附件五:

《固定污染源废气 铍的测定 石墨炉原子吸收分光光度法》（征求意见稿）

编制说明

《固定污染源废气 铍的测定 石墨炉原子吸收分光光度法》编制组

二〇一一年一月
项目名称：空气中铍及其化合物的测定

项目统一编号：353

承 担 单 位：中国环境监测总站、安徽省环境监测中心站

编制组主要成员：

中国环境监测总站：滕曼、楚宝临、杨婧、米方卓、姚雅伟、付强

安徽省环境监测中心站：朱余

标准所技术管理负责人：武婷、王宗爽

标准处项目负责人：谷雪景
目录

1 项目背景...1
 1.1 任务来源..1
 1.2 工作过程..1

2 标准制修订的必要性分析...2
 2.1 被测对象（污染物项目）的环境危害...2
 2.2 相关环保标准和环保工作的需要...2
 2.3 污染物分析方法的最新进展...2

3 国内外相关分析方法研究..3
 3.1 主要国家、地区及国际组织相关分析方法研究...3
 3.2 国内相关分析方法研究..3

4 标准制订的基本原则和技术路线..3
 4.1 标准制订的基本原则...3
 4.2 标准的适用范围和主要技术内容...3
 4.3 标准制订的技术路线...4

5 方法研究报告..5
 5.1 方法研究的目的...5
 5.2 方法原理..5
 5.3 试剂和材料..5
 5.4 仪器和设备..5
 5.5 样品..5
 5.6 分析步骤..6

6 方法验证..6
 6.1 方法验证方案...7
 6.2 方法验证过程...8

7 相关分析方法..9

8 参考文献..9

附 方法验证报告...11
《固定污染源废气 铍的测定 石墨炉原子吸收分光光度法》

编制说明

1 项目背景

1.1 任务来源

原国家环保总局科技司向中国环境监测总站下达了制订《空气中铍及其化合物的测定》的计划，项目统一编号为 353。

1.2 工作过程

（1）查询国内外相关标准和文献资料

2007 年，根据国家环保标准修订工作管理办法的相关规定，本标准编制组成员检索和收集了国内外相关标准和文献材料，明确了标准存在的主要问题。在此基础上形成了标准草案。

（2）研究建立标准方法，进行方法验证试验

2007 年标准编制组按照计划任务书的要求，结合《环境监测分析方法标准制订技术导则》（HJ/T 168-2004）的要求，研究建立标准方法的验证方案，并组织 5 家实验室进行方法验证试验。

（3）编写标准征求意见稿和编制说明

2009 年 1 月，汇总方法验证数据，编写了《固定污染源废气 铍的测定 石墨炉原子吸收分光光度法》标准征求意见稿和标准编制说明。2009 年 5 月，根据 2008 年 12 月 2 日环境保护部科技司下发的《关于召开国家环境保护监测方法标准制修订工作会议的预通知》，按照附件中《环境监测分析方法标准制（修）订技术导则（草案）》的要求，对《固定污染源废气 铍的测定 石墨炉原子吸收分光光度法》标准征求意见稿和编制说明进行了再次修改，将相关标准要求和文献调研结果补充到编制说明中。2010 年 6 月，根据 2010 年 5 月实施的《环境监测 分析方法标准制修订技术导则》（HJ 168-2010）的要求，对《固定污染源废气 铍的测定 石墨炉原子吸收分光光度法》标准征求意见稿和编制说明进一步修改，统一了标准文本中试剂等章节的表述方式，编制说明中补充了相关内容，规范了文本的字体，并按照要求重新汇总整理验证数据，编写标准验证汇总报告，按照《环境监测 分析方法标准制修订技术导则》（HJ 168-2010）的要求表述精密度与准确度，将相应内容添加到编制说明中，并按照《环境保护标准编制出版技术指南》（HJ565-2010）的要求修改文本字体和格式。
2 标准制修订的必要性分析

2.1 被测对象（污染物项目）的环境危害

铍，Be，钢灰色的稀有金属，是最轻的碱土金属元素，也是最轻的结构金属之一，在地壳中的丰度为 6×10^{-4}%。其熔点为 1278±5℃，沸点 2970℃，密度 1.85g/cm³，莫氏硬度 5.5，质坚硬。铍的化学性质活泼，能形成致密的表面氧化保护性层，故在空气中即使红热时也很稳定。不溶于冷水，微溶于热水，可溶于稀盐酸，稀硫酸和氢氧化钾溶液而放出氢。

铍及其化合物对人和动物有较大的毒性。每升空气中含 0.0001mg 铍或每升水中含量大于 0.002mg 都能使人畜中毒，浓度高时会致死。铍的工业污染源主要有冶炼、采矿、特种材料、工具和仪器的生产。在冶炼和加工铍的工厂及其周围环境中曾多次发生铍中毒事件。铍及其化合物主要以粉尘、烟雾、蒸气等形式经呼吸道吸收，短期内大量接触可引起急性铍病，主要表现为急性化学性支气管炎或肺炎，长期接触易引起脏器或组织的病变而致癌。

