涂层,玻璃纤维加强树脂(FRP),有自身浮力的浮盘漂浮在液体表面。正在使用的内接触浮盘的多数是铝夹心面板型或鼓型。FRP 浮盘不常用。鼓型钢浮盘的面板通常焊接在一起。

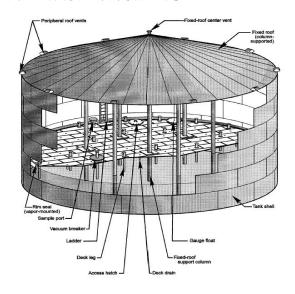


图 14 内浮顶罐结构简图

非接触型浮盘是最常用的。典型的非接触浮盘由一个铝面板和用管式铝浮筒或其他有浮力的结构支撑在液体表面以上的铝骨架组成。非接触浮盘通常焊接,接触和非接触浮盘的一体化的边缘密封和浮盘配件的作用与前面介绍的外浮顶罐相同。浮顶的蒸发损失来自于浮盘

配件、非焊接浮盘缝隙和浮盘与罐壁的环形空间,另外,这些罐由安装在固定顶上的循环排放口自由排放。排放口减小了有机蒸气在罐蒸发空间积累浓度达到燃烧范围的可能性,不设自由排放口的内浮顶罐被看做压力罐。

D、穹顶外浮顶罐

穹顶外浮顶罐(加盖)(见图 15)有用在外浮顶罐的较重的浮盘和象内浮顶罐一样的罐体的顶部有一个固定顶。穹顶外浮顶罐通常是由一个外浮顶罐加一个固定顶改造而成。这个类型的罐与带有焊接内浮盘和一个自支撑固定顶的内浮顶罐很相似。图 15 示出了一个典型的穹顶外浮顶罐。

内浮顶罐的固定顶不是作为蒸发的障碍,而是挡风。普遍使用的固定顶的类型是自支撑铝穹顶,穹顶用螺栓连接。像内浮顶罐一样,穹顶外浮顶罐由设在固定顶顶部的循环排放口自由排放。然而,浮盘配件和边缘密封系统与外浮顶罐一样。当浮盘被较轻的浮盘替换后,这些罐可以作为内浮顶罐考虑。

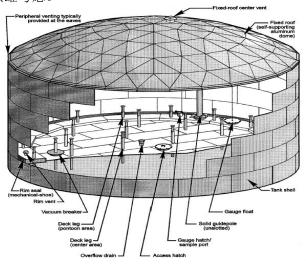


图 15 穹顶内浮顶罐结构简图

E、可变蒸发空间罐

可变蒸发空间罐装备有可膨胀的蒸气室以适应由于温度和大气压变化造成的蒸气体积 波动。尽管可变蒸发空间罐有时单独使用,但它一般与一个或多个固定顶罐的蒸发空间连接。 升降顶罐和弹性隔膜罐是两种最普通的可变蒸发空间罐。

升降顶罐有一个围绕主罐壁外边的伸缩顶。顶和罐壁之间的空间被湿式密封(充满液体的槽)或者干密封(使用一种弹性织物)封闭。

弹性隔膜罐使用弹性膜片提供可膨胀空间。它可能是分离的储气罐或者是安放在固定顶罐顶部的完整单元。

向可变空间灌注液体时蒸气被液体置换,损耗发生,仅仅当超过罐的蒸气储存能力时才 发生蒸发损失。

F、压力罐

压力罐一般用于储存有高蒸气压的有机液体和气体,有不同的大小和形状,这取决于罐的操作压力。压力罐装备有压力/真空排放口,这个排放口设置了防止由于日常温度或大气压变化造成的呼吸损失和沸腾排放损失。高压储罐可以在无视觉蒸发或工作损耗发生的条件下操作。低压罐,在填充操作时,工作损耗可以发生在罐的大气排放口。不能得到适当的关系式用于估算压力罐的蒸发损耗。

(2) 石油化工物料液体储罐的排放机理和控制

石油化工物料液体储存过程中的排放是由于储存过程中石油化工物料液体的蒸发损耗,是液位变化造成的,排放源随着罐的设计变化而变化。固定顶罐的排放是储存过程的蒸发损耗(小呼吸损耗 breathing losses or standing storage losses)和充罐或排空操作过程中(大呼吸损耗 Working losses)的蒸发损耗所致。外浮顶罐和内浮顶罐是因为液体充罐和排空过程中发生的蒸发损耗。小呼吸损耗是通过边缘密封、浮盘配件和/或浮盘接缝造成的蒸发损耗。这个部分更详细介绍固定顶罐、外浮顶罐和内浮顶罐的损耗机理。可变蒸发空间罐是因为充

填操作过程中的蒸发损失所致。可变蒸发空间罐,压力罐也产生排放,但在这部分不介绍这个源的损耗机理。

A、固定顶罐

固定项罐的两个重要的排放类型是小呼吸和大呼吸。小呼吸是蒸气膨胀和收缩过程中从罐内排出的化工物料蒸气,它是由温度和大气压的变化造成的。这种损失是在罐内液位不变化时产生的。

把罐填充和排空的损失叫做大呼吸损失。填充操作过程的蒸发是罐内液位增加的结果。由于液位升高,罐内压力超过释放压力,蒸气从罐内排出。在液体排空时,空气被抽入罐内,空气被有机蒸气饱和并膨胀,蒸气量超过了蒸发空间的容量,这时发生排空过程的蒸发损失。

固定顶罐的排放量是罐容量、储存液体的蒸气压、罐的周转效率和罐所在地的气象条件的函数。

常常用几种方法控制固定项罐的排放。由安装一个内浮顶和密封系统减小被储存产品的蒸发,可以控制固定项罐的排放。这个方法的控制效率从 60%到 99%,这取决于安装的浮顶和密封系统的类型及储存有机液体的性质。

蒸气平衡是另一个排放控制的概念。在化工物料的充装过程中蒸气平衡是最普通的。当充装储罐时,从储罐排出的蒸气被导向卸空的汽油罐车,然后罐车把蒸气运输到中心站,使用中心站的蒸气回收或控制系统控制排放。如果蒸气回收或控制系统隶属于中心站,蒸气平衡的控制效率可以达到90%到98%。如果罐车把蒸气排放到大气中而不是回收或控制系统,达不到控制。

蒸气回收系统从储罐收集排放的蒸气,把蒸气转化为液体产品。有几个蒸气回收工艺可以利用,它们包括:气/液吸收、蒸气压缩、蒸气冷凝、蒸气/固体吸附,或这些工艺的组合工艺。蒸气回收系统的控制效率在90%到98%,这取决于使用的方法,装置的设计,回收蒸气的组成和系统的机械条件。

在一个典型的热氧化系统,把空气/蒸气的混合物注入一个焚烧器的焚烧区域,这个系统的控制效率从96%到99%。

B、浮顶罐

从浮顶罐的排放是挂壁损失和小呼吸损失之和,挂壁损失发生在液位降低时,这时浮顶也降低。一些液体保留在罐壁内表面并且蒸发,对于有柱支撑固定顶的内浮顶罐,液体也黏附在柱表面,并蒸发,直到罐被充装时蒸发损失才发生,这时暴露的表面又重新覆盖。浮顶罐的小呼吸损失包括边缘密封和浮盘配件损失,对于内浮顶罐小呼吸还包括浮盘缝隙损失。其他潜在的小呼吸损失机制包括当温度和压力改变时的呼吸损失。

边缘密封损失可以通过许多复杂的机理产生,但对于外浮顶罐,边缘密封蒸发损失的主体是风引起的。对于内浮顶罐或穹顶外浮顶罐的边缘密封损失已经确定风不占主导地位。由于渗透过边缘密封材料蒸发或通过液体的毛细管作用也可能发生损失,但如果使用适当的密封纤维边缘密封材料时渗透一般不发生。测试表明,呼吸、溶解性和毛细管作用的损失比风引起的损失小。

使用边缘密封系统允许浮顶在罐内随着液位的改变升降。边缘密封系统也有助于填充浮盘边缘与罐体之间的环隙空间,从而减少从这个区域的蒸发损失。一个边缘密封系统可以由一个主密封组成或一个主密封和一个第二密封组成,第二密封固定在第一密封之上。一级和二级密封的结构例子示于图 16、图 17 和图 18。

一级密封作为蒸气保存装置关闭浮盘边缘和罐壁的环形空间。三个基本型的一级密封使用在外浮项:它们是机械(金属的)靴、弹性填充型(非金属)和可伸缩刷密封。一些外浮顶罐上的一级密封有防护罩保护,防护罩可以是金属的,人造橡胶的,或复合结构,以防止一级密封纤维由于暴露在大气、灰尘和阳光中老化,保证一级密封的长寿命。内浮顶结合了伸缩、耐久型密封、有弹性的填充泡沫密封或刮刷密封。

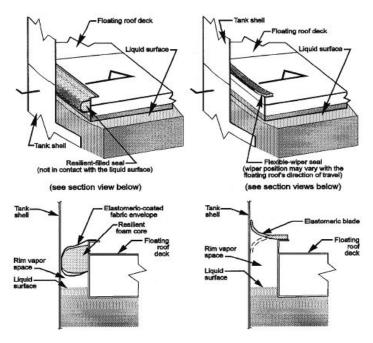


图 16 浮顶边缘密封结构示意图

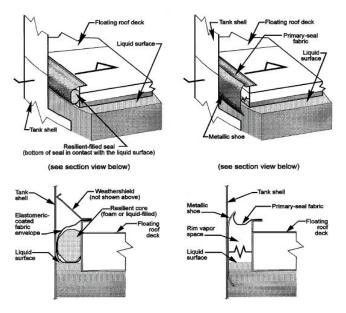


图 17 浮顶内构件简图

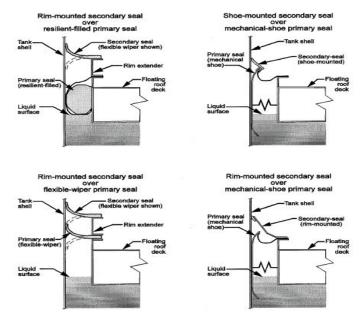


图 18 浮顶二次密封结构简图

4.4.3 石油化学工业工艺废气排放口控制

每一个工艺废气排放口(包括工艺气体连续排放口),都应接入一种废气回收装置、或废气热焚烧装置、或废气催化焚烧装置、或火炬,以达到减少污染物的排放量。

(1) 净化方法的选择

挥发性有机废气的净化,可以用吸收、吸附、冷凝、催化燃烧、热力燃烧和直接燃烧等方法,或者是上述方法的组合,如冷凝-吸附,吸收-冷凝等。欲选择一个合适的治理方案,必须综合考虑各方面的因素,权衡利弊,最后选择一种经济上较合理、符合生产实际,能达到排放标准的最佳方案。

考虑的因素大致如下:

- (a) 气源的性质和废气的成分:如果气源为间歇性或者气量、浓度波动比较大时,不宜采用生物法。如果废气中氧气含量比较低,则不宜采用燃烧法和生物法。
- (b)污染物的性质:例如,利用 VOCs 易氧化、燃烧的特点,可采用催化燃烧或直接燃烧的方法,而卤代烃的燃烧处理,则需考虑燃烧后氢卤烃的吸收净化措施。利用 VOCs 易溶于有机溶剂的特点,以及与其他组分在溶解度上的差异,可采用物理吸收和化学吸收的方法来达到净化或提纯的目的。利用有机污染物能被某些吸附剂(例如活性炭)选择性吸附或催化的原理等,可采用吸附方法来净化有机废气。
- (c)污染物浓度:含 VOCs 的废气,往往由于浓度不同而采用不同的净化方案。例如,污染物浓度高时,可采用火炬直接燃烧(不能回收热值)或引入锅炉或工业炉直接燃烧(可回收热量)。而浓度低时,则需补充一部分燃料,采用热力燃烧和催化燃烧。污染物浓度较高时也不易直接采用吸附法,因为吸附剂的容量往往很有限。
- (d) 生产的具体情况及净化要求:结合生产的具体情况来考虑净化方案,有时可以简化净化工艺。例如,锦纶生产中,用粗环己酮、环己烷作吸收剂,回收氧化工序排出的尾气中的环己烷,由于粗环己酮、环己烷本身就是生产的中间产品,因而不必使吸收液再生,令其直接返回生产流程即可。用氯乙烯生产过程中的三氯乙烯作吸收剂,吸收含氯乙烯的尾气,也具有相同的优点。

