附件七:

《土壤 可交换酸度的测定 氯化钡提取-滴定法》(征求意见稿)编 制 说 明

《土壤 可交换酸度的测定 氯化钡提取-滴定法》编制组 二〇一〇年七月

项目名称: 土壤 可交换酸度的测定 氯化钡提取-滴定法

项目统一编号: 1020

项目承担单位:扬州市环境监测中心站

编制组主要成员: 童桂凤、谢继征、曹茂林、惠学香、高娟、王亚林、鲁宝权、黄正芳

标准所技术管理负责人: 黄翠芳

标准处项目负责人: 李晓弢

目 录

1	项目	背景1
	1.1	任务来源1
	1.2	工作过程1
2	标准	制修订的必要性分析2
	2.1	酸性土壤的环境危害2
	2.2	相关环保标准和环保工作的需要2
	2.3	现行土壤可交换酸度测定方法的最新进展3
3	国内]外相关分析方法研究 3
	3.1	主要国家、地区及国际组织相关分析方法研究3
	3.2	国内相关分析方法研究3
4	标准	制订的基本原则和技术路线 3
	4.1	标准制订的基本原则3
	4.2	标准制订的技术路线4
5	方法	研究报告 5
	5.1	方法研究的目标5
	5.2	方法原理6
	5.3	试剂和材料6
	5.4	仪器和设备7
	5.5	样品采集和制备7
	5.6	试样制备的条件优化8
	5.7	分析步骤
	5.8	检出限
	5.9	精密度
	5.10	结果计算与表示
6	方法	验证 16
	6.1	方法验证方案16
	6.2	方法验证过程17
7	与开	-题报告的差异说明 17
赌	性—	方法验证报告 18

《土壤 可交换酸度的测定 氯化钡提取-滴定法》

编制说明

1 项目背景

1.1 任务来源

- (1)根据原国家环境保护总局办公厅《关于开展 2008 年度国家环境保护标准制订项目工作的通知》 (环办函[2008]44号),《土壤 可交换酸度的测定 氯化钡法》(转化 ISO14254-2001)标准列入 2008年标准制订工作计划,项目统一编号为 1020。
- (2) 由扬州市环境监测中心站承担本标准的制定任务,合作单位为仪征市环境监测站。参加本标准的 方法验证单位: 南通市环境监测中心站、镇江市环境监测中心站、连云港市环境监测中心站、盐城市环 境监测中心站、仪征市环境监测中心站。

1.2 工作过程

(1) 成立标准编制小组

2008年3月,扬州市环境监测中心站接到原国家环境保护总局编制《土壤可交换酸度的测定 氯化钡法》任务,于 2008年4月成立标准编制小组,并根据工作需要对组内成员进行分工。小组成员为从事多年环境监测的高级工程师及工程师,具有从事土壤分析的相关工作经验及完成该课题的能力。

(2) 查询国内外相关标准和文献资料

根据国家环境保护标准制修订工作管理办法的相关规定,检索、查询和收集国内外相关标准和文献资料,对现有各种方法和监测工作需求开展广泛而深入的调查研究,对比、筛选后初步提出工作方案和标准研究技术路线,编写开题论证报告,同时参考国际标准方法 ISO14254:2001(E)和 ISO11260:1994(E),结合我国的实验室仪器水平和分析研究试验条件等,初步编写标准草案。

(3) 开题论证,确定标准制订的技术路线

2009年6月17日在北京召开本标准开题论证会,与会专家通过质询、讨论,认为本标准定位准确,适用范围合理,主要内容及编制标准的技术路线可行,同时提出具体修改意见。论证意见主要有:标准名称改为《土壤 可交换酸度的测定 氯化钡提取-滴定法》、经过调研进一步明确方法适用范围同时注意与《土壤 可交换酸度的测定 氯化钾提取滴定法》的区别、细化质量保证和质量控制的措施和控制指标、实验室内验证选择具有代表性土壤样品,实验室间验证选择2种以上代表性土壤样品。

(4) 开展实验研究工作,组织方法验证

.

标准编制组根据开题论证会确定的技术方案和论证意见,开展课题实验研究工作。对方法各项技术参数和条件进行优化实验,确定具体的技术内容及检出限、测定下限、实验室内的精密度等方法特性指标,在此基础上编写方法标准草案和编制说明。组织 5 家有资质的实验室对方法进行方法验证,编写方法验证报告。

(5)编写标准征求意见稿和编制说明(含方法验证报告)

标准编制组于 2010 年 3 月编制完成并提交标准征求意见稿、编制说明及方法验证报告,待公开征求 意见。

2 标准制修订的必要性分析

2.1 酸性土壤的环境危害

(1) 土壤酸性和土壤可交换酸度的基本含义

土壤酸性是土壤的重要理化性质之一,是土壤在其形成过程中受气候、地质、水文、生物等因素的综合作用所具有的重要属性。我国热带、亚热带地区,广泛分布着各种红色或黄色的酸性土壤。

土壤可交换酸度是酸性土壤的重要性质之一,指由吸附于土壤胶体表面的 H^+ 和 Al^{3+} 形成的,它们通过交换作用进入土壤溶液中产生 H^+ ,使土壤显酸性。土壤可交换酸度主要来自土壤胶体表面可交换氢和可交换 Al^{3+} 的水解作用产生的 H^+ ,还有极少部分来自水解了的和非交换性的 Al 盐的水解作用和部分有机物上弱酸基团产生的 H^+ 。

(2) 土壤可交换酸度的环境危害

酸性土壤中,可交换酸度的毒害主要是指可交换铝的毒害。

土壤酸碱度对土壤养分的有效性有重要影响,在 pH 为 6~7 的微酸条件下,土壤养分的有效性最好,最有利于植物生长。在酸性土壤中容易引起钾、钙、镁、磷等元素的短缺,酸性土壤一般不利于细菌的活动,根瘤菌、褐色固氮菌、氨化细菌和硝化细菌大多生长在中性土壤中,它们在酸性土壤中难以生存,很多豆科植物的根瘤常因土壤酸度的增加而死亡。