2.2 相关环保标准和环保工作的需要

在我国现行大气环境质量标准、排放标准中，涉及铍的标准主要有《大气污染物综合排放标准》（GB16927-1996）、《工业炉窑大气污染物排放标准》（GB9078-1996）。涉及铍的监测方法标准有《车间空气中铍的桑色素荧光光度测定法》（GB/T16023-1995）。其中《大气污染物综合排放标准》规定了 1997 年 1 月 1 日前设立的污染源排气中，铍及其化合物的最高允许排放浓度为 0.015mg/m³，无组织排放监控浓度限制为 0.0010 mg/m³。1997 年 1 月 1 日后设立的污染源排气中，铍及其化合物的最高允许排放浓度为 0.012mg/m³，无组织排放监控浓度限制为 0.0008 mg/m³。《工业炉窑大气污染物排放标准》与《环境空气质量标准》（GB3095-1996）中环境空气质量功能区相对应，将铍及其化合物（以 Be 计）的最高允许排放浓度分为一、二、三级。1997 年 1 月 1 日前安装的工业炉窑一级 0.010 mg/m³，二级 0.015 mg/m³，三级 0.015 mg/m³；1997 年 1 月 1 日起新、改、扩建的工业炉窑一级禁排，二级 0.010 mg/m³，三级 0.015 mg/m³。

由于采矿、冶金、特种材料生产等废气排放造成的环境污染日益严重，使大气中的铍含量增加，直接威胁人类的健康。而目前缺乏与《大气污染物综合排放标准》相配套的大气固定污染源排气中铍的测定分析标准，已不能满足当前环境监测和管理的需要。本标准的制定能进一步完善我国的大气污染物分析方法体系。

2.3 污染物分析方法的最新进展

目前测定微量铍的常用方法主要有吸光光度法、荧光光度法、原子吸收光谱法、原子发射光谱法及电化学方法等。随着测铍的新显色剂层出不穷，使吸光光度法得到多样化，但灵敏度不够。荧光光度法具有很高的灵敏度，一般可达 ng 级，同时选择性稳定性好，但操作繁琐。目前对铍的原子吸收光谱分析法的研究报道较多，结果表明无火焰原子吸收光谱法具有更高的灵敏度。ICP-AES、ICP-MS 法因其灵敏度高，线性范围宽，可同时分析多元素等
优点，已成为常用分析方法之一，近年来国内外报道较多。

3 国内外相关分析方法研究

3.1 主要国家、地区及国际组织相关分析方法研究

目前一些主要国家和组织已经建立了气体中金属铍的采样和分析方法。美国环保署（USEPA）规定的标准方法主要有 EPA 103、EPA 104、EPA 29。美国职业安全与健康研究院（NIOSH）规定的标准方法主要有 NIOSH 7303、NIOSH 7704。美国材料与试验协会（ASTM）规定的测定方法主要有 ASTM D7202-06、ASTM D7035-04。上述方法在样品采集和前处理方法上相似，均在固定源处利用不同材质的滤膜等速采集微粒铍，将采集的样品在弱酸性消解液中消解。而在分析仪器的使用方面，各方法则有一定差异。EPA 103、EPA 104 采用的是原子吸收分光光度法测定，EPA 29、NIOSH 7303 以及 ASTM D7035-04 三种方法采用的是 ICP-AES 方法。而 NIOSH 7704、ASTM D7202-06 采用的是荧光光度法。

3.2 国内相关分析方法研究

4 标准制订的基本原则和技术路线

4.1 标准制订的基本原则

（1）环境监测分析方法标准的制定应符合《国家环境保护标准制修订管理办法》；

（2）环境监测分析方法标准的制定应符合《标准编写规则》（GB/T 20001-2001）；

（3）环境监测分析方法标准的制定应符合《环境监测 分析方法标准制修订技术导则》（HJ 168-2010）和《环境保护标准编制出版技术指南》（HJ565-2010）的要求；

（4）制定后的标准方法应满足相关环保标准和环保工作的要求，确保方法标准的科学性、先进性、可行性和可操作性。

（5）方法具有普遍适用性，易于推广使用。

4.2 标准的适用范围和技术主要内容

本标准适用于固定污染源废气颗粒物中金属铍的测定。本标准基于石墨炉原子吸收分光光度法，对固定污染源排放气体样品中的金属铍进行监测分析，包括采集和保存、前处理、仪器分析、数据处理和质量管理等方面的内容，介绍了实验材料、试剂、器具的情况，对具体
的样品处理步骤、仪器分析程序以及数据处理流程等方面的内容做了详细阐述，并做了回收率和共存元素的干扰试验以便于在分析实施过程中加强质量管理、保证数据质量。

4.3 标准制订的技术路线

目前测定微量铍的常用方法主要有吸光光度法、荧光光度法、原子吸收光谱法、原子发射光谱法等。吸光光度法灵敏度不高，荧光光度法具有高灵敏度和选择性，但操作繁琐。目前对铍含量分析研究较多的主要有原子吸收光谱法和原子发射光谱法。众多研究结果表明石墨炉原子吸收光谱法比火焰原子吸收光谱法具有更高的灵敏度。而 ICP-AES、ICP-MS 法因其灵敏度高、线性范围宽，可同时分析多元素等优点，近年来已成为常用分析方法之一。鉴于目前国内监测系统已普遍装备原子吸收分光光度计，故本标准的测试方法选择石墨炉原子吸收分光光度法。