另外,不同的净化要求往往有不同的适宜净化方案。

(e) 经济性是废气治理的一个重要方面,它包括设备投资和运转费两个方面。所选择的最佳方案应当尽量减少设备费用和运行费用。方案中,尽可能回收有价值的物质和热能,这样可以减少运行费用,有时可获得经济效益。

(2) 焚烧技术

A、燃烧法净化 VOCs 废气

燃烧法是氧化有机物最为剧烈的方法,它可以用于净化可燃的或在高温下可以分解的有

害物质。化工、喷漆、绝缘材料等行业所排出的有机废气广泛采用燃烧法净化。在燃烧过程中,有机物之剧烈氧化,放出大量的热能,可以回收利用。

B、燃烧动力学

a) 燃烧热

燃烧是一种放热化学反应,每摩尔燃料燃烧时所放出的热量称为燃烧热,单位为 kJ/mol。部分 VOCs 的燃烧热(1atm,298K)见表 30。

甲烷 乙烷 890.31 1559.8	W. = 1	
乙烷 890.31 1559.8	物质 —△H(kJ/mol)
正戊烷 3536.1 正己烷 4163.1 乙烯 1411.0 乙炔 1299.6 环丙烷 2091.5 环丁烷 3720.5 环戊烷 3290.9 环己烷 3919.9 苯 3267.5 素 5153.9 中醇 726.51 乙醇 1366.8 2019.8 2675.8	物质 一公H (kJ/mol) 甲醛 570.78 乙醛 1166.4 丙醛 1816.0 丙酮 1790.4 乙酸 874.5 丙烯酸 1527.3 正丁酸 2183.5 乙酸酐 979.5 甲酸甲酯 3053.5 苯酚 3528.0 苯甲醛 4184.9 苯乙酮 3528.0 苯甲酸 4184.9 苯乙酮 3223.5 邻苯二甲酸 3958.0	<u>) </u>

表 30 部分 VOCs 的燃烧热

各种碳氢化合物在空气中的爆炸浓度下线(Lower Explosive Limit,简写为 LEL)时的燃烧热值及燃烧时的温升大致相同,因而常将气体中可燃物的浓度于热值、温升联系起来,把可燃物的浓度用爆炸下线浓度的百分数来表示,为%LEL。大多数碳氢化合物每 1%LEL 所含的热值,大约可以使混合气体温度升高 15.3 \mathbb{C} 。

b) 燃烧动力学

VOCs 燃烧反应速率,即单位时间内浓度的减小值,可以表示为:

$$r = -\frac{dC_A}{dt} = kC_A^n C_{O_2}^m$$
 (1-1)

在大多数情况下,VOCs 的浓度很低,以至于在燃烧过程中氧气的浓度几乎不变,所以上式可以简化为:

$$r = -\frac{dC_A}{dt} = kC_A^n \tag{1-2}$$

式中 r-燃烧速率:

k-燃烧动力学常数:

CA-VOCs 的浓度;

n-反应级数。

动力学常数 k 与温度 T 之间的关系通常由阿累尼乌斯方程表示:

$$k = A \exp(-\frac{E}{RT}) \tag{1-3}$$

式中 A-频率因子,试验常数,与反映分子的碰撞频率有关,s-1;

E-活化能,实验常数,与分子的键能有关,J/mol;

R-气体常数, 8.314/(mol·K);

T-反应温度, K。

表 31 给出部分有机物的热氧化参数,表明,当燃烧温度为 500℃时,所需的燃烧时间 太长,实际上是不可行的; 当燃烧温度为 800℃时,燃烧时间为 0.2s,燃烧法变得可行。对 于一级燃烧反应,燃烧时间与 VOCs 的初始浓度无关;而对于非一级反应(n≠1),则燃烧时 间与 VOCs 的初始浓度有关。

部分有机物的热氧化参数

 $k (s^{-1})$ $A (s^{-1})$ VOCs E (kJ/mol) 500℃ 600℃ **700℃** 丙烯醛 3.30×10^{10} 150.21 2.34496 34.0728 285.635

表 31

800℃ 1611.103 丙烯腈 2.13×10^{12} 217.99 0.00399 0.1938 4.240 52.203 丙醇 1.75×10⁶ 89.54 1.56166 7.6987 27.344 76.686 氯丙烷 3.89×10^{7} 121.75 0.23111 2.0228 11.336 46.073 苯 7.43×10²¹ 401.25 5.77×10⁻⁶ 218.778 0.0074 2.153 1-丁烯 3.74×10¹⁴ 243.51 0.01320 31.759 524.645 1.0113 氯苯 1.34×10¹⁷ 320.49 2.97×10⁻⁵ 0.0090 0.839 33.632 环己胺 5.13×10¹² 199.16 0.17961 6.2430 104.650 1037.304 1, 2-二氯乙烷 4.82×10^{11} 190.79 0.06203 1.8576 27.659 248.975 乙烷 5.65×10¹⁴ 266.10 0.00059 0.0680 2.939 62.991 乙醇 5.37×10¹¹ 201.25 0.01358 0.4899 8.459 85.888 乙基丙烯酸酯 2.19×10¹² 192.46 0.21725 6.7021 102.189 937.753 乙烯 1.37×10¹² 212.55 0.00598 0.2636 5.341 61.773 甲酸乙酯 4.39×10¹¹ 187.02 0.10150 2.8421 40.123 345.833 乙硫醇 5.20×10⁵ 61.50 36.35291 108.7566 259.754 527.476 正己烷 6.02×10^{8} 143.09 0.12935 12.551 1.6558 65.227 甲烷 1.68×10¹¹ 217.99 0.00031 0.0153 0.334 4.117 氯甲烷 7.43×10^{8} 171.13 0.00204 0.0430 0.485 3.478 丙酮 1.45×10¹⁴ 244.35 0.00449 0.3494 11.103 185.195 天然气 1.65×10¹⁵ 206.27 19.10431 753.7581 13973.491 150331.719 丙烷 5.25×10¹⁹ 356.48 4.32×10⁻⁵ 0.0248 3.848 233.526 丙烯 4.63×10^{8} 143.09 0.09949 1.2735 9.653 50.166 甲苯 2.28×10¹³ 236.40 0.00243 0.1642 4.664 70.982 三乙胺 8.10×10^{11} 180.75 0.49717 12.4486 160.802 1289.369 乙酸乙酯 2.54×10^9 150.21 0.18049 2.6226 21.985 124.006 氯乙烯 3.57×10¹⁴ 264.85 0.00046 0.511 2.169 45.814

C、燃烧工艺

a) 直接燃烧法

直接燃烧法是 20 世纪 50、60 年代广泛采用的方法,主要用于高浓度 VOCs 废气的净化, 直接燃烧的设备包括一般的燃烧炉、窑,也可以将废气通过某种装置导入锅炉进行燃烧。直 接燃烧的温度一般在 1100℃左右。

石油炼制厂或石油化工厂所产生的 VOCs 废气通常排放到火炬燃烧器(火炬头)直接燃 烧,这种方法除造成能源浪费外,还把大量的污染物排入大气,近年来已较少使用。

b) 热力燃烧法

热力燃烧法是在废气中 VOCs 浓度低时添加燃料以帮助其燃烧的方法。在热力燃烧中, 被净化的废气不是作为燃料,而是作为提供氧气的辅燃气体;当废气中氧的含量较低时,需 要加入空气来辅燃。热力燃烧所需的温度较直接燃烧低,大约为 540~820℃。温度、停留 时间和湍流混合程度是影响热力燃烧的关键因素。对大部分物质来说,温度为 740~820℃,停留时间为 0.3~0.5s 即可反应完全;大多数碳氢化合物在 590~820℃即可完全氧化,而氧化 CO 和浓的炭烟粒子则需要较高的温度和停留时间。表 32 列出了有机废气燃烧净化所需的反应温度和停留时间。高温燃气与废气的混合程度也是影响热力燃烧的重要因素,在一定的停留时间内,如果不能完全混合,就会导致部分废气没有上升到反应温度就逸出反应区。此外,在燃烧反应器中保持湍流状态可使预热燃烧器的燃烧产物和处理的废气很好的混合,从而使混合物的温度和浓度分布均匀。

废气净化范围	燃烧停留时间(s)	反应温度(℃)
碳氢化合物		
(HC+CO 销毁 90%以上)	0.3-0.5	680-820
碳氢化合物+CO		
(HC+CO 销毁 90%以上)	0.3-0.5	680-820
臭味		
(销毁 50%-90%以上)	0.3-0.5	540-650
(销毁 90%-99%以上)	0.3-0.5	590-700
(销毁 99%以上)	0.3-0.5	650-820
烟和缕烟		
白烟 (雾滴缕烟消除)	0.3-0.5	430-540
HC+CO 销毁 90%以上	0.3-0.5	680-820
黑烟 (炭粒和可燃物)	0.7-1.0	760-1100

表 32 有机废气燃烧净化所需的反应温度和停留时间

常见的热力燃烧装置由焚烧炉和脱臭炉。普通锅炉、生活用锅炉及一般加热炉,由于炉内条件可以满足热力燃烧的要求,可以用于热力燃烧,这样不仅可以节省设备投资,而且可以节省辅助燃料。但在使用普通锅炉等进行热力燃烧时,应注意:①废气中所要净化的组分应当几乎全部可燃,不燃组分如无机烟尘等在传热面上的沉积将会导致锅炉效率的降低;②要净化的废气流量不宜太大,过量低温度废气的引入会降低热效率并增加动力燃烧;③废气中的含量应与锅炉燃烧的需氧量相适应,以保证充分燃烧,否则燃烧不完全所形成的焦油将污染炉内传热面。

热力燃烧的燃料消耗主要用于使有害气体升温到反应温度(**760~820**℃)。有害气体中的可燃组分的热值越高,浓度越高,气体的初始温度越高,则消耗的燃料越少。

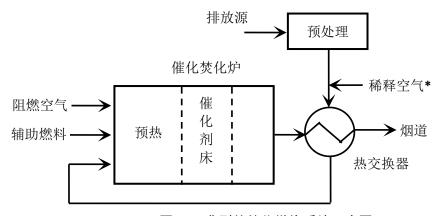


图 19 典型的催化燃烧系统示意图

c) 催化燃烧法

催化燃烧法是在系统中使用合适的催化剂,使废气中的有机物在较低温度下氧化分解的方法。图 19 为典型的催化燃烧系统示意图。与其他种类的燃烧法相比,该法的优点是无火焰燃烧,安全性好,要求的燃烧温度低(大部分烃类和 CO 在 300~450℃之间即可完成反应),辅助燃料费用低,对可燃组分浓度和热值限制较少,二次污染物 NO_x生成量少,燃烧设备的体积较小,VOCs 去除率高。缺点是催化剂价格较贵,且要求废气中不得含有导致催化剂失

活的成分。

常用的燃烧催化剂是以金属网或蜂窝陶瓷作载体,用贵金属钯作为活性材料制成的,也有用 Cu、Cr、Fe、Co、Ni 等金属的氧化物作活性材料。催化剂的活性因可燃组分的种类而异,对于碳氢化合物,碳原子数越多,越容易被氧化分解。几种国产催化剂的主要性能见表33。

催化燃烧法适合于净化油漆、化工废气及恶臭气体,不能用于处理含有机氯和有机硫的 化合物,因为这些化合物燃烧后会造成二次污染并使催化剂中毒。而有些有机物的沸点高, 相对分子质量很大,也不能用催化燃烧法来处理,因为燃烧产物会使催化剂表面发生堵塞。