当土壤 pH 介于 6~5 之间时,H⁺对植物产生直接毒害;当土壤 pH 降至 5.5~5.0 时铝离子开始出现; 当土壤 pH 进一步降低时,铝的溶解度提高。无论是水田还是旱田,酸性土壤上的铝毒现象都很普遍。根 系是受铝毒危害最敏感的部位。当土壤溶液中可溶性铝离子的浓度超过一定限度时,植物根系就会表现出 典型的中毒症状:根系生长明显受阻,根短小,出现畸形卷曲,脆弱易断,在植株地上部分表现出缺钙和 缺铁的症状。

2.2 相关环保标准和环保工作的需要

土壤可交换酸度的含量即可交换 H^+ 和 AI^{3+} 的含量多少,是划分微酸性和酸性土壤的重要依据,是说明土壤胶体破坏程度的重要依据。改良土壤,降低土壤的酸性程度,可通过中和溶液中胶体上的可交换氢离

子和可交换铝离子。而研究土壤中可交换酸度的测定方法,根据计算可交换酸度的量来计算所要使用的改良剂的使用量,是改良酸性土壤提高酸性土壤利用价值的重要依据。

测定土壤可交换酸度,可以了解土壤酸化程度,了解土壤铝的毒害程度,为地方环境保护主管部门开 展环境管理工作提供强有力的技术支撑。

2.3 现行土壤可交换酸度测定方法的最新进展

目前国内通用的测定土壤可交换酸度采用 KCl 过滤,再用 NaOH 溶液滴定的方法。国际标准方法 ISO14254:2001 (E)和 ISO11260:1994 (E),用氯化钡浸提土壤测定提取液中可交换酸度总量。此方法目前被德国、英国等多个国家采用。国内一些分析方法和国际标准化方法相比存在较大差异,特别是浸提液提取法差异较大,需要对可能影响检测结果的主要差异进行研究。

3 国内外相关分析方法研究

3.1 主要国家、地区及国际组织相关分析方法研究

目前,国际上主要采用氯化钡提取法测定土壤中可交换酸度。ISO 标准方法 ISO14254:2001(E)采用 BaCl₂ 浸提土壤,此方法目前被德国、英国等多个国家采用。

3.2 国内相关分析方法研究

(1) 国内相关分析方法的特点、应用情况

国内对于土壤可交换酸度测定方法研究也比较多,目前国内有 pH 8.2 Ba(OH)₂-TEA 法、Ca(OH)₂-Ba(OAc)₂ 法、CaCl₂、KCl 提取等方法。也制定了一些特定标准,如森林土壤交换性酸的测定(LY/T1240-1999)等。到目前为止,尚未有针对全国各地区土壤可交换酸度的统一测定标准。

(2) 国内相关分析方法与本方法标准的关系

国内一些分析方法和国际标准化方法 ISO 14254:2001(E)相比存在一些差异,主要是浸提液提取法和滴定过程中 pH 的控制的方法有所不同。本方法主要参考 ISO14254:2001(E)标准方法和 ISO11260:1994(E) 开展实验研究。

4 标准制订的基本原则和技术路线

4.1 标准制订的基本原则

- (1) 方法的检出限和测定范围满足相关环保标准和环保工作的要求 反复多次试验,确定分析方法的检出限,满足土壤中可交换酸度的分析要求。
- (2) 方法准确可靠,满足各项方法特性指标的要求 多次测定,计算方法的精密度指标,满足土壤中可交换酸度分析方法的特性指标要求。
- (3) 方法具有普遍适用性,易于推广使用

试验验证该方法对各类酸性土壤中可交换酸度测定的普遍适用性,同时易于推广使用。

4.2 标准制订的技术路线

- (1) 成立标准编制组;
- (2) 文献资料调研,初步开展实验预研究工作;
- (3) 开题论证,确定标准制订研究技术方案;
- (4) 开展实验研究工作,组织方法验证;
- (5) 编写标准文本和编制说明形成征求意见稿;
- (6) 修改完善标准草案及编制说明形成送审稿;
- (7) 修改完善标准草案及编制说明形成报批稿;
- (8) 标准管理部门行政审查、批准、编号、发布。 标准制订具体技术路线图,见图1。

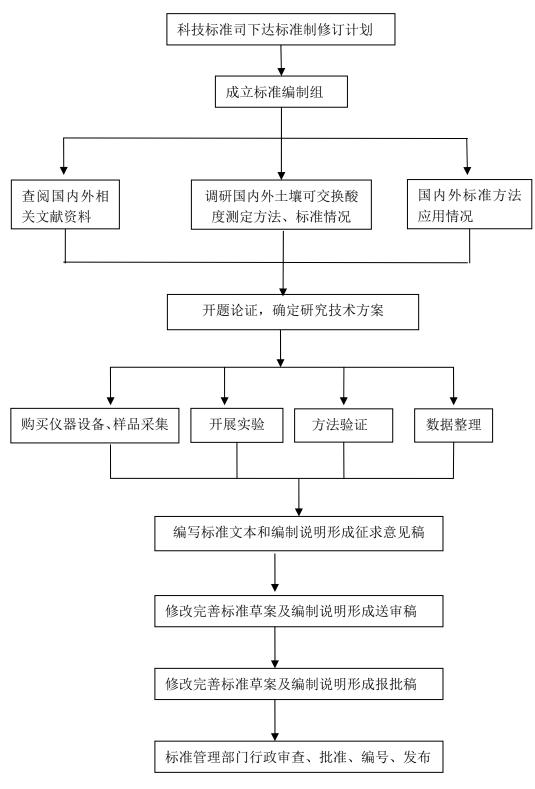


图 1 本标准制订的技术路线图

5 方法研究报告

5.1 方法研究的目标

通过实验和方法验证,总结出本标准方法能满足相关环保工作要求的方法检出限、定量测定范围。

能满足各项方法特性要求,如方法的精密度等。方法包括样品提取、分析、数据处理和质量管理等方面的内容,详细说明实验材料、试剂、仪器以及具体操作步骤,并就质量控制和质量保证方面的内容进行详细阐述,对分析工程中每个环节可能存在的污染和干扰问题进行严格控制,以便于在分析实施过程中加强管理、保证数据质量。