本标准制订的技术路线图见图 1。

1. 查阅期刊文献、国内和国际标准化组织的标准文本；
2. 分析相关国内外标准，确定制订的内容；
3. 确定实验方案并进行方法验证，根据方案进行实验室内的试验，完成方法开发与转化研究，编制方法研究报告等工作，组织方法验证；
4. 参照有关的基础标准或者规范技术要求，编制国家标准文本草案，同时编制标准文本制订的说明。提交标准文本和编制说明的征求意见稿；
5. 向国务院有关部门、环境保护相关机构、科研院所、大专院校等公开征求意见；
6. 汇总回复意见，针对意见对标准文本和编制说明进行完善。提交标准文本和编制说明的送审稿；
7. 召开标准审议会，进行技术和格式审查。
8. 按照审议会专家意见修改，形成标准和编制说明报批稿，经行政审查合格后正式发布。
5 方法研究报告

5.1 方法研究的目的

本方法标准适用于固定污染源废气颗粒物中金属铍的测定。

5.2 方法原理

用滤简收集颗粒物样品，经湿法消解制备成样品溶液。铍在石墨管中，高温下原子化，于光路中吸收从铍空心阴极灯发射出的特征谱线（234.9 nm），根据特征谱线强度的变化，用原子吸收分光光度法测定。

5.3 试剂和材料

（1）为了尽量减少试剂带来的杂质影响，降低试剂空白，标准中均采用优级纯高氯酸、硫酸和硝酸。

（2）为提高测定灵敏度，标准中采用硝酸铝做为基体改进剂。

5.4 仪器和设备

采用电热板加热消解，石墨炉原子吸收分光光度计进行测定。

5.5 样品
按照《固定污染源排气中颗粒物测定与气态污染物采样方法》（GB 16157）和《固定源废气监测技术规范》（HJ/T 397）进行布点采样。

采用酸消解的方式制备试样溶液。

5.6 分析步骤

（1）分析步骤的主要过程

按照石墨炉原子吸收分光光度计说明书设置仪器工作参数，对试料和空白试料进行测定，采用标准曲线法定量。

（2）干扰试验结果

加入不同的干扰元素，与不加干扰元素时测得值比较，判断干扰大小。测定 4.00 mg/L 铍时，加入 1000 mg/L K\(^+\)、Na\(^+\)、Ca\(^{2+}\)、Mg\(^{2+}\)、Ni\(^{2+}\)、EDTA、柠檬酸及草酸，600 mg/L Cl\(^-\)，2167 mg/L SiO\(_3^{2-}\) 和 880 mg/L HClO\(_4\)，判断干扰大小，测定结果见表 1。

<table>
<thead>
<tr>
<th>干扰元素</th>
<th>干扰元素加入量（mg/L）</th>
<th>测定值（mg/L）</th>
<th>回收率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>K(^+)</td>
<td>1000</td>
<td>6.51</td>
<td>162.8</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>1000</td>
<td>7.68</td>
<td>192.0</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>1000</td>
<td>5.88</td>
<td>147.0</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>1000</td>
<td>5.85</td>
<td>146.1</td>
</tr>
<tr>
<td>Ni(^+)</td>
<td>1000</td>
<td>4.07</td>
<td>101.8</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td>600</td>
<td>4.30</td>
<td>107.4</td>
</tr>
<tr>
<td>SiO(_3^{2-})</td>
<td>2167</td>
<td>3.72</td>
<td>93.0</td>
</tr>
<tr>
<td>HClO(_4)</td>
<td>880</td>
<td>0.01</td>
<td>0.2</td>
</tr>
<tr>
<td>EDTA</td>
<td>1000</td>
<td>3.23</td>
<td>80.7</td>
</tr>
<tr>
<td>柠檬酸</td>
<td>1000</td>
<td>2.08</td>
<td>52.1</td>
</tr>
<tr>
<td>草酸</td>
<td>1000</td>
<td>2.41</td>
<td>60.2</td>
</tr>
</tbody>
</table>

通过测定结果，可见 250 倍的 Ni\(^{2+}\) 和 EDTA，150 倍的 Cl\(^-\) 和 542 倍的 SiO\(_3^{2-}\) 对铍的测定没有明显干扰。

5.7 结果计算

根据所测得的吸光度值，在校准曲线上查出或由回归方程计算出空白试料和试料中铍的浓度，并由下式计算固定污染源废气颗粒物中铍的浓度，μg/m\(^3\)。

\[
\rho(Be) = \frac{(\rho - \rho_0) \times 25}{V_{ad} \times 1000}
\]

式中：\(\rho(Be)\) — 固定污染源废气颗粒物中的铍浓度，μg/m\(^3\)

\(\rho\) — 测定时试料（25.0 ml）中铍浓度，μg/L；
\[\rho_0 \] — 空白试样（25.0 ml）中铍浓度，\(\mu g/L \);

25 — 试样体积，ml；

\[V_{nd} \] — 标准状态（273 K、101.325 KPa）下干气的采样体积，m³。

6 方法验证

6.1 方法验证方案

6.1.1 验证单位及人员情况

参加验证的 5 家实验室为：重庆市环境监测中心、江苏省环境监测中心站、河南省环境监测中心站、辽宁省环境监测中心站和南京市环境监测中心站。参加验证的人员情况及仪器使用情况见表 2 和表 3。