型号	外形尺寸	比表面积	空速	转化率	起燃温	堆积密度
至 5 	(mm)	(m ² /L)	(m ⁻¹)	(%)	度(℃)	(kg/L)
3138 蜂窝陶瓷	47×47×50	0.8	10000-20000	>90	240	0.83
2314 蜂窝陶瓷	47×43×43	1.0	10000-30000	>90	200	1.16
FCC-1 蜂窝陶瓷载体	47×47×46	0.8	10000-30000	>90	>250	0.92
FG-1 蜂窝陶瓷载体	47×47×47	1.0	30000	>90	-	0.74
FG-2 蜂窝陶瓷载体	截面六边形长	0.8	30000	>90	-	1.05
FU-2 蚌芮阿瓦牧丹	25,高 100	0.8	30000			
RAC-8001 稀土	球 3-6	-	10000	≥99	300~350	0.983
ABO ₃ 合金蜂窝稀土	宽 25,厚 0.08	2.82	40000-50000	>99	400	-
NZP-1	球 3-5	-	10000-15000	-	≥220	0.75
GM 蜂窝	47×47×47	-	20000-40000	95~99.5	150~300	-
蓬体球	球 26-30	-	-	>99	280	-

表 33 几种国产催化剂的主要性能

d) 蓄热式燃烧法和蓄热式催化氧化法

蓄热式燃烧法和蓄热式催化氧化法采用了热量回收系统,回收燃烧后高温气体的热量用于预热进入系统的废气。蓄热式燃烧的装置为蓄热式热氧化器(Regenerative Thermal Oxidizer,缩写为 RTO)。如图 20 所示,RTO 有两个陶瓷填充床热回收室,每个热回收室底部有两个自动控制阀门,分别与进气总管和排气总管相连。VOCs 废气从右侧进入时,左侧热回收室用燃烧尾气加热填料,蓄存热量,切换进气方向后再用蓄存的热量来预热废气,两个热回收室按预先设定的时间间隔切换蓄热和供热。

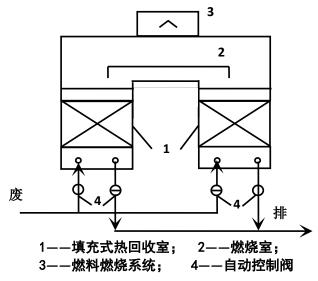


图 20 蓄热式热氧化法工艺流程

蓄热式催化氧化法的主要设备式蓄热式催化氧化器(Regenerative Catalytic Oxidizer,缩写为 RCO)。其结构与 RTO 相似,只是用催化剂床层代替燃烧室。

相对于其他燃烧工艺,蓄热式燃烧法和蓄热式催化氧化法有较高的热回收效率,一般可达 85%以上。

(3) 回收技术

包括吸收法和吸附法净化 VOCs 废气。

A、吸收法净化 VOCs 废气

吸收法是采用低挥发或不挥发溶剂对 VOCs 进行吸收,然后利用 VOCs 与吸收剂物理性质的差异将二者分离的净化方法。其典型工艺流程如图 21 所示。

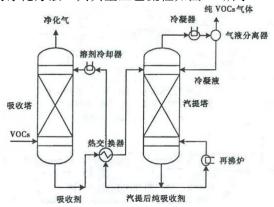


图 21 吸收处理法 VOCs 工艺流程

含 VOCs 气体在吸收塔内的上升过程中,与吸收剂逆流接触而被吸收,净化后的气体从塔顶排出。含有 VOCs 的吸收剂通过热交换器,进入汽提塔,在高于吸收温度或低于吸收压力的条件下解析,然后循环使用,解析的 VOCs 气体经冷凝和气液分离后回收利用。

吸收法适合于浓度高、温度较低和压力较高的 VOCs 废气的净化。吸收效果主要取决于吸收剂的性能和吸收设备的结构特征。吸收剂选取的原则是:对 VOCs 溶解度大,选择性强,蒸汽压低,无毒及化学稳定性好等。表 34 列出了净化挥发性有机废气常用的吸收剂。吸收设备选取的原则是:气液接触面积大,阻力小,易操作,运行稳定等。常用的吸收设备是填料塔。此外,气液比、VOCs 入口浓度、运行温度和压降以及吸收剂解析性能也是影响吸收效果的主要因素。

表 34	净化挥发性有机废纸	气常用的吸收剂

吸收剂	水	柴油、机油	氢氧化钾	盐酸、硫酸	次氯酸钠
吸收质	苯酚	苯环化合物	有机酸	胺类	甲醛、乙醛、甲醇

B、吸附法净化 VOCs 废气

a) 吸附工艺

吸附法是采用吸附剂吸附气相中的 VOCs,从而达到气体净化的目的。吸附法净化 VOCs 废气的工艺流程如图 22 所示。吸附过程常采用两个吸附器,一个吸附时另一个脱附再生,以保证过程的连续性。经吸附器吸附后的气体,直接排出系统。吸附剂再生时采用水蒸气作为脱附气体,水蒸气降吸附在表面的 VOCs 脱附并带出吸附器,再通过冷凝,降 VOCs 提纯回收。脱附气体也可以进行催化燃烧处理,这就是吸附浓缩-催化燃烧工艺,此时脱附气体应为热空气。

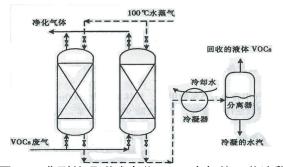


图 22 典型的吸附法净化 VOCs 废气的工艺流程

对于低浓度、大气量 VOCs 废气,目前应用最多,最成熟的方法是蜂窝轮浓缩法。其工作原理如图 23 所示,蜂窝轮连续不断将低浓度、大气量废气中的 VOCs 吸附,再用小风量的热风脱附得到高浓度的废气,浓缩后的气体再进入小型的催化燃烧装置或冷凝回收装置进行处理,从而构成经济、高效的有机废气处理系统。该系统体积小,费用低,在国内外已得到广泛应用。

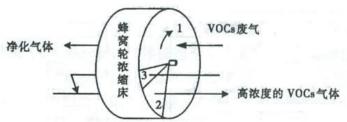


图 23 蜂窝轮浓缩床工作原理示意图

b) 吸附剂

研究表明,活性炭吸附 VOCs 性能最佳,原因在于其他吸附剂(如沸石、硅胶等)具有极性,在水蒸气存在的情况下,水分子和吸附剂极性分子结合,从而降低了吸附剂的吸附性能,而活性炭分子不易与极性分子结合,因而体现出较强的吸附能力。活性炭吸附剂具有以下特点:①对芳香族化合物的吸附优于对非芳香族化合物的吸附。②对带有支链的烃类的吸附优于对直链烃类的吸附;③对有机物中含有无机基团物质的吸附低于不含无机基团物质的吸附;④对分子量大、沸点高的化合物的吸附优于分子量小、沸点低的化合物的吸附。但是,也有部分 VOCs 被活性炭吸附后难以再从活性炭中脱除,此类 VOCs 不宜采用活性炭作为吸附剂,应当选用其他吸附材料。表 34 列出了部分难以从活性炭中去除的 VOCs。

丙烯酸	丙烯酸乙酯	谷脘醛	皮考啉
丙烯酸丁酯	2-乙基乙醇	异佛尔酮	丙酸
丁酸	丙烯酸二乙基酯	甲基乙基吡啶	二异氰酸甲苯酯
丁二胺	丙烯酸异丁酯	甲基丙烯酸甲酯	三亚乙基四胺
二乙酸三胺	丙烯酸丁酯	苯酚	戊酸

表 34 难以从活性炭中去除的 VOCs

c) 多组分吸附

当废气中含有多种 VOCs 时,活性炭对各个组分的吸附是有差别的。一般来讲,活性炭的吸附能力与化合物的相对挥发度近似呈负相关性。有机废液的相对挥发度为乙醚的蒸发量与相同条件下该有机物蒸发量的比值。表 35 列出了一些有机液体相对挥发度的数值。

物质名称	相对挥发度	物质名称	相对挥发度	物质名称	相对挥发度
乙醚	1.0	二氯乙烷	4.1	正丁醇	33. 0
二硫化碳	1.8	甲苯	6. 1	二乙醇-甲醚	34. 5
丙酮	2. 1	醋酸正丁酯	6. 1	二乙醇-乙醚	43. 0
乙酸甲酯	2. 2	甲醇	6.3	戊醇	62. 0
氯仿	2. 5	乙醇 95%	8.3	十氢化萘	94. 0
乙酸乙酯	2. 9	正丙醇	11.1	乙二醇-正丁醚	163. 0
四氯化碳	3.0	醋酸艺戊酯	13.0	1,2,3,4-四氢化	190. 0
苯	3.0	乙苯	13.5	萘	
汽油	3. 5	异丙醇	21.0	乙二醇	2625
三氯乙烯	3.8	异丁醇	24.0		

表 35 一些有机液体相对挥发度

含有多种 VOCs 的气体通过活性炭吸附层时,在开始阶段各组分平均地吸附于活性炭上,但随着沸点较高的组分在吸附层内保留量的增加,相对挥发度大的蒸汽重新开始气化。因此,吸附到达穿透点后,排出的蒸汽大部分由挥发性较强的物质组成。

(4) 生物法净化 VOCs 废气

A、生物法处理 VOCs 概述

生物法净化 VOCs 废气是近年来发展起来的空气污染控制技术,它是在已经成熟的生物法处理污水的基础上发展起来的。该技术已经在德国、荷兰等国家得到一定规模的应用。

生物净化发是利用微生物对污染物有较强、较快的适应能力的特点,用污染物对微生物进行驯化,使微生物以 VOCs 为碳源和能源,将其降解、转化为无害的、简单的物质(如 CO₂、H₂O等),从而达到气体净化的目的。

相对于传统的 VOCs 净化方法,生物法的优点是净化效果好,设备、工艺流程简单,操作稳定,无二次污染,能耗少,运行费用低,尤其在处理低浓度、大气量、生物降解性好的挥发性有机废气时更显其经济性。生物法与传统方法净化 VOCs 废气的经济性比较见表 36。

方法	投资费用 (美元/106ft³)	燃料和药剂消耗 [美元/ (ft3/min)]	能耗 [美元/(ft³/min)]
	(天元/10011)	[天元/ (113/111117)]	[天九/ (11/111117]
燃烧法	130	15	≈0
化学吸收法	60	8	1
活性炭吸收法	20	-	-
生物法	8	≈0	0.6

表 36 生物法与传统方法净化 VOCs 废气的经济性比较

B、生物法净化 VOCs 废气的原理

VOCs 废气的生物净化时微生物通过代谢活动,将废气中的 VOCs 转化为简单的无机物 (CO₂、水等)及细胞组成物质的过程。由于这一过程在气相中难以进行,所以在废气的生物净化中,污染物首先要经过由气相到液相(或固体表面液膜)的传质过程,然后在液相中被微生物吸附降解。

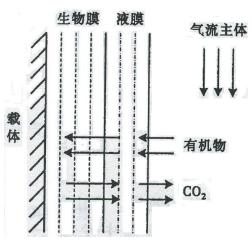


图 24 微生物净化 VOCs 废气的机理示图

图 24 为微生物净化 VOCs 废气的机理示图。由于气液相之间的浓度梯度,VOCs 从废气中转移到液相(或固体表面液膜)中,进而被微生物吸附。在此条件下,微生物对 VOCs 进行氧化分解和同化合成;产生的代谢物,一部分溶于液相,一部分作为细胞物质或细胞代谢能源,还有一部分(如 CO_2)则从液相转移到气相。废气中的污染物通过上述过程不断减少,从而被净化。从上述过程中可以看出,VOCs 的生物净化实际可分成传质和生物降解两个过程,这两个过程的速率都对 VOCs 的生物净化有直接影响。

在生物净化 VOCs 废气的过程中,由于气体在反应器内的停留时间较短(通常为数秒至数分钟),所以要求有机物的生物降解有较高的速率,因而,参与净化过程的细菌主要为好氧异氧型细菌。而对于难于生物降解的 VOCs,则必须在反应器中接种相应的降解微生物。表 37 列出了部分 VOCs 的生物降解效果。

表 37 微生物对部分 VOCs 的降解效果

化合物	生物降解效果
甲苯,二甲苯,甲醇,乙醇,丁醇,四氢呋喃,甲醛,乙醛,丁酸,三甲胺	非常好
苯,苯乙烯,丙酮,乙酸乙酯,苯酚,二甲基硫,噻吩,甲基硫醇,二硫化碳,酰胺类,吡啶,乙腈,异腈类,氯酚	好
甲烷,戊烷,环己烷,乙醚,二恶烷,二氯甲烷	较差
1, 1, 1-三氯甲烷	无
	不明