5.2 方法原理

提取原理:用适量氯化钡溶液反复提取土壤样品,使得土壤胶体上可交换铝和可交换氢被钡离子交换, 形成三价铝离子和氢离子进入溶液。其交换过程用下式表示:

H⁺-|土壤胶体|-Al³⁺+2BaCl₂◆→|土壤胶体|-2Ba²⁺+Al³⁺+4Cl⁻+H⁺

可交换酸度的测定:提取完样品后,取一部分土壤提取液,用氢氧化钠标准溶液直接滴定,所得结果为可交换酸度。

可交换铝的测定:提取完样品后,另取一部分土壤提取液,加入适量氟化钠溶液,使氟离子与铝离子 形成络合物,Al³⁺被充分络合。再用氢氧化钠标准溶液滴定,所得结果为可交换氢。两者之差为可交换铝。

5.3 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯试剂,实验用水为新制备的无二氧化碳水。

5.3.1 无二氧化碳水

将蒸馏水在烧杯中煮沸蒸发(蒸发量10%),冷却后备用。无二氧化碳水应临用现配。

- 5.3.2 盐酸(HCl)(1+5)溶液。
- 5.3.3 氯化钡溶液,c(BaCl₂·H₂O)=0.10mol/L

称取 24.426g 氯化钡(BaCl₂·H₂O)溶于少量水中,移入 1000 ml 容量瓶中,加水稀释至标线,混匀。 5.3.4 邻苯二甲酸氢钾标准溶液($C_8H_5KO_4$,基准试剂),c=0.02mol/L

称取已通过 105℃~110℃干燥的基准试剂邻苯二甲酸氢钾 1.0211g,溶于适量无二氧化碳水,移入 250ml 容量瓶中,加无二氧化碳水稀释至标线,混匀。

5.3.5 氢氧化钠标准溶液,c(NaOH)=0.02 mol/L

称取 0.8g 氢氧化钠溶于适量无二氧化碳水中, 待溶液冷却后移入 1000 ml 容量瓶, 稀释至标线, 混匀, 贮存于聚乙烯塑料容器中。用邻苯二甲酸氢钾标准溶液(5.3.4)进行标定。

标定方法: 吸取邻苯二甲酸氢钾标准溶液(5.3.4)25.00ml 于 150ml 锥形瓶中,加入 1~2 滴酚酞指示剂(5.3.7),用待标定的 0.02 mol/L 氢氧化钠标准溶液(5.3.5)滴定至无色变为浅红色,溶液颜色在 30 s 内保持不变时为终点。记录氢氧化钠标准溶液用量,同时做空白试验。

氢氧化钠标准溶液浓度(mol/L),按照公式(1)进行计算。

$$c_1 = \frac{c_2 \times V_2}{V_1 - V_0} \tag{1}$$

式中:

 c_1 —— 氢氧化钠标准溶液浓度,mol/L;

 c_2 — 邻苯二甲酸氢钾溶液的浓度,mol/L;

 V_0 —— 空白试验消耗氢氧化钠溶液的体积, ml;

 V_I — 标定时消耗氢氧化钠溶液的体积, ml;

 V_2 — 邻苯二甲酸氢钾溶液的体积,ml。

5.3.6 氟化钠溶液,c (NaF) =1.0mol/L

称取 42.0g 氟化钠溶于水中并稀释到大约 900ml, 用稀盐酸调节至 pH 为 7.0, 将溶液移入 1000ml 容量瓶中,加水稀释至标线,混匀。

5.3.7 酚酞指示剂

称取 1.0g 酚酞溶于 100ml 乙醇中。

5.4 仪器和设备

实验用仪器设备主要有土壤筛、pH计、振荡器、离心机等。

5.5 样品采集和制备

5.5.1 样品的选择

我国土壤大多数 pH 在 4.0~9.0 之间,在地理分布上有"东南酸而西北碱"的规律性,大致可以长江为界(北纬 33°),长江以南的土壤多为酸性或强酸性,pH 值大多为 4.5~5.5 之间。南方高温多雨,成土过程中矿物的风化淋溶作用强烈,盐基物质大量淋失,是导致土壤酸化的主要原因。我国酸性土壤主要分布在江西,湖南两省的大部分,云南、广东、广西、福建等省区北部,贵州、四川、湖北、陕西、浙江、安徽等省的南部。

为保证试验样品具有代表性,课题组人员经过大量调查研究,选择江西鹰潭、湖南长沙和辽宁营口三个地方采集样品。

5.5.2 样品的采集和保存

按照《土壤环境监测技术规范》(HJ/T166)的相关规定进行土壤样品的采集和保存。用梅花点法采集混合土壤样品,采样深度为0~20 cm,避免在田边、路边、沟边、肥堆等地方采集。