<table>
<thead>
<tr>
<th>姓名</th>
<th>性别</th>
<th>年龄</th>
<th>职称或职务</th>
<th>所学专业</th>
<th>从事分析工作年份</th>
</tr>
</thead>
<tbody>
<tr>
<td>卢益</td>
<td>女</td>
<td>41</td>
<td>副高</td>
<td>化学</td>
<td>1988</td>
</tr>
<tr>
<td>张晟</td>
<td>男</td>
<td>37</td>
<td>正高</td>
<td>生物</td>
<td>1996</td>
</tr>
<tr>
<td>张瑜龙</td>
<td>男</td>
<td>35</td>
<td>工程师</td>
<td>应用化学</td>
<td>1996</td>
</tr>
<tr>
<td>吴庆梅</td>
<td>女</td>
<td>27</td>
<td>工程师</td>
<td>环境工程</td>
<td>2002</td>
</tr>
<tr>
<td>陈素兰</td>
<td>女</td>
<td>43</td>
<td>研究员</td>
<td>岩矿测试</td>
<td>1984</td>
</tr>
<tr>
<td>陈波</td>
<td>男</td>
<td>28</td>
<td>助工</td>
<td>环境监测</td>
<td>2002</td>
</tr>
<tr>
<td>陈纯</td>
<td>男</td>
<td>28</td>
<td>工程师</td>
<td>化学</td>
<td>2005</td>
</tr>
<tr>
<td>王琪</td>
<td>女</td>
<td>26</td>
<td>助理工程师</td>
<td>给排水工程</td>
<td>2004</td>
</tr>
<tr>
<td>路新燕</td>
<td>女</td>
<td>24</td>
<td>实习学生</td>
<td>分析化学</td>
<td>2008</td>
</tr>
<tr>
<td>李雷锋</td>
<td>男</td>
<td>25</td>
<td>实习学生</td>
<td>分析化学</td>
<td>2007</td>
</tr>
<tr>
<td>张明</td>
<td>女</td>
<td>28</td>
<td>助理工程师</td>
<td>环境科学</td>
<td>2003</td>
</tr>
<tr>
<td>杜青</td>
<td>女</td>
<td>42</td>
<td>工程师</td>
<td>精细化工</td>
<td>1987</td>
</tr>
<tr>
<td>任兰</td>
<td>女</td>
<td>40</td>
<td>工程师</td>
<td>环境工程</td>
<td>1989</td>
</tr>
<tr>
<td>徐荣</td>
<td>男</td>
<td>29</td>
<td>工程师</td>
<td>生物科学</td>
<td>2002</td>
</tr>
</tbody>
</table>

表 3 仪器使用情况

<table>
<thead>
<tr>
<th>仪器名称</th>
<th>规格型号</th>
<th>仪器编号</th>
<th>性能状况</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>石墨炉原子吸收分光光度计</td>
<td>ZEE700</td>
<td>150Z70144</td>
<td>良好</td>
<td></td>
</tr>
<tr>
<td>石墨炉原子吸收分光光度计</td>
<td>AA220Z</td>
<td>03010202035</td>
<td>良好</td>
<td></td>
</tr>
</tbody>
</table>
6.1.2 方法验证方案

按照《环境监测分析方法标准制订技术导则》（HJ/T168-2004）要求，根据影响方法的精密度和准确度的主要因素和数理统计学的要求，编方法验证方案，确定样品类型、含量水平、分析人员、分析设备、分析时间及重复测试次数等，于2007年初组织5家有资质的实验室进行验证。验证单位按HJ/T168-2004中表B-5、表B-6、表B-8、表B-9的要求完成方法验证报告。

具体验证方案如下:

1. **方法检出限**: 各实验室每天采用一个空白滤筒，按照实际样品测定程序平行测定2次，共测5天，按照规定计算检出限和测定下限。

2. **方法的灵敏度**: 各实验室每天做一次校准曲线，得到灵敏度。

3. **方法的精密度**: 各实验室按方法的测定上限浓度c，配制0.1c、0.5c、0.9c浓度的标准溶液，每种标准溶液平行双份，每份按方法操作步骤平行测定6次，计算相对标准偏差等参数。

4. **方法的准确度**: 固定源废气颗粒物的标准样品，选择使用3个浓度水平的土壤有证标准物质进行测定，由所得结果了解分析的准确度。

6.2 方法验证过程

通过筛选确定方法验证单位。按照方法验证方案准备实验用品，与验证单位确定验证时间。在方法验证前，参加验证的操作人员应熟悉和掌握方法原理、操作步骤及流程。方法验证过程中所用的试剂和材料、仪器和设备及分析步骤应符合方法相关要求。

验证方案是按照《环境监测分析方法标准制订技术导则》（HJ/T168-2004）制定，5家实验室均按《环境监测分析方法标准制订技术导则》（HJ/T168-2004）中表B-5、表B-6、表B-8、表B-9的要求完成方法验证报告。最终标准编制单位根据2010年5月实施的《环境监测分析方法标准制修订技术导则》（HJ 168-2010）的要求汇总验证数据，选取5家实验室的可用数据进行统计分析，得到方法检出限、测定下限、精密度和准确度的相关数据，《方法验证报告》附后。
7 相关分析方法