C、生物法净化 VOCs 废气的工艺

生物法处理 VOCs 废气的工艺主要有生物洗涤法、生物过滤法和生物滴滤法三种,下面就其工艺特点和应用范围进行详细介绍。

a)生物洗涤法(Bioscrubbing)

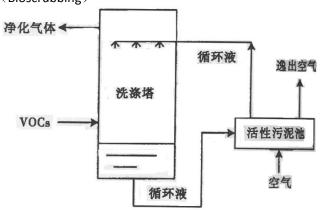


图 25 生物洗涤法净化 VOCs 废气工艺流程

生物洗涤法净化 VOCs 废气工艺流程如图 25 所示。生物洗涤系统由一个吸收塔和一个生物再生池构成,洗涤液(循环液)自吸收室顶部喷淋而下,废气中的有机物在这个过程中传入液相,吸收了有机污染物的洗涤液进入再生池(活性污泥池),洗涤液中有机物在再生池中被微生物降解,从而达到再生的目的。

目前,常用的洗涤塔有多孔板式塔和鼓泡塔。一般地,若气相阻力较大,可用多孔板式塔;反之,液相阻力较大时则用鼓泡塔。日本一家污水处理厂用含有臭气的空气,作为曝气空气送入曝气池,同时进行废水和废气的处理,取得脱臭效率达 99%的效果。富山等在臭气净化处理试验中发现,当活性污泥浓度控制在 5000~10000mg/L、气量小于 20m³/h 时,系统的去除负荷和去除效率均较理想。日本一铸造厂采用该法处理含胺、酚和乙醛等废气时,设备采用二级洗涤脱臭系统,运行十多年来一直保持较高的去除率。德国开发的二级洗涤脱臭装置,臭气从下而上经二级洗涤,浓度从 2100mg/L 降至 50mg/L,且运行费用极低。

由于洗涤的循环洗涤液需采用活性污泥法来再生,所以在通常情况下,循环洗涤液主要是水或细菌混合液,因此,该方法只适用于处理水溶性较好的 VOCs,如乙醇、乙醚等,而对于难溶的 VOCs,该方法则不适用。

b)生物过滤法(Biogilitration)

生物滤床处理 VOCs 废气的工艺流程如图 26 所示。有机废气先通过增湿塔增湿,然后进入生物滤塔,流经约 0.5-1m 厚的生物活性填料层,在这一过程中,有机污染物从气相转移到生物相,进而被氧化分解。生物过滤法工艺简单,易于操作,而且滤料具有比表面积大、吸附性能好等性质,可以大大减缓有机负荷的变化而引起的净化效率的波动。

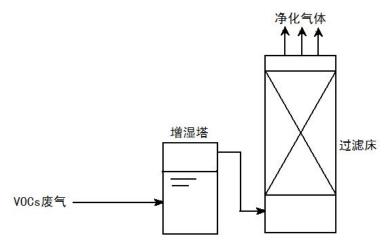


图 26 生物滤床处理 VOCs 废气的工艺流程

目前,较为常用的生物过滤工艺有土壤法和堆肥法,土壤法中微生物生活的适宜条件是:温度 5-30℃,湿度 50%-70%,pH 值 7-8。土壤滤层材料的混合比例一般为:黏土 1.2%,有机质沃土 15.3%,细沙土约为 53.9%,粗沙土 29.6%。滤层厚度为 0.5-1.0m,气流速度为 6-100m³/(m²·h)。土壤生物滤床因其具有较好的通气性和适度的通水、持水性,以及完整的微生物群落,能有效地去除烷烃类化合物,对于乙醇等生物易降解物质的处理效果更佳。土壤法的优点是设备简单、运行和管理费用低,但生物活性变差,去除效率降低,这些因素制约了该法的应用。堆肥法以泥炭、堆肥、土壤、木屑等有机材料为滤料,经熟化后形成一种有利于气体通过的堆肥层,更适宜于微生物生长繁殖,因而堆肥生物滤床中的生物量比土壤床多,污染物的去除负荷及净化效率均比土壤床高,空床停留时间也较短(堆肥法一般只需30s,而土壤法则需 60s),这样可大大减小占地面积,但堆肥易被生物降解,寿命有限,运行 1-5 年后必须更换。

生物滤床的性能参数主要有空床停留时间、空床气速、质量负荷和去除率,各参数的基本含义及典型范围见表 38。

生物过滤法主要依靠微生物的作用来去除气体中的污染物,微生物的活性决定了反应器的性能。因此反应器的环境条件应适合微生物的生长,这些条件包括填料(介质)及其湿度、pH值、营养物质、温度等。

参数	含义	计算公式	常用单位	典型范围
空床停留时间	废气在生物滤床中的相对停留时间	V/Q	S	15-60
空床气速	滤床无填料时气体在滤层中的流速	Q/A	m/h	50-200
质量负荷	单位滤床提及的污染物负荷	QC ₁ /V	g/(m.h)	10-160
去除率	污染物的去除程度	$(C_1-C_2) / C_1$	%	90-99

表 38 生物滤床的性能参数基本含义及典型范围

注: V—生物过滤反应器的体积, m^3 ; Q—废气的体积流量, m^3/h ; A—生物滤床横截面积, m^3 ; C1—废气中污染物的入口浓度, g/m^3 ; C2—废气中污染物的出口浓度, g/m^3

填料是生物过滤反应器设计时首先要考虑的,理想的填料应具有以下性质:①最佳的微生物生长环境——营养物、湿度、pH值和碳源的供应不受限制;②较大的比表面积——接触面积、吸附容量、单位体积的反应点多;③一定的结构强度——防止填料压实,避免压降的升高及气体停留时间的减小;④高水分持留能力——水分是维持微生物活性的关键因素;⑤高空隙率——使气体有较长的停留时间;⑥较低的体积密度——减小填料压实的可能性。

填料的湿度是生物过滤最重要的操作参数,如果填料的湿度太低,则会使微生物失活,并且填料会收缩破裂而产生气体短流。在生物滤床中,填料的湿度是通过气体加湿来保持的。大多数实验表明,填料的湿度在 40%-60% (湿重) 范围内时生物滤床的性能较为稳定;对于致密的、排水困难的填料或溶解度较低的 VOCs,最佳含水率在 40%左右;对于密度较小、多孔型的填料和亲水性 VOCs,则最佳湿度为 60%或更大。生物过滤床的最佳 pH 值为 7-8。

由于一些有机物在降解过程中会产生酸性物质,如 CO₂、HCI,这些物质的积累会使滤床的pH 值改变,所以一般采取在填料中添加石灰石、大理石、贝壳的措施提高填料的缓冲能力。

常用的土壤、堆肥、泥煤等能基本符合以上要求,但是其中所含的有机物、氮源和 pH 缓冲剂会逐渐降解消耗,这会使填料压实、寿命减少。一般情况下,填料的寿命约为 2-4 年,而将有机填料和惰性填料混合使用,寿命可高达 5 年。为了避免更换滤料,近年来出现了以活性炭、炉渣等为滤料,通过间歇喷淋加入氮源和 pH 缓冲剂的生物滤床,这种生物滤床则更类似于生物滴滤床。

c)生物滴滤法(Trickling biofiltration)

生物滴滤法处理 VOCs 废气的工艺流程如图 27 所示。VOCs 气体由塔底进入,在流动过程中与生物滤料接触而被净化,净化后的气体由塔顶排出。循环喷淋液从填料层上方进入滤床,流经生物膜表面后在滤塔底部沉淀,上清液加入 N、P、pH 调节剂等循环使用,沉淀物排出系统。

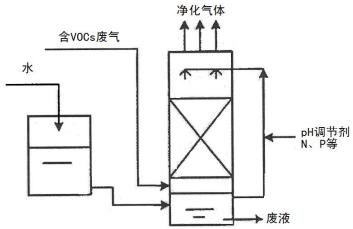


图 27 生物滴滤法处理 VOCs 废气的工艺流程

生物滴滤法与生物过滤法最大的区别在于生物滴滤床填料上方的喷淋循环液,喷淋液的作用主要是:提供微生物所需的除碳源以外的其他营养物质;调节微生物生长环境的 pH 值;保证微生物生存的湿度环境;带走代谢产物;通过水力冲刷保持生物膜的厚度,防止生物膜内厌氧。喷淋液对生物滴滤床的净化效果有十分重要的影响,主要表现在:①喷淋液的流量:喷淋液的流量太小,微生物生存的湿度环境不能保证,生物活性低;喷淋液的流量过大,则不利于微生物在填料表面的附着生长,影响形成稳定的生物膜。②喷淋液的成分:喷淋液在填料层中容易出现壁流、沟流等现象,会严重影响生物滴滤床的净化效果。

生物滴滤床填料的选择原则与生物滤床基本相同,通常采用粗碎石、塑料、陶瓷等无机材料,比表面积一般为 100-300m²/m³。采用这类填料,一方面为气流通过提供了大量的空间,另一方面,也可降低填料压实程度,避免由于微生物生长的生物膜脱落引起的填料堵塞。

与生物滤床相比,生物滴滤床的反应条件(pH值、温度)易于控制(通过调节循环液的 pH值、温度),故在处理卤代烃、含硫、含氮等微生物降解过程中会产生酸性代谢产物的污染物时,生物滴滤床较生物滤床更有效。另外,由于生物滴滤床的反应条件由人为控制,所以滤床中的环境更适于微生物的生长和繁殖,单位体积填料的生物量较生物滤床多,也更适于净化负荷较高的废气。

生物法工艺性能比较见表 39。从表中可知,不同成分、浓度、气量的 VOCs 各有其适宜的生物净化工艺。净化气量小、浓度大且生物代谢速度较低的气体污染物时,可采用以穿孔板式塔、鼓泡塔为吸收设备的生物洗涤器,以增加气液接触时间和接触面积,但系统的压降较大;对易溶气体则可采用生物喷淋塔;对于大气量、低浓度的 VOCs 可采用生物过滤系统;而对于成分较为复杂的 VOCs 废气,由于其理化性能、生物降解性能、毒性等有较大差异,适宜菌种也不尽相同,因此建议采用多级生物处理系统。

表 39 生物法工艺性能比较

工艺	系统类别	适用条件	运行特性	备注
生物洗涤法	悬浮生长 工艺	气量小、浓度高、 易溶、生物代谢 速 率 较 低 的 VOCs		对较难溶气体可采用鼓泡 塔、多孔板式塔等气液接 触时间长的吸收设备
生物过滤法	附着生长 工艺	气量大、浓度低的 VOCs	处理能力大,操作方便, 工艺简单,能耗低,运行 费用低,具有较强的缓冲 能力	
生物滴 滤法	附着生长 工艺	气量大、浓度低、 有机负荷较高	处理能力大,工况易调节, 不易堵塞	有机负荷较高时需要进行 反冲洗以防止填料堵赛

5 标准主要技术内容

5.1 标准适用范围

本标准规定了石油化学工业企业水和大气污染物的排放限值、监测和监督管理要求。

本标准适用于现有石油化学工业企业水和大气污染物排放管理,以及石油化学工业企业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染物和大气污染物排放管理。

本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国水污染防治法》、《中华人民共和国大气污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》等法律、法规、规章的相关规定执行。

本标准规定的水污染物排放控制要求适用于企业直接或间接向其法定边界外排放水污染物的行为。

本标准规定的水污染物排放浓度限值适用于企业向环境水体的排放行为,六价铬、总铬、总砷、总铅、总镉和总镍排放浓度限值也适用于向设置污水处理厂的城镇排水系统排放;向设置污水处理厂的城镇排水系统排放的其他水污染物的浓度控制要求,由石油化学工业企业与城镇污水处理厂根据其污水处理能力协商确定。