5.5.3 样品的风干和制备

将采集的土壤样品盛放在木盘或塑料布中,摊成2~3 cm的薄层,适时地压碎、翻动,拣出碎石、砂

砾、植物残体,置于室内通风阴干。风干场所要求干燥通风、防止酸蒸气、氨气、灰尘等的污染。

将风干后的样品倒在有机玻璃板或玛瑙研钵里,研碎,拣出杂质,混匀,过孔径 2 mm 土壤筛。过筛后的样品全部置无色聚乙烯薄膜上,充分搅拌混匀,采用四分法取样备用。

5.5.4 试样的制备

在 50ml 具塞聚乙烯离心管内加入 2.50g 风干土壤样品和 30ml 氯化钡溶液 (5.3.3),振荡 1h,然后在离心机上以转速 4000 r/min 平衡离心 10min,将上清液移入 100ml 容量瓶中。重复上述步骤 2 次,将两次提取的上清液全部转移入上述容量瓶中,最后用氯化钡溶液 (5.3.3) 定容至 100ml,待测。

注: 土壤提取液中有少量杂物时,应进行过滤后测定。

5.5.5 空白试样的制备

用无二氧化碳水代替土壤样品,按照与试样制备相同步骤,制备空白样品提取液。

5.5.6 含水率的测定

用已知重量的称量瓶称取 20.00g 土壤样品,105~110℃烘 4h 后放在干燥器中冷却至室温,称重。按照公式(2)计算土壤的含水率(W,%)。

5.6 试样制备的条件优化

试样制备过程较为复杂,为提高试样制备的可操作性和适用性,对试样制备过程的水土比、土壤粒度、提取液浓度、提取次数等条件进行优化试验。为使实验样品具有代表性,选取3个不同浓度样品开展试验,分别取江西鹰潭、湖南长沙和辽宁营口三个地方土壤样品。采用试样制备的方法(5.5.4),每份样品平行测定3次,取其平均值进行统计。

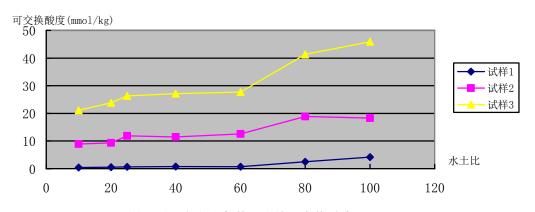
5.6.1 水土比优化

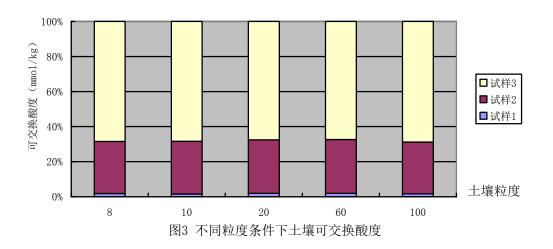
采用试样制备的方法 (5.5.4), 固定提取过程中其他条件不变,改变水土比进行测定。采用水土比分别为 10、20、25、40、60、80、100的试样测定可交换酸度。土壤水土比在 60以内数据相对稳定,当水土比大于 60以后,把部分非交换性酸提取出来,土壤可交换酸度值陡增且杂乱无序。

由表 1 和图 2 数据可知,水土比选择 25~60 比较适宜。参考国际标准 ISO11260:1994(E),本标准选择水土比为 40,即称取 2.50g 土壤样品,用提取液提取到 100ml。

表 1 不同水土比条件下土壤可交换酸度(mmol/kg)

水土比	10	20	25	40	60	80	100
试样 1	0.4	0.54	0.65	0.75	0.68	2.5	4.2
试样 2	8.9	9.3	11.9	11.5	12.6	18.9	18.3
试样 3	21.1	23.8	26.3	27.1	27.7	41.3	45.9




图2 不同水土比条件下土壤可交换酸度

5.6.2 土壤粒度优化

固定提取过程中其他条件不变,改变土壤粒度进行测定。选择3种不同浓度的土壤,将土壤研磨到粒度分别为8目、10目、20目、60目和100目进行测定。由表2和图3可知,在8目和100目之间,数据相对稳定。土壤粒度的变化,对土壤可交换酸度值影响较小。参考相关资料,结合实验结果,选择过8目土壤筛样品已经达到实验要求,即土壤研磨过2mm土壤筛即可。

表 2 不同粒度条件下土壤可交换酸度(mmol/kg)

粒度(目数)	8	10	20	60	1 00
试样 1	0.69	0.61	0.75	0.78	0.66
试样 2	11.3	11.8	11.9	12.5	12
试样 3	26	26.8	26.3	27.4	27.9

5.6.3 提取液浓度优化

固定提取过程中其他条件不变,改变土壤提取液浓度进行测定。土壤提取液浓度选择 0.05~mmol/kg、 0.10~mmol/kg、 0.20~mmol/kg、 0.50~mmol/kg、 1.0~mmol/kg 和 1.5~mmol/kg。

由表 3 和图 4 可知, 土壤提取液浓度由 0.05 mmol/kg 上升到 0.1 mmol/kg 时, 三个不同浓度的样品可交换酸度上升明显。当土壤浓度大于 0.10mmol/kg, 随着提取液浓度的增加, 土壤可交换酸度上升趋势比较平缓, 远低于浓度值增加后理论上对应的数值。结合相关资料, 同时参考 ISO11260:1994(E), 土壤提取液选择 0.10 mmol/kg 达到分析要求。

表 3 不同浓度提取液条件下土壤可交换酸度(mmol/kg)

提取液浓度(mol/L)	0.05	0.10	0.20	0.50	1.0	1.5
试样 1	0.45	0.71	0.83	0.78	0.82	0.82
试样 2	10.02	11.9	13.5	15.2	14.8	15.7
试样 3	20.05	27.2	28.3	30.7	32.9	33.4