本标准参考了国内外标准的样品采集、前处理及分析等步骤，力求在编制过程中保证在整体技术方面的先进性和具体实施上的可操作性。国内外主要相关分析方法对比见表4。

<table>
<thead>
<tr>
<th>方法名称</th>
<th>方法特点</th>
<th>应用国家</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 104</td>
<td>玻璃纤维滤膜采集，消解后用原子吸收分光光度法测定</td>
<td>美国</td>
</tr>
<tr>
<td>EPA29</td>
<td></td>
<td>美国</td>
</tr>
<tr>
<td>NIOSH 7303</td>
<td>纤维滤膜采集，消解后用ICP-AES测定</td>
<td>美国</td>
</tr>
<tr>
<td>NIOSH 7704</td>
<td>纤维滤膜采集，消解后用紫外/可见荧光光度法测定</td>
<td>美国</td>
</tr>
<tr>
<td>ASTM D7202-06</td>
<td>纤维滤膜采集，消解后用荧光光度法测定</td>
<td>美国</td>
</tr>
<tr>
<td>ASTM D7035-04</td>
<td>纤维滤膜采集，消解后用ICP-AES测定</td>
<td>美国</td>
</tr>
<tr>
<td>本标准</td>
<td>纤维滤膜采集，消解后用石墨炉原子吸收分光光度法测定</td>
<td>中国</td>
</tr>
</tbody>
</table>

8 参考文献

[1] 《环境监测 分析方法标准制修订技术导则》（HJ 168-2010）
[8]《水质 铍的测定 石墨炉原子吸收分光光度法》（HJ/T 59-2000）
[9]《标准编写规则》（GB/T 20001-2001）
[10]《固定污染源排气中颗粒物测定与气态污染物采样方法》（GB 16157）
[11]《固定源废气监测技术规范》（HJ/T 397）
[12] 美国环保署标准方法：EPA 103、EPA 104、EPA 29
[13] 美国职业安全与健康研究院（NIOSH）标准方法：NIOSH 7303、NIOSH7704
[14] 美国材料与试验协会（ASTM）方法：ASTM D7202-06、ASTM D7035-04
[15]《环境监测分析方法标准制订技术导则》（HJ/T 168-2004）
方法名称：固定污染源废气 铍的测定 石墨炉原子吸收分光光度法

项目主编单位：中国环境监测总站
验证单位：重庆市环境监测中心、江苏省环境监测中心、河南省环境监测中心站、辽宁省环境监测中心站、南京市环境监测中心

项目负责人及职称：付强 研究员
通讯地址：北京市朝阳区安外大羊坊 8 号院乙
电话：010-84943042
报告编写人及职称：滕曼 助理工程师
报告日期：2010 年 11 月 22 日
1. 原始测试数据

1.1 实验室基本情况

表1-1 参加验证的人员情况登记表

<table>
<thead>
<tr>
<th>姓名</th>
<th>性别</th>
<th>年龄</th>
<th>职称或职务</th>
<th>所学专业</th>
<th>从事分析工作年份</th>
</tr>
</thead>
<tbody>
<tr>
<td>卢益</td>
<td>女</td>
<td>41</td>
<td>副高</td>
<td>化学</td>
<td>1988</td>
</tr>
<tr>
<td>张晟</td>
<td>男</td>
<td>37</td>
<td>正高</td>
<td>生物</td>
<td>1996</td>
</tr>
<tr>
<td>张瑜龙</td>
<td>男</td>
<td>35</td>
<td>工程师</td>
<td>应用化学</td>
<td>1996</td>
</tr>
<tr>
<td>吴庆梅</td>
<td>女</td>
<td>27</td>
<td>工程师</td>
<td>环境工程</td>
<td>2002</td>
</tr>
<tr>
<td>陈素兰</td>
<td>女</td>
<td>43</td>
<td>研究员</td>
<td>岩矿测试</td>
<td>1984</td>
</tr>
<tr>
<td>陈波</td>
<td>男</td>
<td>28</td>
<td>助工</td>
<td>环境监测</td>
<td>2002</td>
</tr>
<tr>
<td>陈纯</td>
<td>男</td>
<td>28</td>
<td>工程师</td>
<td>化学</td>
<td>2005</td>
</tr>
<tr>
<td>王琪</td>
<td>女</td>
<td>26</td>
<td>助理工程师</td>
<td>给排水工程</td>
<td>2004</td>
</tr>
<tr>
<td>路新燕</td>
<td>女</td>
<td>24</td>
<td>实习学生</td>
<td>分析化学</td>
<td>2008</td>
</tr>
<tr>
<td>李雷铮</td>
<td>男</td>
<td>25</td>
<td>实习学生</td>
<td>分析化学</td>
<td>2007</td>
</tr>
<tr>
<td>张威</td>
<td>女</td>
<td>28</td>
<td>助理工程师</td>
<td>环境科学</td>
<td>2003</td>
</tr>
<tr>
<td>杜明</td>
<td>女</td>
<td>42</td>
<td>工程师</td>
<td>精细化工</td>
<td>1987</td>
</tr>
<tr>
<td>任兰</td>
<td>女</td>
<td>40</td>
<td>工程师</td>
<td>环境工程</td>
<td>1989</td>
</tr>
<tr>
<td>徐荣</td>
<td>男</td>
<td>29</td>
<td>工程师</td>
<td>生物科学</td>
<td>2002</td>
</tr>
</tbody>
</table>