本标准不适用于石油化工企业内以生产蒸汽和/或发电为主的锅炉企业以及以石油或天 然气生产化肥的企业。

5.2 标准结构框架

标准文本包括的主要章节内容。

本标准文本主要包括的主要章节有适用范围、规范性引用文件、术语和定义、污染物排放控制要求、污染物监测要求、标准实施与监督及附录部分。

5.3 术语和定义

本标准所定义的属于和定义只适用于本标准,本标准定义了石油化学工业、有机废气、工业废水特征有机污染物、大气有机特征污染物等 33 个术语。

5.4 污染物项目的选择

5.4.1 水污染物项目选择

本标准水污染物因子包括 COD、BOD、pH、总有机碳、石油类等 14 项常规二类污染物; 工业废水特征污染物 61 项;总铬、六价铬等 7 项一类污染物。见表 40,表 41。

表 40 现有和新建企业水污染物排放限值

单位: mg/L (pH 值除外)

		19.5		平位: IIIg/L (pii 直际为力
序号	污染物项目	排放限值		污染物排放监
11, 2	17条物项目	直接排放	间接排放	控位置
1	pH值	6~9	6∼9	
2	悬浮物	70	100	
3	化学需氧量	70 (100)	500	
4	五日生化需氧量	20	150	
5	硫化物	1.0	10.0	
6	石油类	5	20	
7	总有机碳	20 (30)	150	 企业污水总排放口
8	氨氮	10	40	正亚行水芯排放口
9	总氮	40	60	
10	总磷	1.0	5.0	
11	总钒	1.0	1.0	
12	总铜	0.5	0.5	
13	总锌	2.0	2.0	
14	氰化物	0.5	2.0	
15	总铅	1.0	1.0	
16	总镉	0.1	0.1	
17	总砷	0.5	0.5	
18	总镍	1.0	1.0	生产装置排出口
19	总汞	0.05	0.05	
20	总铬	1.5	1.5	
21	六价铬	0.5	0.5	
22	工业污水特征污染物	表41所列有机特征污染	企业污水总排放口	

注1: 括号中数字适用于特殊石化装置: 丙烯腈-腈纶、己内酰胺、环氧氯丙烷、BHT、PTA、间甲酚、环氧丙烷、萘系列和催化剂生产废水的直接排放。

注2: 间接排放不允许进入城镇污水处理厂,若经由城镇污水处理厂排水管线排放,应达到直接排放限值;间接排放进入区域(包括各类工业园区、开发区、工业聚集地等)污水处理厂执行间接排放限值。

表 41 工业废水特征有机污染物

序号	特征有机污染物	排放限值	序号	特征有机污染物	排放限值
1	三氯甲烷(mg/L)	0.6	32	三氯乙烯(mg/L)	0.7
2	四氯化碳(mg/L)	0.02	33	三氯苯(总量,mg/L)	0.2
3	溴酸盐(mg/L)	0.1	34	六氯丁二烯(mg/L)	0.006
4	甲醛(mg/L)	1	35	丙烯酰胺(mg/L)	0.005
5	挥发酚类(以苯酚计,mg/L)	0.5	36	四氯乙烯(mg/L)	0.4
6	氯化氰 (以CN-计,mg/L)	0.2	37	甲苯(mg/L)	0.1
7	一氯二溴甲烷(mg/L)	1	38	邻苯二甲酸二(2-乙基己基)	0.08
		1	36	酯(mg/L)	0.08
8	二氯一溴甲烷(mg/L)	0.6	39	环氧氯丙烷(mg/L)	0.004
9	二氯乙酸(mg/L)	0.5	40	苯(mg/L)	0.1
10	1,2-二氯乙烷(mg/L)	0.3	41	苯乙烯(mg/L)	0.2
11	二氯甲烷(mg/L)	0.2	42	苯并(a)芘(mg/L)	0.0001
12	1,1,1-三氯乙烷(mg/L)	20	43	氯乙烯(mg/L)	0.05
13	三氯乙酸(mg/L)	1	44	氯苯(mg/L)	3
14	三氯乙醛(mg/L)	0.1	45	二(2-乙基己基)己二酸酯	4
14		0.1	45	(mg/L)	4
15	2,4,6-三氯酚(mg/L)	2	46	二溴乙烯(mg/L)	0.0005
16	三溴甲烷(mg/L)	1	47	二噁英(2,3,7,8-TCDD,mg/L)	3E-07

17	七氯(mg/L)	0.004	48	土臭素(二甲基萘烷醇,mg /L)	0.0001
18	五氯酚(mg/L)	0.8	49	五氯丙烷(mg/L)	0.3
19	六六六(总量,mg/L)	0.05	50	双酚A(mg/L)	0.1
20	六氯苯(mg/L)	0.01	51	丙烯腈(mg/L)	1
21	乙苯(mg/L)	0.4	52	丙烯酸(mg/L)	1
22	二甲苯(所有异构体,mg/L)	0.4	53	丙烯醛(mg/L)	1
23	1,1-二氯乙烯(mg/L)	0.3	54	四乙基铅(mg/L)	0.001
24	1,2-二氯乙烯(mg/L)	0.5	55	戊二醛(mg/L)	0.7
25	1,2-二氯苯(mg/L)	1	56	甲基异莰醇-2(mg/L)	0.0001
26	1,4-二氯苯(mg/L)	1	57	多环芳烃(总量,mg/L)	0.02
27	萘酚-b(mg/L)	1	58	多氯联苯(总量, mg/L)	0.005
28	黄原酸丁酯(mg/L)	0.01	59	邻苯二甲酸二乙酯(mg/L)	3
29	氯化乙基汞(mg/L)	0.001	60	邻苯二甲酸二丁酯(mg/L)	0.03
30	硝基苯(mg/L)	0.27	61	环烷酸(mg/L)	10
31	苯甲醚(mg/L)	0.5			

针对某一特定石油化学工业企业,应根据生产过程的原料、辅助原料、催化剂,产品、副产品在工业废水特征污染物在61项和7项一类污染物中选择。

5.4.2 大气污染物项目选择

本标准大气污染物因子包括常规大气污染物:颗粒物、二氧化硫、氮氧化物、非甲烷总 烃,以及 43 种特征有机污染物。见表 42、表 43。

大气特征有机污染物是考虑了三方面因素确定的:(1)我国标准已经控制的有机污染物,如国家大气综合标准、有关行业标准等;(2)高毒污染物,我国在《职业卫生接触限值》的基础上,发布了《高毒物品名录》,名录考虑了GBZ2中MAC<1或者PC-TWA<1的物质、已认定的人类致癌物,以及职业病统计年报中急性中毒和慢性中毒各前10名的毒物,具有广泛的代表性;(3)德国大气污染物分级控制标准中关于毒性物质和致癌物的分级和限值。限值确定是考虑国内外排放标准和我国GBZ2限值,取其中最严格的要求。

表 42 现有和新建企业大气污染物排放浓度限值

单位: mg/m³

1 =9/							
序				有机废气排放口			
号	污染物项目	工艺加热炉	污水处理设施	含卤代烃有机 废气	其他有机废气	污染物排放 监控位置	
1	二氧化硫	100	_	1	1		
2	氮氧化物	180	_	_	_		
3	颗粒物	20	_	_	_	大词式化文	
4	非甲烷总烃	_	120	去除效率≥ 95%	去除效率≥ 95%	车间或生产 设施排气筒	
5	氯化氢	_	_	30	_		
6	大气特征污 染物	_	表43所列有机特征污染物及排放浓度限值				

表 43 大气有机特征污染物

序号	污染物项目	相关标准、名录、致癌性 分类	相关标准限值(mg/m³)	本标准取值(mg/m³)
1.	苯	大气综合标准 合成革与人造革标准 《高毒物品名录》 IARC 1	大气综合: 12 北京市: 8 合成革: 2 德国致癌物分级标准: 1	1

			GBZ2: 6	
			大气综合: 40	
		大气综合标准	北京市: 25	
2.	甲苯	合成革与人造革标准	合成革: 30	25
		17% - 17 (XZ - 1711)E	GBZ2: 50	
			大气综合: 70	
		大气综合标准	北京市: 40	
3.	二甲苯	合成革与人造革标准	合成革: 40	40
		口从中了八起中仍证	GBZ2: 50	
			大气综合: 36	
		大气综合标准	北京市: 10	
4.	氯乙烯	《高毒物品名录》	德国致癌物分级标准: 1	1
		IARC 1	GBZ2: 10	
			德国致癌物分级标准: 1	
5.	三氯乙烯	IARC 1	GBZ2: 30	1
			北京市: 5	
6.	1,3-丁二烯	IARC 1	德国致癌物分级标准: 1	1
0.	1,5-1 — ///	Title 1	GBZ2: 5	1
7	二氯乙炔	《高毒物品名录》	GBZ2: 0.4	0.4
7.	一永 4 次	《同母初吅石水》		0.4
	10一层71时	北京市大气综合标准	北京市: 5	
8.	1,2-二氯乙烷	IARC 1	德国致癌物分级标准: 1	1
			GBZ2: 7	
9.	氯甲烷	北京市大气综合标准	北京市: 20	20
			GBZ2: 60	
	77 (F 7 14)		北京市: 5	^ -
10.	环氧乙烷	IARC 1	德国致癌物分级标准: 0.5	0.5
			GBZ2: 2	
11.	氯萘	《高毒物品名录》	GBZ2: 0.5	0.5
			大气综合: 60	
12.	氯苯	大气综合标准	北京市: 40	40
			GBZ2: 50	
13.	对硝基氯苯	《高毒物品名录》	GBZ2: 0.6	0.6
14.	二硝基氯苯	《高毒物品名录》	GBZ2: 0.6	0.6
		上层炉人生炉	大气综合: 16	
15.	硝基苯	大气综合标准 《高毒物品名录》	北京市: 16	2
		《尚母初前名求》	GBZ2: 2	
16.	二硝基苯	《高毒物品名录》	GBZ2: 1	1
		《高毒物品名录》	德国致癌物分级标准: 0.5	
17.	二硝基甲苯	IARC 1	GBZ2: 0.2	0.2
18.	三硝基甲苯	《高毒物品名录》	GBZ2: 0.2	0.2
			大气综合: 25	<u> </u>
19.	甲醛	大气综合标准	北京市: 20	0.5
17.	日本	《高毒物品名录》	GBZ2: 0.5	0.5
			大气综合: 125	
20.	乙醛	大气综合标准	北京市: 20	20
20.	C FIX	ノン イシか ロ 小小正	GBZ2: 45	20
			大气综合: 16	
21.	丙烯醛	大气综合标准	北京市: 16	0.3
<u>-1.</u>	トカンかは日子	ノン イシか ロ 小小正	GBZ2: 0.3	0.5
			大气综合: 22	
		大气综合标准	北京市: 5	
22.	丙烯腈	《高毒物品名录》	德国致癌物分级标准: 0.5	0.5
		IARC 1	GBZ2: 1	
			大气综合: 100	
23.	酚 (类)	大气综合标准	北京市: 20	10
23.	193 \) \ /	AND I THE	GBZ2: 10	10
24.		《高毒物品名录》	GBZ2: 0.005	0.005
∠4.	米丁坐丁地	《旧母》(明白水)/	SB22: 0.003	0.003