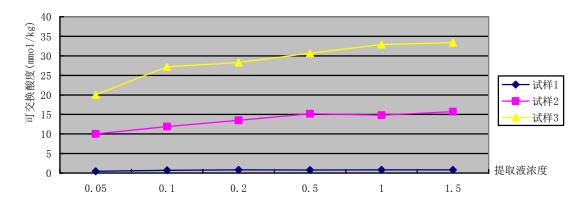


图4 不同浓度提取液土壤可交换酸度

5.6.4 提取次数优化

固定测定过程中其他条件不变,样品提取 1 次、2 次、3 次、4 次、5 次和 6 次时测定土壤可交换酸度值。由表 4 和图 5 可知,初次提取效率最高,提取液中可交换酸度占 6 次提取液总量的 65.5%。第 2 次和第 3 次提取结果所占比例分别为 21.8%、9.8%,最后 3 次提取液中可交换酸度之和占总量 2.9%。考虑分析效率及分析成本,参考 ISO11260:1994(E),土壤提取 3 次达到分析要求。

表 4 不同提取次数可交换酸度占总可交换酸度比例

提取次数(次)	1	2	3	4	5	6
测定值(mmol/kg)	7.27	2.42	1.09	0.14	0.11	0.07
比例 (%)	65.5	21.8	9.8		2.9	

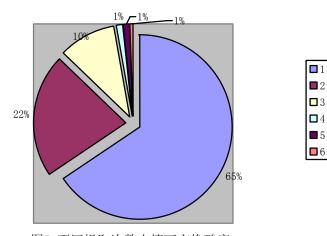


图5 不同提取次数土壤可交换酸度

5.7 分析步骤

(1) 分析步骤

a. 可交换酸度的测定

移取 50ml 氯化钡提取液于 100ml 烧杯中,加入磁力搅拌子,插入电极并用氢氧化钠标准溶液滴定至 pH=7.8。或使用酚酞做指示剂,滴定到颜色变为粉红色,溶液颜色保持 30s 不变色时为终点,记录消耗氢氧化钠溶液体积 V_1 的毫升数。

同时滴定 50ml 空白样品提取液,记录消耗氢氧化钠溶液体积 V 空的毫升数。

同时滴定 50ml 空白样品提取液,记录消耗氢氧化钠溶液体积 V_0 的毫升数。

b. 可交换氢的测定

移取 50ml 氯化钡提取液于 100ml 烧杯中,加入适量氟化钠溶液,用氢氧化钠标准溶液滴定至 pH 7.8。或使用酚酞做指示剂,滴定到颜色刚刚变为粉红色且 30s 不变色,记录消耗氢氧化钠溶液体积 V_2 的毫升数。

注 1: 若选择酚酞或 pH 值做指示滴定终点,必须在检测报告中注明。

注 2: 氟化钠溶液的用量,根据公式(3)计算。

氟化钠溶液加入量 (ml) =
$$\frac{V_1 \times c_{NaOH} \times 2}{c_2}$$
 (3)

式中: V_1 ——滴定可交换酸度所耗氢氧化钠体积, ml;

 $c_{\it NaOH}$ ——氢氧化钠标准溶液浓度,

 c_2 —— 氟化钠溶液浓度,mol/L。

5.8 检出限

按照样品分析步骤,重复n次空白试验,将各次测定结果换算为样品浓度,计算n次平行测定结果的标准偏差,按公式(4)计算方法检出限。

$$MDL = t_{(n-1,0.99)} \times s \tag{4}$$

式中:

MDL——方法检出限;

n — 样品平行测定次数;

t— 自由度为 n-1, 置信度为 99%时的 t 分布 (单侧);

s---n 次平行测定的标准偏差。

各验证实验室使用标准编制组提供的统一方法,按操作步骤及流程进行分析操作,计算结果的平均值、标准偏差、检出限等。最终的方法检出限为各验证实验室所得数据的最高值。由表 1 确定该方法检出限为 0.50mmol/kg。

以 4 倍方法检出限作为测定下限,该方法测定下限 2.00mmol/kg。以 25.00ml 滴定管滴定,测定上限为 400 mmol/kg。

表 5 方法检出限和测定下限 (n=10)

实验室 平行样序号		a	b	С	d	e	备注
	1	1.12	1.12	0.96	0.96	1.12	
	2	1.00	0.80	1.12	1.33	0.96	
	3	0.96	0.96	1.12	1.12	1.12	
	4	1.28	0.96	1.28	0.80	1.28	
测定结果	5	0.80	1.22	1.12	0.96	0.96	
(mmol/kg)	6	0.80	1.28	0.80	0.96	1.32	
	7	0.96	0.96	0.96	0.96	0.80	
	8	1.10	1.25	1.28	1.12	0.96	
	9	1.28	0.80	0.96	1.12	1.10	
	10	0.96	0.96	0.96	0.96	1.12	
平均值 x_i (mmol/l	kg)	1.03	1.03	1.06	1.03	1.07	
标准偏差 s_i (mm	nol/kg)	0.17	0.18	0.16	0.14	0.16	
相对标准偏差 RSL	相对标准偏差 RSD(%)		17.4	14.6	14.2	14.7	
检出限(mmol/kg)		0.48	0.50	0.44	0.41	0.45	_
测定下限(mmol/kg)		1.92	2.00	1.76	1.64	1.80	
注: 1.t 值为 2.821 2.检出限取验证单	单位中检出限最高	值					

5.9 精密度

实验室内相对标准测定:对某一水平浓度的样品在第 i 个实验室内进行 n 次平行测定,实验室内相对标 准偏差按如下公式进行计算:

$$-\frac{1}{x_i} = \frac{\sum_{k=1}^{n} x_k}{n} \tag{5}$$

$$\overline{x}_{i} = \frac{\sum_{k=1}^{n} x_{k}}{n}$$

$$S_{i} = \sqrt{\frac{\sum_{k=1}^{n} \left(x_{k} - \overline{x}\right)^{2}}{n-1}}$$

$$RSD_{i} = \frac{S_{i}}{x_{i}} \times 100\%$$
(5)

$$RSD_i = \frac{S_i}{x_i} \times 100\%$$
 (7)