表1-2 使用仪器情况登记表

<table>
<thead>
<tr>
<th>仪器名称</th>
<th>规格型号</th>
<th>仪器编号</th>
<th>性能状况</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>石墨炉原子吸收分光光度计</td>
<td>ZEE700</td>
<td>150Z70144</td>
<td>良好</td>
<td></td>
</tr>
<tr>
<td>石墨炉原子吸收分光光度计</td>
<td>AA220Z</td>
<td>03010202035</td>
<td>良好</td>
<td></td>
</tr>
<tr>
<td>石墨炉原子吸收分光光度计</td>
<td>ZWWnit700</td>
<td>S-NR150Z0266</td>
<td>良好</td>
<td></td>
</tr>
<tr>
<td>石墨炉原子吸收分光光度计</td>
<td>AA-800</td>
<td>B3120081</td>
<td>良好</td>
<td></td>
</tr>
<tr>
<td>石墨炉原子吸收分光光度计</td>
<td>SpectrAA 220Z</td>
<td>J081</td>
<td>良好</td>
<td></td>
</tr>
</tbody>
</table>

表1-3 使用试剂及溶剂登记表

<table>
<thead>
<tr>
<th>名称</th>
<th>生产厂家、规格</th>
<th>纯化处理方法</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>铅标准溶液</td>
<td>国家钢铁材料测试中心</td>
<td>/</td>
<td>研究组统一提供</td>
</tr>
<tr>
<td>硫酸</td>
<td>南京化学试剂有限公司，G.R.</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>硝酸</td>
<td>南京化学试剂有限公司，G.R.</td>
<td>无</td>
<td></td>
</tr>
</tbody>
</table>
1.2 方法检出限、测定下限测试数据

表1-4 方法检出限、测定下限测试数据表

<table>
<thead>
<tr>
<th>平行样品编号</th>
<th>重庆</th>
<th>江苏</th>
<th>河南</th>
<th>辽宁</th>
<th>南京</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.385</td>
<td>0.060</td>
<td>0.425</td>
<td>0.253</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.385</td>
<td>0.068</td>
<td>0.375</td>
<td>0.255</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.205</td>
<td>0.100</td>
<td>0.250</td>
<td>0.163</td>
<td>0.025</td>
</tr>
<tr>
<td>4</td>
<td>0.205</td>
<td>0.028</td>
<td>0.325</td>
<td>0.170</td>
<td>0.025</td>
</tr>
<tr>
<td>5</td>
<td>0.103</td>
<td>0.070</td>
<td>0.325</td>
<td>0.285</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.205</td>
<td>0.113</td>
<td>0.400</td>
<td>0.278</td>
<td>0.025</td>
</tr>
<tr>
<td>7</td>
<td>0.248</td>
<td>0.103</td>
<td>0.225</td>
<td>0.218</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.370</td>
<td>0.110</td>
<td>0.150</td>
<td>0.230</td>
<td>0.025</td>
</tr>
<tr>
<td>9</td>
<td>0.100</td>
<td>0.100</td>
<td>0.175</td>
<td>0.160</td>
<td>0.025</td>
</tr>
<tr>
<td>10</td>
<td>0.200</td>
<td>0.125</td>
<td>0.150</td>
<td>0.165</td>
<td>0.000</td>
</tr>
</tbody>
</table>

平均值 \bar{y} (×10$^{-3}$μg m$^{-3}$)

- 重庆: 0.241
- 江苏: 0.088
- 河南: 0.280
- 辽宁: 0.218
- 南京: 0.013

标准偏差 S (×10$^{-3}$μg m$^{-3}$)

- 重庆: 0.107
- 江苏: 0.030
- 河南: 0.104
- 辽宁: 0.050
- 南京: 0.013

t值

- 2.821

检出限 a (×10$^{-3}$μg m$^{-3}$)

- 0.301

测定下限 b (×10$^{-3}$μg m$^{-3}$)

- 1.260

注：a为实验室编号。

1.3 方法精密度测试数据

3家实验室对编制组统一提供的三个铍含量不同的土壤样品进行了测定。

表1-5 精密度测试数据

<table>
<thead>
<tr>
<th>平行号</th>
<th>重庆</th>
<th>江苏</th>
<th>河南</th>
<th>辽宁</th>
<th>南京</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.008</td>
<td>1.242</td>
<td>2.066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.991</td>
<td>1.298</td>
<td>2.132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.987</td>
<td>1.218</td>
<td>2.104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.169</td>
<td>1.220</td>
<td>2.247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.138</td>
<td>1.243</td>
<td>1.991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.170</td>
<td>1.315</td>
<td>2.039</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

平均值 \bar{y} (mg/kg)

- 1.260

标准偏差 S (mg/kg)

- 0.089

相对标准偏差 RSD_i (%)

- 4.2%

注：浓度（含量）1<浓度（含量）2<浓度（含量）3
表1-6 精密度测试数据

<table>
<thead>
<tr>
<th>平行号</th>
<th>测定结果 (mg/kg)</th>
<th>试样</th>
<th>含量1</th>
<th>含量2</th>
<th>含量3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.780</td>
<td>2.280</td>
<td>2.650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.830</td>
<td>2.140</td>
<td>2.820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.690</td>
<td>2.380</td>
<td>2.740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.980</td>
<td>2.010</td>
<td>2.740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.510</td>
<td>2.060</td>
<td>2.920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.720</td>
<td>2.280</td>
<td>2.890</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

平均值 \bar{x} (mg/kg): 1.752
标准偏差 S_i (mg/kg): 0.156
相对标准偏差 RSDi (%): 8.9%

注1: 浓度（含量）1<浓度（含量）2<浓度（含量）3
注2: i为实验室编号。

表1-7 精密度测试数据

<table>
<thead>
<tr>
<th>平行号</th>
<th>测定结果 (mg/kg)</th>
<th>试样</th>
<th>含量2</th>
<th>含量3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.13</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.21</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.44</td>
<td>1.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.38</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.29</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.28</td>
<td>1.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