25.	甲醇	大气综合标准	大气综合: 190 北京市: 80 GBZ2: 25	25
26.	甲苯-2,4-二异 氰酸酯(TDI)	《高毒物品名录》	GBZ2: 0.1	0.1
27.	硫酸二甲酯	《高毒物品名录》	GBZ2: 0.5	0.5
28.	苯胺	大气综合标准 《高毒物品名录》	大气综合: 20 北京市: 20 GBZ2: 3	3
29.	二苯胺	《高毒物品名录》	GBZ2: 10	10
30.	N-甲基苯胺	《高毒物品名录》	GBZ2: 2	2
31.	N,N-二甲基苯 胺	《高毒物品名录》	GBZ2: 5	5
32.	N-异丙基苯胺	《高毒物品名录》	GBZ2: 10	10
33.	对硝基苯胺	《高毒物品名录》	GBZ2: 3	3
34.	二甲基甲酰胺 (DMF)	合成革与人造革标准	合成革: 50 GBZ2: 20	20
35.	丙烯酰胺	《高毒物品名录》 IARC 1	德国致癌物分级标准: 0.5 GBZ2: 0.3	0.3
36.	肼 (联氨)	《高毒物品名录》	GBZ2: 0.06	0.06
37.	甲肼	《高毒物品名录》	GBZ2: 0.08	0.08
38.	1,1-二甲肼 (偏 二甲肼)	《高毒物品名录》	GBZ2: 0.5	0.5
39.	COCl ₂ (光气)	大气综合标准 《高毒物品名录》	大气综合: 3.0 北京市: 1.0 德国毒性分级标准: 0.5 GBZ2; 0.5	0.5
40.	HCN	大气综合标准 电镀标准 《高毒物品名录》	大气综合: 1.9 电镀标准: 0.5 德国毒性分级标准: 3 GBZ2: 1	0.5
41.	CS ₂	北京大气综合 《高毒物品名录》	北京市; 30 GBZ2: 5	5
42.	B(a)P	大气综合标准 炼焦炉标准 IARC I	大气综合: 0.0003 北京市: 0.0003 炼焦炉标准: 0.0003 德国致癌物分级标准: 0.05	0.3 μg/m ³
43.	二恶英	废物焚烧标准 北京大气综合	废物焚烧: 0.1 ng/m³ 北京大气综合: 0.1 ng/m³	0.1 ng/m^3

5.5 污染物排放限值的确定及制定依据

二类常规水污染物排放限值的确定参考了近期发布的不同工业门类污染物排放标准,一类常规污染物的排放限值沿用了现行污水综合排放标准的限值。废水特征有机污染物的因子和排放限值借鉴了美国有机化学品、塑料工业水污染物排放标准。考虑到废水排入受纳水体后的稀释和降解,废水中特征污染物的排放限值(见表 41)是根据《生活饮用水卫生标准》(GB 5749-2012)所列限值的 10 倍计算得出,其中挥发酚和苯系物与《石油炼制标准》新建企业污染物排放限值一致。

常规大气污染物(二氧化硫、氮氧化物)排放限值(见表 42)的确定参考了近期发布的锅炉等行业大气污染物排放标准。大气特征有机物的种类(见表 43)和污染控制要求考虑了我国已采取控制的污染物、高毒污染物和明确致癌物,污染物排放限值主要国内外排放标准以及职业卫生接触限值,取其中最严格要求。

5.6 监测要求

本标准的监测要求按照国家相关标准规范执行。

6 主要国家、地区及国际组织相关标准研究

6.1 主要国家、地区及国际组织相关标准

- 6.1.1 国外水污染排放标准
 - (1) 德国化工生产水污染物排放标准(2001年9月20日)
 - a 适合范围
- a.1 适用于通过化学,生化和物理方法进行产品生产的废水排放,以及相应的预处理,中间处理和后期处理产生的废水。
 - a.2 用于废水排放小于 10m³/天的情况。
- a.3 对于制剂加工(例如通过混合,溶解和灌注制造进行产品和制剂的生产)产生的废水,在排放之前未和其他废水混合,不适用于本标准,原始废水发生点只需遵从本标准 B(常规要求)的规定。
 - b 常规要求

通过各污染源具体情况的考察,在以下措施容许的条件下,应尽量降低污染物的负荷:

- b.1 采用省水技术,例如逆流洗涤工艺。
- b.2 水的重复使用和再循环,例如采用水洗涤和净化流程。
- b.3 间接冷却, 例如进行气相冷却来替代喷射冷凝器或喷射冷却器。
- b.4 采用无水技术技术制造真空和净化废气。
- b.5 采用最优化技术通过母液制剂来保存和分离物质。
- b.6 使用低污染的原料和辅料。
- b.7 证明污染源已达到常规要求的文件,应以废水登记的形式提供给有关部门。
- c对排污点的废水水质要求
- c.1 以下标准适用于排入水体出的废水水质:

c.1.1COD

对于某一废水,如果其合格随机样品(qualified random sample)或两小时混合样本(hour composite sample)的 COD 浓度为 75mg/L,可以认为已经达到以上要求,并符合本标准 B(常规要求)的规定。

c.1.2 总氮(氨氮,亚硝酸盐氮核硝酸盐氮的总和)

对于合格随机样本或两小时混合样本,标准限值为50 mg/L。

如果氮负荷的削减率为 75%, 其允许排放限值可提高到 75 mg/L。在附加说明中, 如果限制水平定义为"总固定氮",可默认为排放已达到上述给定值的要求。

c.1.3 总磷

对于合格随机样品或两小时混合样本,标准限值为2 mg/L。

在附加说明中,如果限值水平定义为"总磷",可默认排放以达到上述标准要求。

c.1.4 毒性

- 以上要求针对合格随机样本或两小时混合样本。
- c.2 如果在水管理部门的安排下,使用了集成工艺措施以削减 COD 负荷,则应将采取措施之前的负荷作为基线。
- c.3 对于 COD, 排污许可证中应限值其 0.5 或 2 小时的总负荷。总负荷指各废水流出负荷的总和。总负荷是指合格随机样本或 2 小时混合样本的浓度,以及在采样期间,废水在 1.5-2 小时内的体积浓度。总负荷限值不得超越。
 - d废水混合前要求
 - d.1 与其他废水混合前:

d.1.1 可吸附有机卤素(AOX)

可吸附有机卤素的排放限值见表 44。

表 44 可吸附有机卤素的排放限值

废水类型	浓度限值
氯醇,环氧丙烷,环氧丁烷生产废水	3 mg/L
两步法生产乙醛废水	80g/t
一步法生产乙醛废水	30 g/t
AOX 相关有机着色剂和芳香族中间产品(主要用也有机着色剂生产)的生产废水	8 mg/L
AOX 相关活性制药配料生产废水	8 mg/L
氯代烃类生产废水 采用氯化甲烷和酯化甲醇法的生产废水,和采用全氯化方法生产四氯化碳 和六氯乙烷的生产废水。	10 g/t
1,2二氯乙烷(EDC),包括深加工成氯乙烯(VC)的生产废水 负荷水平系指纯 EDCde 生产能力,在充分考虑到 EDC 部分(在 VC 单元与 EDC 生产单元的联系环节中,该部分没有发生裂解,且在 EDC 纯化过程中, 返回到生查周期)的基础上,应当对生产能力加以详细的说明。	2 g/t
聚氯乙烯(PVC)生产废水	5 g/t
在无特定措施的条件下,废水中 AOX 浓度大于 0.1 mg/L, 但小于 1 mg/L	0.3 mg/L
在其他条件下不单独控制的物质,其生产深加工和使用产生的废水,浓度	1 mg/L 或 20
大于 1 mg/L 或通过特定措施使得浓度小于 1 mg/L 的废水。	g/t

^{#:} 负荷水平指有机目标产品的生产能力,并不指这些物质的使用。

d.1.2 其他物质

排放限值见表 45。

表 45 其他有毒物质的排放限值

	合格随机样品或两小时混合样本(mg/L)
75条70	II
汞	0.001
镉	0.005
铜	0.1
镍	0.05
铅	0.05
总铬	0.05
锌	0.2
锡	0.2

^{#:} II 类标准适用于不是来自于生产,深加工和适用这些物质所生产的废水,但水又含有这些物质,且浓度比 I 类标准要低。

- e 废水产生的要求
- e.1 六价铬: 随机样本浓度小于 0.1 mg/L。
- e.2 挥发性有机卤素:随机样本浓度小于 10 mg/L。在废水排入下水道系统之前,如果非岁未发生泄漏和稀释,即认为已经达到该标准要求。

f对现源的要求

- f.1 对于 1991 年 1 月 1 日前合法开工建设的现源,只有在第 2 到第 5 条中没有提出不同规定的前提下,才执行本标准 A、B、C、D 的条款要求。
- f.2 但针对 B 部分,在排污许可证中,为了证实已达到的常规要求的规定,对于每种情况,必须提供 90%的参数相关总负荷。对于采用无水技术制造真空和净化废气的情况,必须

监测 D 和 E 部分所指定的参数。其他参数无需测定。

f.3C 部分针对 COD 的规定不适用于聚丙烯腈的生产废水。

f.4 但对于 D 部分,在废水与其他废水混合前,废水应达到以下的 AOX 规定:

f.5 EDC 生产废水以及生产 VC 的深加工 (纯 EDC 的生产能力): 5g/t

f.6 PVC 生产废水: 1 mg/L 或 20 g/t

g 对于至突变性, C部分第1条和D部分第5条有关TOC的规定不适用。

(2) 美国水污染排放标准

美国没有全国统一的水质标准。美国环保局只是负责建立各类水质标准,各州根据联邦环保局提供的水质基准并结合水体具体功能制定各州和流域的水质标准,即水环境质量标准。

美国排放限制准则是以技术为依据的,它根据不同工业行业的工艺技术、污染物产生量水平、处理技术等因素确定各种污染物排放限值,截止到 1994 年美国环保局共制定了 52 个行业的出水限值准则和标准。排放标准可分为三大类:直接排放源执行的排放限值;公共处理设施执行的排放限值;间接排放源(排入城市污水处理厂)执行的预处理标准。

按照不同控制技术及污染物的特性对现有污染源、新污染源分别规定了排放限值。

BPT—最佳现有实用控制技术,是一种照顾到污染者的经济利益的排放标准。它一方面要求削减污染物的排放量,另一方面考虑到这种削减对企业的经济影响。美国环保局以"现有最佳工厂平均表现水平"来决定 BPT 技术,可以说 BPT 技术是现有工厂在经济上能承受的最低控制水平。

BPT 排放限值是针对现有污染源而言的,给出的达标期限较短。如 1972 年的(清洁水法)要求 1972 年存在的现有点源(除公共污水处理厂),在 1977 年 7 月 1 日前达到该排放限值。

BCT——常规污染物的最佳控制技术。所谓常规污染物指的是生化需氧量(BOD)、悬浮固体物(SS)、大肠杆菌(fecal coli-form),酸碱度(pH)、油和油脂(oil and grease)。BCT 排放限值是针对现有污染源的常规污染物要求的控制技术。对常规污染物来讲,BCT 与 BPT 相比,更多地强调了经济代价和环境效益二者之间的"合理性"。BCT 排放限值比 BPT 排放限值要严一些,给出的达标时间相对长一些,也可以说,BCT 捧放限值是 BPT 排放限值(对常规污染物)在第二时间段的替代标准。

BAT—经济上可实现的最佳可行控制技术,是针对现有污染源有毒物质和非常规污染物。和 BPT 排放限值比较,BAT 排放限值要严得多。

a 新污染源执行标准 NSPS

新污染源指的是新污染源执行标准公布之后开始兴建的污染物排放源。新污染源执行标准是应用经证实了的最佳可行控制技术(BADT也就是示范技术)所能达到的最大排放削减。其项目包括所有的污染物,即有毒污染物、常规及非常规污染。

b公共处理设施的排放限制

《清洁水法》在 1972 年提出,公共处理设施必须在 1977 年 7 月 1 日前达到二级处理水平的排放限值,美国环保局为公共处理设施制订的二级处理标准见表 46。

项目	BOD	SS	рН
30d 平均值	30mg/L	30mg/L	6~9
7d 平均值	45mg/L	45mg/L	6~9
30d 平均去除率	85%	85%	-

表 46 二级处理标准

c间接排放源预处理标准

间接排放指的是企业的污染物排入污水处理厂而非直接排入环境的行为,间接排放源预处理标准分为现有污染源的预处理标准(PSES)和新污染源的预处理标准(PSNS)。其目的是保护公共污水处理厂的正常运行并达到排污许可证规定的排放行为。

就本标准涉及的热塑性树酯废水的控制要求如下:

热塑性树脂包括了丙烯酸树脂,聚碳酸酯,聚乙烯树脂(LPED)等,规定的项目有 BOD, TSS, PH 三个指标。热塑性树脂类标准按照不同的控制技术规定了不同的标准。

d §414.41 采用 BPT 控制技术的排放标准

除了 40CFR125.30 到 125.32 以及 40CFR414.11 (i) 所规定的属于两个极两个以上子类的生产商,其他所有属于本子类的现源必须达到以下排放标准,工艺废水流量与下表 47 中污染物浓度的乘积不得超过总量限值。