式中:

 x_k ——第 i 个实验室内对某一浓度水平样品进行的第 k 次测试结果;

 x_i — 第i 个实验室对某一浓度水平样品测试的平均值;

 S_i ——第i个实验室对某一浓度水平样品测试的标准偏差;

 RSD_i ——第i个实验室对某一浓度水平样品测试的相对标准偏差。

取3个不同浓度样品开展实验室内精密度测试,每个样品平行测定6次,结果见表6。

表 6 实验室内精密度

	试样		样品		备 注
平行样序号		样品1	样品 2	样品3	首任
	1	0.66	11.2	26.8	
	2	0.71	10.1	27.6	
测定结果	3	0.76	11.9	28.9	
(mmol/kg)	4	0.64	12.1	27.5	
	5	0.68	11.3	26.1	
	6	0.61	11.1	27.1	
平均值 x_i (m	nmol/kg)	0.68	11.3	27.3	
标准偏差 S_i (n	nmol/kg)	0.05	0.71	0.94	
相对标准偏差 R	<i>PSD</i> (%)	7.9	6.3	3.4	

由表 6 可知,土壤可交换酸度浓度平均值分别为 0.68 mmol/kg、11.3 mmol/kg、27.3 mmol/kg 的三个不同浓度样品,实验室内标准偏差分别为 0.05 mmol/kg、0.71 mmol/kg、0.94 mmol/kg; 实验室内相对标准偏差分别为 7.9%、6.3%、3.4%。

实验室间相对标准偏差:对某一水平浓度的样品在l个实验室内进行测定,实验室间相对标准偏差按如下公式进行计算:

$$= x = \frac{\sum_{i=1}^{l} \overline{x_i}}{l} \tag{8}$$

$$S' = \sqrt{\frac{\sum_{i=1}^{l} \left(\overline{x}_{i} - \overline{x}\right)^{2}}{l - 1}}$$
 (9)

$$RSD' = \frac{S'}{x} \times 100\% \tag{10}$$

式中: x_i — 第i 个实验室对某一浓度水平样品测试的平均值;

S' —— 实验室间标准偏差;

RSD ____ 实验室间相对标准偏差。

取 3 个不同浓度土壤样品,在 5 个实验室测定可交换酸度,每个实验室平行测定 6 次。平均值分别为 0.69 mmol/kg、 11.5 mmol/kg 、 27.5 mmol/kg ; 实验室间标准偏差分别为 0.02 mmol/kg 、 0.41 mmol/kg 、 0.82 mmol/kg ; 实验室间相对标准偏差分别为 3.5% 、 3.6% 、 3.0% 。 结果见表 7。

表 7 实验室间精密度

试样		样品1			样品 2			样品3	
实验 室编号	- X _i	S_i	RSD_i	$ \chi_i$	S_i	RSD_i	$ \chi_i$	S_i	RSD_i
a	0.68	0.05	6.9	12.1	0.64	5.3	28.5	1.18	4.2
b	0.65	0.05	7.9	11.3	0.71	6.2	27.3	0.94	3.4
С	0.69	0.05	6.7	11.6	0.73	6.2	26.9	0.95	3.5
d	0.69	0.05	6.7	11.5	0.76	6.7	28.0	0.96	3.4
e	0.72	0.07	8.5	11.0	0.77	7.0	26.5	0.96	3.6
= X (mmol/kg)		0.69			11.5			27.5	
s' (mmol/kg)		0.03			0.41			0.82	
RSD' (%)		3.7			3.6			3.0	
重复性 r		0.14			2.02			2.81	
再现性 R		0.15		2.17				3.43	

5.10结果计算与表示

5.10.1 结果计算

土壤样品中的可交换酸度(mmol/kg),按照公式(10)进行计算。

$$E_{A} = \frac{(V_{1} - V_{0}) \times C_{NaOH} \times 1000 \times V}{V_{s} \times m} \times \frac{100 + w}{100}$$
 (11)

式中: E_A ——烘干土壤中可交换酸度, mmol/kg;

 V_1 ——直接滴定土壤样品消耗氢氧化钠体积,ml;

 $V_{\scriptscriptstyle{rac{\circ}{2}}}$ ——空白样品所消耗氢氧化钠体积,ml;

 $C_{\it NaOH}$ ——氢氧化钠溶液浓度, $\it mol/L$;

V——提取液最终定容体积,ml;

 V_s ——滴定时移取的提取液体积, ml;

m ——风干土质量, g;

w——风干土壤含水率,质量分数。

土壤样品中的可交换氢(mmol/kg)和可交换铝(mmol/kg),按照公式(12)和(13)进行计算。

$$E_{H^{+}} = \frac{(V_{2} - V_{0}) \times C_{NaOH} \times 1000 \times V}{V_{s} \times m} \times \frac{100 + w}{100}$$
 (12)

$$E_{Al} = E_A - E_{H^+} \tag{13}$$

式中:

 $E_{{}_{\!H^+}}$ ——土壤样品的可交换酸氢,mmol/kg;

 E_{Al} ——土壤样品的可交换铝,mmol/kg;

 V_2 ——加入氟化钠后消耗氢氧化钠体积, ml ;

 V_0 ——加入氟化钠后空白样品消耗氢氧化钠体积,ml;

其他参数的含义见公式(10)。

5.10.2 结果表示

当测定结果小于10 mmol/kg时,保留到小数点后两位;大于等于10 mmol/kg时,保留三位有效数字。

6 方法验证

6.1 方法验证方案

(1) 验证单位及人员情况

有 5 家单位参加了方法验证,验证单位有南通市环境监测中心站、镇江市环境监测中心站、连云港市环境监测中心站、盐城市环境监测中心站、仪征市环境监测中心站。参加验证的人员情况见表 8。