平均值 \bar{x} (mg/kg): 1.288
标准偏差 S_i (mg/kg): 0.112
相对标准偏差 RSDi (%): 8.7%

注1: 浓度（含量）1<浓度（含量）2<浓度（含量）3
注2: i为实验室编号。

1.4 方法准确度测试数据

3家实验室对含铍浓度为 2.05mg/kg、2.55 mg/kg 和 3.04 mg/kg 的土壤有证标准物质进行了测定。

表1-8 标准样品测试数据

<table>
<thead>
<tr>
<th>平行号</th>
<th>测试日期</th>
<th>2008年11月</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS-3</td>
<td>ESS-2</td>
<td>ESS-1</td>
</tr>
<tr>
<td>1</td>
<td>1.008</td>
<td>1.242</td>
</tr>
<tr>
<td>2</td>
<td>0.991</td>
<td>1.298</td>
</tr>
<tr>
<td>(mg/kg)</td>
<td>3</td>
<td>0.987</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.169</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.138</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.170</td>
</tr>
<tr>
<td>平均值 \overline{x} (mg/kg)</td>
<td></td>
<td>1.256</td>
</tr>
<tr>
<td>标准样品含量 μ^a (mg/kg)</td>
<td></td>
<td>2.05</td>
</tr>
<tr>
<td>相对误差 REi</td>
<td></td>
<td>-50.75%</td>
</tr>
</tbody>
</table>

注：i 为实验室编号。

表1-9 标准样品测试数据
验证单位：江苏省环境监测中心
测试日期：2008年11月

<table>
<thead>
<tr>
<th>平行号</th>
<th>ESS-3</th>
<th>ESS-2</th>
<th>ESS-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>测定结果 (mg/kg)</td>
<td>1</td>
<td>2.280</td>
<td>2.650</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.140</td>
<td>2.820</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.380</td>
<td>2.740</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.010</td>
<td>2.740</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.060</td>
<td>2.920</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.280</td>
<td>2.890</td>
</tr>
<tr>
<td>平均值 \overline{x} (mg/kg)</td>
<td></td>
<td>2.192</td>
<td>2.793</td>
</tr>
<tr>
<td>标准样品含量 μ^a (mg/kg)</td>
<td></td>
<td>2.05</td>
<td>2.55</td>
</tr>
<tr>
<td>相对误差 REi</td>
<td></td>
<td>-14.05%</td>
<td>-8.11%</td>
</tr>
</tbody>
</table>

注：i 为实验室编号。

*国家有证标准物质/标准样品的标准值±不确定度。

表1-10 标准样品测试数据
验证单位：南京市环境监测中心
测试日期：2008年12月

<table>
<thead>
<tr>
<th>平行号</th>
<th>ESS-3</th>
<th>ESS-2</th>
<th>ESS-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>测定结果 (mg/kg)</td>
<td>1</td>
<td>--</td>
<td>1.130</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>--</td>
<td>1.210</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>--</td>
<td>1.440</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>--</td>
<td>1.380</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>--</td>
<td>1.290</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>--</td>
<td>1.280</td>
</tr>
<tr>
<td>平均值 \overline{x} (mg/kg)</td>
<td></td>
<td>--</td>
<td>1.288</td>
</tr>
<tr>
<td>标准样品含量 μ^a (mg/kg)</td>
<td></td>
<td>2.05</td>
<td>2.55</td>
</tr>
<tr>
<td>相对误差 REi</td>
<td></td>
<td>-49.48%</td>
<td>-39.53%</td>
</tr>
</tbody>
</table>

注：i 为实验室编号。

*国家有证标准物质/标准样品的标准值±不确定度。
1.5 其他需要说明的问题

由于没有固定源废气颗粒物的标准样品，实验采用了土壤有证标准物质进行准确度验证，但与固定源排气的颗粒物相比，土壤基质更为复杂，用方法中的样品处理方法难以将土壤样品完全消解，导致测定的相对误差较大。

2. 方法验证数据汇总

D.2.1 方法检出限、测定下限汇总

表2-1方法检出限、测定下限汇总表

<table>
<thead>
<tr>
<th>实验室号</th>
<th>检出限 a ($\times 10^{-3} \mu g/m^3$)</th>
<th>测定下限 a ($\times 10^{-3} \mu g/m^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.301</td>
<td>1.206</td>
</tr>
<tr>
<td>2</td>
<td>0.085</td>
<td>0.339</td>
</tr>
<tr>
<td>3</td>
<td>0.293</td>
<td>1.173</td>
</tr>
<tr>
<td>4</td>
<td>0.140</td>
<td>0.562</td>
</tr>
<tr>
<td>5</td>
<td>0.037</td>
<td>0.149</td>
</tr>
</tbody>
</table>

a: 检出限和测定下限为采样量为 10m3时的计算结果。

结论：采用空白滤筒，平行测定 10 次，计算方法检出限。当采样体积为 10m3时，方法检出限为 $3.01 \times 10^{-4} \mu g/m^3$，测定下限为 $1.21 \times 10^{-3} \mu g/m^3$。