表 47	D 子类-	-热塑性树脂子类
表 47	D 子类-	-热塑性树脂子类

ンニッカ. Adm	BPT 排放标准	
污染物	日最大值	平均每月最高值
BOD ₅ (mg/L)	64	24
TSS (mg/L)	130	40
PH	6-9	6-9

e §414.42 采用 BCT 控制技术的排放标准(保留)

采用 BAT 控制技术的排放标准

- (a) 环保局规定,按照 414.11 的方法计算的产量,现源的 OCPSF 产量少于或等于 5 百万,采用 BPT 控制技术在经济上最佳的,因此,对于此类点源,环保局不再制定更严格的限制标准。
- (b) 除了本子类中(a) 及 40CFR125.30 到 125.32 所指出的,有未使用末端生化处理的本子类现源,其污染物的排放必须依照 414.91 的规定。
- (c) 除了本子类中除了本子类中(a)及 40CFR125.30 到 125.32 所指出的,有未使用末端生化处理的本子类现源,其污染物的排放必须依照 414.101 的规定。

f 414.44 新源执行标准(NSPS)

- (a) 所有使用末端生化处理的本子类新源,必符合本标准 414.91 条的规定限值,且污染物总量(由废水流量和下表中污染物浓度的乘积确定)不得超过允许负荷。
- (b) 所以未使用末端生化处理的本子类新源,必符合本标准 414.101 条的规定限值,且污染物总量(由废水流量和下表 48 中污染物浓度的乘积确定)不得超过允许负荷。

表 48 D 子类—热塑性树脂子类

>= Yh, Hdm	新源执行标准(NSPS)	
污染物 	日最大值	平均每月最高值
BOD ₅ (mg/L)	64	24
TSS (mg/L)	130	40
рН	6-9	6-9

g §414.43 现源预处理标准 (PSES)

除了 40CFR403.7 和 403.13 中所规定的,本子类中所有排放到公共处理设施的新源必须符合 40CFRpart403 的要求,达到现源预处理标准(PSNS),标准同 414.111。

(3) 新加坡国家水排放标准

新加坡国家水排放标准如表 49。

表 49 新加坡水污染物排放标准表

控制项目	排入下水道	排入水体	排入控制水体			
12.则项目	除标注外,单位均为 mg/L					
1 温度	45℃	45℃	45 ℃			
2 色度	ı	7Lovibond unit	7 Lovibond unit			
3 pH 值	6-9	6-9	6-9			
4 BOD₅	400	50	20			
5 COD	600	100	60			
6 悬浮物	400	50	30			

	3000	2000	1000
8 氯化物(以氯计)	1000	600	400
9 硫酸盐(以 SO ₄ 计)	1000	500	200
10 硫化物 (以 S 计)	1	0.2	0.2
11 氰化物 (以 CN 计)	2	0.1	0.1
12 合成洗涤剂(LAS)	30	15	5
13 动植物油	60	10	5
14 砷	5	1	0.05
15 钡	10	5	5
16 锡	10	10	5
_ 17 铁	50	20	1
	5	0.5	0.5
19 硼	5	5	0.5
20 锰	10	5	0.5
21 酚类(以苯酚计)	0.5	0.2	Nil
22 *镉	1	0.1	0.01
23*铬(三价铬和六价铬)	5	1	0.05
24 *铜	5	0.1	0.1
25 *铅	5	0.1	0.1
26 *汞	0.5	0.05	0.001
27 *镍	10	1	0.1
	10	0.5	0.01
29 *银	5	0.1	0.1
30 *锌	10	1	0.5
31 *总金属	10	1	0.5
32 游离氯	-	1	1
33 磷酸盐(以 PO4 计)	-	5	2
34 钙 (以 Ca 计)	-	200	150
35 镁(以 Mg 计)	-	200	150
36 硝酸盐(以 NO₃计)	-	-	20

(4) 国内水污染物排放标准

目前国内大多数企业执行《污水综合排放标准》(GB8978-1996)。按照国家综合排放标准和国家行业排放标准不交叉执行的原则,除了目前有行业排放标准的企业外。

《污水综合排放标准》(GB8978-1996)对常见污染因子的综合标准,除了浓度控制外,还提出了针对不同水域使用的(分一、二、三类水域)最高允许排放浓度的限制。在国家污水综合排放标准中还规定了部分行业的最高允许排水量,如石油炼制工业、合成洗涤剂工业、合成脂肪酸工业等18个子行业规定了最高允许排水量,主要针对1998年1月1日后建设的单位。没有专门针对石油化学工业生产装置规定其最高允许排水量限值。

国内上海、广东、北京有自己的地方标准,上海地方标准 DB31/199-1997 按照污染物的 危害分为一类污染物 17 项,二类污染物 63 项,并对黄浦江上游水源保护区和准水源保护区 的排放标准进行了专门的规定。《广东省地方标准水污染物排放限值》(DB44/26-2001)基本保留了国家污水综合排放标准的行业分类,只在某些地方做了略微的调整,增加了大肠杆菌、二氧化氯(仅对纺织染整行业)两项指标;《北京水污染物排放标准》(DB11/307-2005)则规定了 75 种污染物排放限值,其中一类污染物 13 项,二类污染物 62 项。北京地方标准总体上比较严格。

6.1.2 国外大气污染物排放标准

(1) 美国大气污染物排放标准

美国空气污染物的控制最终目标是达到环境质量标准。其手段是根据《清洁空气法》的 规定,对污染源排放实施技术强制,即制定、实施排放标准。

1995 年制定的空气污染控制法,为美国第一部联邦污染控制法;现在实施的是 1990 年修正的《清洁空气法》。该法第 109 节规定联邦环保局制定国家环境空气质量标准;第 111 节规定联邦环保局制定新污染源(常规污染物)的执行标准;第 112 节规定联邦环保局制定有害空气污染物国家排放标准。

美国环境质量标准分一级标准和二级标准的制定。一级标准;根据联邦环保局局长的判断,为保护公众健康而留有安全余地的环境要求水平。二级标准:根据联邦环保局局长的判断,使公共福利免遭已知或可预见的污染物不利影响而应要求的水平。USEPA 先后针对 6 种污染物制定了标准。每个标准值都与一定的取值时间相联系。这些都是基于环境基准得出的科学结论。作者将美国国家环境空气质量标准列于表 50。从表 50 可见,不同污染物取值时间各不相同,即使同一污染物也有不同的取值时间。

污染物	一级标准	二级标准	
	年均值 80ug/m³(0.03ppm)	最大 3h1300ug/m³	
SO_2	4h 值 365ug/ m³	(1a 不超过 1 次)	
	(0.14ppm, 1a 不超过 1 次)	(0.5 ppm)	
颗粒物	24h 均值 150ug/m³ (1a 不超过 1 次)	150ug/m ³	
(PM10)	年均值 50ug/m³	50ug/m^3	
CO	8h 均值 10ug/m³(9ppm)		
	1h 均值 40ug/m³(35ppm)	_	
O_3	1h 均值 35ug/m³(0.12ppm)	1h 均值 35ug/m³(0.12ppm)	
NO ₂	平均值 100ug/m³(0.053ppm)	平均值 100ug/m³(0.053ppm)	
Pb 及其化合物	季均值 1.5ug/m³	季均值 1.5ug/m³	

表 50 美国国家环境空气质量标准

美国环境质量标准的实施,由 USEPA 设立空气质量控制区(Air quality control region)。现已设立 247 个州内控制区和 263 个州际控制区,州内控制区由本州管理,州际控制区由有关州成立的联合委员会管理。州制定达标计划,内容包括:①达标时间;②规定排放限值/达标计划与时间表及其他措施;③对许可证的规定;④不对其他州产生干扰;⑤排放申报、安装监测设备、拥有人员、资金、权力。

美国对污染源采取排放限制,是执行环境质量标准的一项技术强制手段。根据美国(清洁空气法)的规定,联邦环保局和州都可以制定排放标准。无论国家标准还是州的标准,都是将排放限值规定在采取一定先进技术所能达到的水平上。至于为实现这种排放而采取的什么措施技术,由污染者选择或发明。但是,EPA 在制定排放标准的同时,还公布排放指南,其主要内容是达到排放标准所采用的最佳削减系统以及费用-环境效益分析。USEPA 针对固定污染源制定 2 类排放标准:新污染源实施标准(New source performance standard, NSPS)和有害空气污染物国家排放标准(National emission standard for hazardous air pollutants, NESHP)。

新污染源执行标准(NSPS): 此种标准针对常规污染物,根据污染源的种类不同而制定。常规污染物是: 颗粒物,CO,O₃,SO₂,NOx,Pb。到 1994 年已经发布了 72 项新固定源的排放标准,所涉及的污染源基本上是重点源,其他小源的控制采用合理可得控制技术 (Reasonable available control technology, RACT)。这些重点源主要是;城市废物处理厂、硫酸厂、硝酸厂、燃煤电厂、蒸汽发生装置(工业锅炉)、焚烧装置、水泥厂、沥青厂、石油炼制厂、石油储存罐、有色金屑冶炼厂、黑色金属冶炼厂、玻璃制造厂、磷肥厂、硫酸铵制造厂、金属表面喷涂业、石灰制造厂、铅-酸电池制造厂、合成有机化学制造业、聚合物制造业、羊毛玻璃纤维制造业、谷物仓库、煤制品厂等。

现在已制定的有害空气污染物国家排放标准列于如下:

金属: 汞、铍;

无机物; 砷;

有机物: 苯、氯乙烯;

颗粒物: 石棉尘:

放射性: 氡等。

美国的排放标准中污染排放限值指标设计不拘一格,不同的污染物有不同的表达方式。例如汞和镀的排放标准采用 g/d;氯乙烯的排放标准采用 ppm;砷的排放标准以一年内的最大排放速率(kg/h)表示等。

(2) 国内大气污染物综合排放标准

目前国内企业均执行 GB16297-1996 中的标准,该标准规定了 33 种大气污染物排放标准。此外广东省相应制定了专门的大气污染物综合标准,规定了固定源的 37 种大气污染物排放限值同时规定执行标准中的各种要求。标准适用于广东省境内除恶臭物质,汽车摩托车,工业炉窑,炼焦炉,危险废物焚烧,生活垃圾焚烧,饮食业等行业现有污染源大气污染物的排放管理,建设项目环境影响评价、建设项目环境保护设计、项目竣工验收及其投产后的排放管理。该标准基本维持了与 GB16297-1996 中的标准。

上海市制定了上海市地方标准《锅炉大气污染物排放标准》DB31/387-2007,该标准于2007年9月1日开始实施,此标准将上海市划分A、B区域,工业锅炉(含生活锅炉)按所在区域执行相应的排放限值,此标准对电站锅炉不划分区域。其中A区域为内环线以内的区域、风景名胜区、自然保护区和上海市人民政府按照环境环境空气质量功能区要求确定需要特殊保护的区域。B区域为除A区域以外的其他区域。对一般石油化工企业而言,基本上执行B区域的标准限值。2007年9月1日前建成使用的工业锅炉(含生活锅炉)分两个时段执行相应的大气污染物排放限值。2008年12月31日前,执行GB13271-2001规定的排放限值;自2009年1月1日起,执行表63规定的排放限值,2007年9月1日起新建的(含扩建、改建)的工业锅炉(含生活锅炉)执行表51规定。

烟气黑度 1) 烟尘排放 锅炉类别 适用区域 二氧化硫排 氮氧化物排 (林格曼黑 放浓度 放浓度 浓度 (mg/m^3) 度,级) (mg/m^3) (mg/m^3) 燃 自然通风锅炉 禁排 Α 禁排 禁排 禁排 煤 (<0.7MW 或 В 300 400 80 1.0 锅 1t/h) 炉 其他锅炉 禁排 禁排 禁排 禁排 Α 120 400 400 В 1.0 轻柴油、煤油锅炉 全部区域 30 油 1.0 300 400 30 Α 锅 其他燃料油锅炉 В 50 炉 以高炉煤气、焦炉 燃 气 煤气为燃料的资 100 全部区域 1.0 200 30 锅 源综合利用锅炉 炉 其他燃气锅炉 50