表 8 参加人员情况

姓名	性别	年龄	职称或职务	所学专业	从事分析 工作年限	工作单位
刘琳娟	女	31	工程师	环境工程	8年	南通市环境监测中心站
张琪	女	31	工程师	土壤学	6年	南通市环境监测中心站
印晨程	男	25	助工	制药工程	2年	镇江市环境监测中心站
杨惠林	女	30	助工	分析化学	3年	连云港市环境监测中心站
周晖	女	36	工程师	环境监测	10	盐城市环境监测中心站
惠学香	女	45	高级工程师	环境监测	20	仪征市环境监测中心站

(2) 方法验证方案

验证方法、参与方法验证的实验室、验证人员的基本情况等详见方法验证方案。

按照《环境监测 分析方法标准制定技术导则》(HJ/T168)的规定,组织 5 家以上有资质的实验室进行验证。根据影响方法的精密度的主要因素和数理统计学的要求,编制方法验证方案,确定样品类型、含量水平、分析人员、分析设备、分析时间及重复测试次数等,验证单位按 HJ/T168 中附录 D 的要求完成方法验证报告。

6.2 方法验证过程

首先,通过筛选确定方法验证单位。按照方法验证方案准备实验用品,与验证单位确定验证时间。在 方法验证前,参加验证的操作人员应熟悉和掌握方法原理、操作步骤及流程。方法验证过程中所用的试剂 和材料、仪器和设备及分析步骤应符合方法相关要求。

《方法验证报告》,见附件一。

方法精密度统计结果能满足方法特性指标要求。

7 与开题报告的差异说明

- (1) 标准名称改为《土壤 可交换酸度的测定 氯化钡提取-滴定法》;
- (2)《土壤 可交换酸度的测定 氯化钡提取-滴定法》和《土壤 可交换酸度的测定 氯化钾-提取法》主要区别:提取液不同、提取步骤不同。氯化钡-提取法主要用 0.1 mol/L 氯化钡反复振荡土壤,氯化钾-提取液主要用 1.0 mol/L 氯化钾少量多次淋洗土壤。

方法验证报告

方法名称: 土壤 可交换酸度的测定 氯化钡提取-滴定法

项目承担单位: 扬州市环境监测中心站

项目负责人及职称: 童桂凤 高级工程师

通讯地址: 扬州市扬子江北路 446 号

电话: 13852708388 051487931565

报告编写人及职称: 童桂凤 高级工程师

报告日期: 2010年3月5日

1原始测试数据

1.1实验室基本情况

附表1-1 参加验证的人员情况登记表

姓名	性别	年龄	职务或职称	所学专业	参加分析 工作年份	验证方法名称
刘琳娟	女	31	工程师	环境工程	8年	南通市环境监测中心站
张琪	女	31	工程师	土壤学	6年	南通市环境监测中心站
印晨程	男	25	助工	制药工程	2年	镇江市环境监测中心站
杨惠林	女	30	助工	分析化学	3年	连云港市环境监测中心站
周晖	女	36	工程师	环境监测	10	盐城市环境监测中心站
惠学香	女	45	高级工程师	环境监测	20	仪征市环境监测中心站

附表1-2 使用仪器情况登记表

仪器名称	规格型号	仪器编号	性能状况	备注
电子天平	BL310	41261756	良好	
水浴恒温振荡器	WHY-2	2564	良好	
离心机	Sigma315	900519	良好	
碱式滴定管	50ml	-	良好	

附表1-3 使用试剂及溶剂登记表

名称	规格型号	纯化处理方法	备注
氯化钡	分析纯	无	批号: 20091010
酚酞	分析纯	无	批号: 20091227
氢氧化钠	分析纯	无	批号: F20080107
氟化钠	分析纯	无	批号: F20070824
邻苯二甲酸氢钾	基准试剂	无	批号: K02462476

1.2 方法检出限、测定下限测试数据

附表1-4 方法检出限、测定下限测试数据表

测试日期: 2010.1.

	实验室 平行样序号		a	b	С	d	e	备注
Ī	测定结果	1	1.12	1.12	0.96	0.96	1.12	

(mmol/kg)	2	1.00	0.80	1.12	1.33	0.96	
	3	0.96	0.96	1.12	1.12	1.12	
	4	1.28	0.96	1.28	0.80	1.28	
	5	0.80	1.22	1.12	0.96	0.96	
	6	0.80	1.28	0.80	0.96	1.32	
	7	0.96	0.96	0.96	0.96	0.80	
	8	1.10	1.25	1.28	1.12	0.96	
	9	1.28	0.80	0.96	1.12	1.10	
	10	0.96	0.96	0.96	0.96	1.12	
平均值 x_i (mmol/	kg)	1.03	1.03	1.06	1.03	1.07	
标准偏差 s_i (mmol/kg)		0.17	0.18	0.16	0.145	0.16	
相对标准偏差 RSD(%)		16.5	17.4	14.6	14.2	14.7	
检出限(mmol/kg)		0.48	0.50	0.44	0.41	0.45	
测定下限(mmol/k	(g)	1.92	2.00	1.76	1.64	1.80	
N							

注: 1.t 值为 2.821

1.3 方法精密度测试数据

附表1-5 精密度测试数据

测试日期: 2009.12

平行号					
1.11	7	浓度 1	浓度 2	浓度3	— H1L
	1	0.69	12.7	28.9	
	2	0.75	11.9	28.3	
	3	0.71	12.9	30.6	
测定结果	4	0.66	12.1	27.1	
(mmol/kg)	5	0.68	12	28.2	
	6	0.61	11.1	27.9	
平均值 x_i (m	平均值 x _i (mmol/kg)		12.1	28.5	
标准偏差 S_i (mmol/kg)		0.05	0.64	1.18	
相对标准偏差 RSD_i (%)		6.9	5.3	4.2	
注: <i>i</i> 为实验室	编号。			•	•