表2-2精密度测试数据汇总表

<table>
<thead>
<tr>
<th>实验室号</th>
<th>含量 1 (2.05mg/kg)</th>
<th>含量 2 (2.55mg/kg)</th>
<th>含量 3 (3.04mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\overline{x}_i (mg/kg)</td>
<td>S_i (mg/kg)</td>
<td>RSD$_i$ (%)</td>
</tr>
<tr>
<td>1</td>
<td>1.077</td>
<td>0.091</td>
<td>8.4%</td>
</tr>
<tr>
<td>2</td>
<td>1.752</td>
<td>0.156</td>
<td>8.9%</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

\overline{x} (mg/kg) 1.414 1.579 2
S' (mg/kg) 0.477 0.531 0.5
RSD$'$ (%) 33.7% 33.6% 22.0%
重复性限 r(mg/kg) 0.4 0.3 0.3
再现性限 R(mg/kg) 1.4 1.5 1.4

结论：3 个实验室采用编制组统一提供的三个浓度的土壤样品加至空白滤筒中进行了精密
度实验，当土壤样品中铅含量分别为 2.05mg/kg、2.55mg/kg 和 3.04mg/kg 时，实验室内的相对标准偏差分别为 8.4%–8.9%，3.3%–8.7% 和 3.7%–6.4%；实验室间相对标准偏差分别为 33.70%、33.67% 和 22.0%；重复性限分别为：0.4 mg/kg，0.35 mg/kg 和 0.3 mg/kg；再现性限分别为：1.4 mg/kg，1.5 mg/kg 和 1.4 mg/kg。
<table>
<thead>
<tr>
<th>实验室号</th>
<th>ESS-3 (2.05mg/kg)</th>
<th>ESS-2 (2.55mg/kg)</th>
<th>ESS-1 (3.04mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{x}_i (mg/kg)</td>
<td>RE$_i$</td>
<td>\bar{x}_i (mg/kg)</td>
</tr>
<tr>
<td>1</td>
<td>1.077</td>
<td>-47.5%</td>
<td>1.256</td>
</tr>
<tr>
<td>2</td>
<td>1.752</td>
<td>-14.6%</td>
<td>2.192</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>--</td>
<td>1.288</td>
</tr>
<tr>
<td>\overline{RE}</td>
<td>-31.0%</td>
<td>-38.1%</td>
<td>-26.2%</td>
</tr>
<tr>
<td>S_{pt}</td>
<td>23.3%</td>
<td>20.8%</td>
<td>16.3%</td>
</tr>
</tbody>
</table>

结论：3个实验室对铍含量分别为 2.05mg/kg、2.55mg/kg和 3.04mg/kg的土壤有证标准物质进行测定，相对误差分别为：-47.5%~ -14.6%、-50.75%~ -14.05%和-39.53%~ -8.11%；相对误差最终值分别为：(-31.0%±23.3%)$_{0.050}$, (-38.1%±20.8%)$_{0.100}$,和(-26.2%±16.3%)$_{0.250}$。

3. 方法验证结论

（1）本次验证的实验室数量为 5 家，由于验证工作开展较早，准确度验证中只有三家实验室测定了统一的有证标准物质，因此仅统计了三家实验室间的相对误差和相对误差最终值。精确度验证中各家实验室采用的铍的标准物质浓度均不相同，因此采用准确度验证数据计算实验室间相对标准偏差、重复性限和再现性限。

（2）采用空白滤筒平行测定 10 次，计算方法检出限。当采样体积为 10m3 时，方法检出限为 3.01×10^{-4}μg/m3，测定下限为 1.21×10^{-3}μg/m3。

（3）3个实验室采用编制组统一提供的三个浓度的土壤样品加至空白滤筒中进行了精确度实验。当土壤样品中铍含量分别为 2.05mg/kg、2.55mg/kg 和 3.04mg/kg 时，实验室内的相对标准偏差分别为 8.4%~8.9%，3.3%~8.7%和 3.7%~6.4%；实验室间相对标准偏差分别为 33.70%，33.67%和 22.0%；重复性限分别为：0.4 mg/kg，0.35 mg/kg 和 0.3 mg/kg；再现性限分别为：1.4 mg/kg，1.5 mg/kg 和 1.4 mg/kg。

（4）3个实验室对铍含量分别为 2.05mg/kg、2.55mg/kg 和 3.04mg/kg 的土壤有证标准物质进行测定，相对误差分别为：-47.5%~ -14.6%、-50.75%~ -14.05%和-39.53%~ -8.11%；相对误差最终值分别为：(-31.0%±23.3%)$_{0.050}$, (-38.1%±20.8%)$_{0.100}$,和(-26.2%±16.3%)$_{0.250}$。

（5）当采样体积为 10m3 时，方法检出限为 0.3×10^{-3}μg/m3，测定下限为 1.2×10^{-3}μg/m3。满足《大气污染物综合排放标准（GB 16297-1996）》中对铍的排放浓度的要求：1997年 1 月 1 日后设立的污染源排气中，铍及其化合物的最高允许排放浓度为 0.012mg/m3，无组织排放监控浓度限制为 0.0008 mg/m3。
由于没有固定源废气颗粒物的标准样品，实验采用了土壤有证标准物质进行准确度验证，但与固定源排气的颗粒物相比，土壤基质更为复杂，用方法中的样品处理方法难以将土壤样品完全消解，导致测定的相对误差较大。