表 51 工业锅炉(含生活锅炉)烟尘、SO₂、NO₂最高允许排放浓度和烟气黑度限值

注: 1)烟气黑度限值的规定在锅炉任何负荷(包括启炉等阶段)均有效。

对石油化学工业企业来说,工艺加热炉如果按照上海市的锅炉排放标准,那么肯定有部分企业的工艺加热炉超过此排放标准,需进行上脱硫设施才能达到排放标准的要求,这意味着石油化学工业企业随着炼制高硫原油比例的增加,工艺加热炉的燃料硫含量的控制将成为一个主要技术控制手段。

6.2 本标准与主要国家、地区及国际组织同类标准的对比

6.2.1 我国污水排放标准与欧美国家排放标准体系的比较

中国的污水排放标准采用的是接纳水体的功能区类别分类确定排放标准值,兼顾治理技术的思路。对于国家标准,重点行业实行行业排放标准,非重点行业执行综合排放标准,采用分时段、分级等控制方式。总体上讲,我国采用的是污染物排放浓度控制。

欧美工业国的工业废水排放同时受到排污许可证和行业排放标准的约束,是排污总量控制为基础的双重控制。各国均根据不同的工业行业分别制定行业废水排放标准。美国有超过100个行业标准,每个行业标准下还有很多子类。如美国将无机化工行业细分为67个子类,每个子类各有其相应的污染物排放指标(其中20个尚未制订),其他行业的细分也很细。但欧盟的工业行业区分程度不如美国细,如德国的污水排放标准(2000版)中分了56个工业行业,行业标准下一般不设子类。针对废水排放的不同去向,分别执行两种不同的标准值。如美国,对于某种工业废水,无论是排入城镇污水处理厂还是进入地表水体,根据现源和新源进行区分。

欧美的工业行业排放标准中污染物控制项目的制订采用"技术强制"的原则,即某种工业废水的污染物排放标准值是根据不同生产工艺和现有有效的治理技术的去除率确定的。美国对现源和新源分别执行不同的排放标准值。新源标准值是基于较高的生产工艺水平,污水治理水平而设立的。

本标准的制订是采用浓度和总量控制双重手段而设立的,按新源和现源两个时段设置不同的标准值。

6.2.2 与现行污水排放标准的对比

目前,我国石油炼制企业污水排放执行《污水综合排放标准》(GB8978-1996),部分省市要求执行《城镇污水处理厂污染物排放标准》(GB18918-2002)。与其相比(见表 52),本标准现有企业污染指标 COD、悬浮物/氨氮严于 GB8978-1996 新源二级指标,新建企业 8 个指标与 GB8978-1996 和 GB18918-2002 污染物最高允许排放浓度相当。特征污染物的种类与EPA 相应标准相同,排放限值根据污水综合排放标准取最低限值 0.1mg/L。

序	NE Strategy CE	本标	淮	GB8978-	GB8978-	GB18918
号	污染物项目	新建企业	间接排放	1996 一级	1996 二级	-2002 - 级 B 类
1	pH 值	6-9	6-9	6-9	6-9	6-9
2	五日生化需氧量(BOD ₅)	20	150	20	30	20
3	化学需氧量¹(COD)	70 (100)	500	60	120	60
4	硫化物(S ²-)	1	10	1.0	1.0	1.0
5	石油类	5	20	5.0	10	3.0
6	悬浮物 (SS)	70	100	70	150	20
7	挥发酚	0.5	0.5	0.5	0.5	0.5
8	氨氮(NH ₃ -N)	10	40	15	25	8 (15)
9	总磷(以 P 计)	1	5	0.5	1.0	1.0
10	总氮(以 N 计)	40	60	_	_	20

表 52 本标准排放限值与现行标准排放限值的比较

6.2.3 我国大气排放标准与欧美国家排放标准体系的比较

与我国排放标准相比,美国有的排放标准就直接规定控制设备以及运行、维护要求。要求各州制定实施新污染源执行标准的专门程序,并报 USEPA 批准之后,该州就拥有实施 NSPS 的权力. 但联邦环保局同时保留直接实施该标准的权力。法律规定这种双重执行机制,其目的是保证联邦政府能有效地监督和保证 NSPS 的实施。

有害空气污染物国家排放标准(NESHP):根据《清洁空气法》的规定,USEPA需要对 189种有害空气污染物;所涉及的 41 种污染源制定国家排放标准。这些污染源包括重点源和区域源。重点源是指:①每年所排放的单项污染物在 10t 以上;②每年所排放的组合污染物在 25t 以上的固定源或固定源群。区域源是指非重大源的排放任何有害空气污染物的固定源。有害空气污染物国家排放既适用于现有污染源也适用于新的污染源。法律要求 USEPA 颁布排放有害空气污染物的重大源和区域源的名单,并且至少每隔 8a 修订一次名单。有害空气污染物国家排放标准的实施程序与新污染源执行标准相同。即要求州制定实施计划,并报

USEPA 批准。

本标准常规大气污染物排放标准根据国内石油化工生产的实际情况,按工艺加热炉、乙烯裂解炉和有机废气收集处理系统分类,常规污染物二氧化硫按燃烧经脱硫后燃料气可达到的二氧化硫浓度取值;氮氧化物按采用国内可达到的低氮燃烧技术取值,特别排放限值按国外先进的低氮燃烧技术取值。常规大气污染物排放标准与现行标准比较见表 53。

美国 EPA 现行标准要求非甲烷总烃排放浓度不大于 20ppmv(以甲烷计),去除效率 97%; 苯的去除效率 98%。本标准规定总有机物去除效率 95%,较美国稍松;本标准规定特征有机污染物单组分浓度限值与现行标准以及德国标准的比较见表 43,基本与德国标准水平相当。本标准对各类面源排放的有机物提出了控制要求。

表 53 本标准常规大气污染物与现行标准的比较

单位: (mg/m³)

		本标准		GB9078-1996(工业炉窑)			GB13271-2014(锅炉)			
	废气 排放	二氧化硫	氮氧化物	二氧化硫		烟尘		二氧 化硫	烟尘	氮氧 化物
		新源	新源	二级	三级	二级	三级	_	二、三类	_
1	工加炉	100	180	850	1200	200	300	50	20	200

7 实施本标准的环境效益及经济技术分析

7.1 实施本标准的环境(减排)效益

实施本标准后与现行标准比,石油化学工业企业可减排水污染物 COD 约 30%, 氨氮约 20%, 水特征有机污染物约 30%; 减排大气常规污染物约 50%,有机特征大气污染物 95%。

在我国现有的《大气污染物综合排放标准》中,由于没有要求对石油化学工业挥发性有 机物的污染物排放情况等进行统计,大部分石油化学工业企业只对综合排放标准中单一的污 染物进行了监测控制,实际上由于反应过程复杂、原料产物众多,有很多污染因子并未被监 测到,因而未采取相关控制措施而直接排入大气环境中,造成了对环境的危害。

本标准规定通过对挥发性有机物总量的监测,利用热焚烧、催化焚烧或回收、循环利用等控制措施,使储存石油化学工业物料的储罐回收、控制挥发性污染物效率达到95%以上,工艺尾气中污染物去除效率达到95%以上,达到减少污染物排放的目的。

同时本标准增加了关于单位产品基准排气量的控制要求,限制企业对产生的废气进行回收、治理,减少工艺尾气排入大气环境,达到减少污染的目的。

因此,本标准实施后,将大大减少石油化学工业污染物对周围大气环境的不利影响,改善石油化学工业企业大气环境质量。

7.2 实施本标准的经济技术分析

7.2.1 废水处理成本效益分析

石油化学工业目前废水处理手段基本上是采用物理法、化学法、生物法等方法。本行业标准采用以排污总量控制为基础的双重控制,故要求现有石油化工企业污水处理装置进行有效的技术改造,降低污染因子浓度的同时,降低污水排放量。

就目前我国的石油化工废水处理成本而言,对各种石油化工废水随着预处理方法的不同 其成本也不尽相同,特别对特种废水的处理其成本更加不相一致,从总体处理行业废水来讲, 去除预处理成本,进行生化处理其 COD 的进水浓度在 500mg/L 的处理成本为 1.50 元/吨左 右。腈纶废水一般在 8.0 元/吨左右,丙烯腈废水一般在 35-50 元/吨左右。PTA 废水一般在 4.0 元/吨左右。就目前本标准实施而言,现源 COD 的达标率为 71%,新源 COD 的达标率为 30%, 因此就处理成本而言,国内石油化学工业企业废水处理的成本将有所投入和增加,才能满足 本标准的排放限值要求。

但由于各相关企业装置近几年均相继开展国家清洁生产审计,所以随着节能减排工作的 深入开展,排污总量的相继减少,废水的处理成本也将有所降低。

7.2.2 废气处理成本效益分析

石油化工装置工艺废气处理手段基本上是采用焚烧、回收和吸附等手段。本行业标准采用废气处理控制技术的标准来规范约束石油化工行业的工艺废气污染物排放,促使石油化学企业在生产石油化学产品时,其相应装置必须配套建设废气处理装置,且效果必须达到标准规定要求,就目前而言,对70%的企业来讲,能达到现源标准要求。50%的企业能达到新源控制技术要求。对含有卤代烃废气的装置,其废气处理装置有可能作适当的经济投入。如采用吸附技术,一级吸附不达标可采用二级吸附技术或采用多种技术综合使用的方法达到标准要求。

就目前而言,石油化学工业生产企业对石油化学工业的物料储罐的回收、控制技术采用的不多,排放的废气量不容小视,本标准的实施可以大大改善物料储罐周围的环境,但对企业而言,会增加适当的经济投入才能满足本标准的要求。

对石油化学工业工艺加热炉的二氧化硫排放情况而言,由于燃料结构不同造成二氧化硫排放浓度差异很大。对燃料油含硫量小的加热炉,基本上能达到国家排放标准要求,对排放浓度高、排放气量大的加热炉必须采取脱硫技术以其达到排放标准要求。

本标准的实施,对环境监测部门而言,适当增加经济投入,添置必要的监测分析仪器,如 GC-MS 分析仪器等以满足环境监管的需要。

金陵石化在 VOCs 污染治理方面开展的工作较为深入,取得了良好的效果,基本达到了 美国相关标准规定的控制水平(具体投资和减排效率见表 54)。因此本次主要以某石化为参 考,对石油炼制企业的 VOCs 治理成本及效果进行估算和分析。

排放源	采取措施	数量	投资 (万元)	总体减排效率		
	LDAR	1套系统	400			
设备	装置尾气回收	催化裂化装置脱硫 醇(2 套)	1000			
储罐	油气回收	4 套	3000			
7泊地	罐型改造	-	4000	约 75 %		
装卸与运输	油气回收	装船(2套)	1540	<u> </u>		
表即与 <u></u> 色制	7四 (四代	铁路运输(1套)	830			
废水处理	密闭加盖	3 套	600			
	油气回收	3 套	1600			
	合计	12970				

表 54 某石化 VOCs 污染治理

对于乙烯生产企业,治理成本可参照小型炼油企业估算; PX、PTA 等石化生产企业,由于生产设备更少,治理成本可按 3000 万元估算。单纯乙烯生产企业按 3 家估算, PX、PTA 等石化生产企业按 15 家估算,合计治理成本约 6.5 亿元,VOCs 减排效率可达 75%以上。

8 对实施本标准的建议

(1) 本标准实施需配套的管理措施、实施方案建议。

由于石油化学工业排放的大气污染物主要是挥发性有机物,且单个点源废气排放量较小,一个企业需要监管的排气筒多,排气筒高度低,多数排气筒排出的废气无色,用肉眼观察不易判断,另外,每一个排气筒排出的废气中污染物种类和浓度差别较大,所以在监管过程应采取企业申报、专家论证、政府批准的程序。监管应把注意力集中在废气是否经过回收处理设施,处理设施的运行参数。

(2) 本标准下一步修订建议。

根据可得到的最好技术,进一步细化并严格标准限值。

(3) 与本标准实施相关的科研项目建议。

有机特征污染物的快速分析定量方法和综合性有机物定量方法(如非甲烷总烃、TOC)的建立。