^{2.}检出限取验证单位中检出限最高值

^{3.}i 为实验室编号。

附表1-6 精密度测试数据

测试日期: 2009.12

平行	문	试样				
1 11	J	浓度 1	浓度 2	浓度 3	_ 备注	
	1	0.66	11.2	26.8		
	2	0.61	10.0	27.6		
	3	0.70	11.9	28.9		
测定结果	4	0.64	12.1	27.5		
(mmol/kg)	5	0.68	11.3	26.1		
	6	0.61	11.1	27.1		
平均值 <i>x_i</i> (m	平均值 x _i (mmol/kg)		11.3	27.3		
标准偏差 S_i (mmol/kg)		0.05	0.71	0.94		
相对标准偏差 RSD_i (%)		5.7	6.3	3.4		
注: <i>i</i> 为实验室:	编号。					

附表1-7 精密度测试数据

测试日期: 2010.1.

平行	문		 备注		
1 13		浓度 1	浓度 2	浓度 3	一 年仁
	1	0.67	11.0	27.3	
	2	0.64	10.9	25.6	
	3 4	0.76	12.8	28.3	
测定结果		0.67	11.9	27.1	
(mmol/kg)	5	0.68	11.2	26.1	
	6	0.71	11.9	27.0	
平均值 x_i (m	平均值 x _i (mmol/kg)		11.6	26.9	
标准偏差 S_i (mmol/kg)		0.05	0.73	0.95	
相对标准偏差 RSD_i (%)		6.7	6.2	3.5	
注: <i>i</i> 为实验室:	编号。			•	

附表1-8 精密度测试数据

测试日期: 2009.11

平行-	묵	试样				
1 11	9	浓度 1	浓度 2	浓度 3	备注	
	1	0.67	11.0	27.3		
	2	0.64	10.9	27.7		
	3	0.76	12.8	28.8		
测定结果	4	0.67	11.9	28.2		
(mmol/kg)	5	0.68	11.2	26.8		
	6	0.74	10.9	29.4		
平均值 <i>x_i</i> (m	平均值 x _i (mmol/kg)		11.5	28.0		
标准偏差 S_i (mmol/kg)		0.05	0.76	0.96		
相对标准偏差 RSD_i (%)		6.7	6.6	3.4		
注: <i>i</i> 为实验室	编号。					

附表1-9 精密度测试数据

测试日期: 2010.1.

平行号		试样					
		浓度 1	浓度 2	浓度 3	4 备注		
	1	0.73	10.8	25.3			
	2	0.62	11.6	26.6			
	3	0.76	12.1	26.1			
测定结果	4	0.68	10.1	27.4			
(mmol/kg)	5	0.79	11.2	25.8			
	6	0.74	10.3	27.8			
平均值 x_i (m	平均值 x _i (mmol/kg)		11.0	26.5			
标准偏差 S_i (mmol/kg)		0.06	0.77	0.96			
相对标准偏差 RSD_i (%)		8.5	7.0	3.6			
注: <i>i</i> 为实验室	编号。						

2 方法验证数据汇总

2.1 方法检测限、测定下限汇总

附表2-1 方法检出限、测定下限汇总表

实验室号	试样			
	检出限	测定下限		
1	0.48	1.92		
2	0.50	2.00		
3	0.44	1.76		
4	0.41	1.64		
5	0.45	1.80		

结论: 经过5家实验室验证,以各验证实验室所得数据的最高值为本分析方法检出限,

<u>该方法检出限为 0.50mmol/kg</u>, 以 4 倍方法检出限作为测定下限, 该方法测定下限 2.00mmol/kg。以 25.00ml 滴定管滴定,测定上限为 400 mmol/kg。

2.2 方法精密度数据汇总

附表2-2精密度测试数据汇总表

实验室 号	浓度(含量)1			浓度(含量)2			浓度(含量)3			
	$\frac{-}{x_i}$	S_{i}	RSD_i	$-\frac{1}{x_i}$	S_{i}	RSD_i	$-\frac{1}{x_i}$	S_{i}	RSD_i	
1	0.68	0.05	6.9	12.1	0.64	5.3	28.5	1.18	4.2	
2	0.65	0.05	7.9	11.3	0.71	6.3	27.3	0.94	3.4	
3	0.69	0.05	6.7	11.6	0.73	6.2	26.9	0.95	3.5	
4	0.69	0.05	6.7	11.5	0.76	6.6	28.0	0.96	3.4	
5	0.72	0.07	8.5	11.0	0.77	7.0	26.5	0.96	3.6	
= X		0.69		11.5				27.5		
S'		0.03		0.41			0.82			
RSD	3.7			3.6			3.0			
重复性 限 <i>r</i>	0.14				2.02		2.81			
再现性 现 <i>R</i>	0.15			2.17			3.43			

结论: 取 3 个不同浓度土壤样品,在 5 个实验室测定可交换酸度,每个实验室平行测定 6 次。平均值分别为 0.69mmol/kg、11.5mmol/kg、27.5mmol/kg;实验室间标准偏差分别为 0.03mmol/kg、0.41mmol/kg、0.82mmol/kg;实验室间相对标准偏差分别为 3.7%、3.6%、3.0%。

方法验证符合要求。

3 方法验证结论

- (1) 方法检出限为 0.50mmol/kg,方法测定下限为 2.00mmol/kg。
- (2) 实验室间标准偏差分别为 0.03 mmol/kg、0.41 mmol/kg、0.82 mmol/kg,实验室间相对标准偏差分别为 3.7%、3.6%、3.0%。
- (3) 方法各项特性指标达到预期要求。