附件七：

《土壤、沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》
（征求意见稿）编制说明

《土壤、沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》编制组
二〇一〇年七月
项目名称：土壤、沉积物挥发性有机物的测定 吹扫捕集/气相色谱——质谱法
项目统一编号：1038.2
项目承担单位：大连市环境监测中心
编制组主要成员：李振国、刘景泰、王钢栋、包艳英
标准所技术管理负责人：黄翠芳
标准处项目负责人：李晓弢
目录

1 项目背景

1.1 任务来源 .. 1
1.2 工作过程 .. 1

2 标准制订的必要性分析

2.1 挥发性有机物的环境危害 2
2.2 相关环保标准和环保工作的需要 2

3 国内外相关分析方法研究

3.1 主要国家、地区及国际组织相关分析方法研究 5
3.2 国内相关分析方法研究 11

4 标准制订的基本原则和技术路线

4.1 标准制订的基本原则 ... 11
4.2 标准制订的技术路线 ... 11

5 方法研究报告

5.1 方法研究的目标 ... 14
5.2 方法的适用范围 ... 14
5.3 规范性引用文件 ... 14
5.4 术语和定义 .. 14
5.5 方法原理 .. 14
5.6 试剂和材料 .. 14
5.7 仪器和设备 .. 15
5.8 样品 ... 15
5.9 分析步骤 .. 15
5.10 结果计算与表示 ... 19
5.11 精密度和准确度 ... 19
5.12 质量保证和质量控制 19

6 方法验证

6.1 方法验证方案 ... 20
6.2 方法验证过程 ... 21
6.3 方法验证数据的取舍 .. 21

7 与开题报告的差异说明 .. 21

8 标准的实施建议 ... 21

9 参考文献 ... 22
《土壤、沉积物 挥发性有机物的测定 吹扫捕集/气相色
谱-质谱法》编制说明

1 项目背景

1.1 任务来源

根据2007年7月环办函[2007]544号《关于下达2007年度国家环境保护标准制修订项目计
划的通知》，原国家环保总局办公厅向大连市环境监测中心下达了制订《土壤、沉积物 挥
发性有机物的测定 吹扫捕集/气相色谱-质谱法》国家环保标准制修订计划，项目统一编号
为1038.2。

1.2 工作过程

（1）成立标准编制小组

2007年8月，大连市环境监测中心接到制订《土壤、沉积物 挥发性有机物的测定 吹扫
捕集/气相色谱-质谱法》的任务以后，成立了标准编制小组，小组成员中包括有在美国商业
实验室工作过的同志和从事多年吹扫捕集法测定挥发性有机物分析工作的同志以及目前从
事该项目分析工作的同志。

（2）查询国内外相关标准和文献资料

2007年8-10月，本标准编制组成员根据国家环保标准制修订工作管理办法的相关规定，
检索和收集了国内外相关标准和文献资料，在此基础上形成了开题报告和标准草案。

（3）研究建立标准方法，进行标准方法验证试验

2007年11月-2008年9月，标准编制组按照计划任务书的要求，结合开题论证意见以及其
它制定标准的要求，参照美国EPA方法8260B、8260C和5035A，确定实验方案，并进行验证试
验。选择最佳分离、检测条件。编写《土壤、沉积物 挥发性有机物的测定 吹扫捕集/气相
色谱-质谱法》方法验证报告。

（4）方法验证工作

2008年10月，组织了5家有资质的实验室进行方法验证，五家实验室都具备了分析土
壤沉积物中挥发性有机物的仪器设备和相应的前处理设备。于2009年3月底收回了全部的
验证报告，2009年4月，进行了数据的汇总和数据的数理分析工作，并编写完成了《土壤、
沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》验证汇总报告。

（5）组织专家论证，确定标准制定技术路线，制订原则

2009年6月4日，在北京组织专家论证，论证委员会通过了该标准的开题论证。提出了具
体修改意见和建议：方法适用范围注意与国家现行的质量标准的衔接，进一步明确目标化合物；样品采集与保存中增加沉积物的相关内容，细化采样技术要求；根据实验情况确定空白控制指标；实验室内验证选择多种代表性土壤和沉积物，实验室内验证各选择一种具有代表性的统一样品。

（6）编写标准征求意见稿和编制说明

2009年7月，编写《土壤、沉积物挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》的标准征求意见稿草案及编制说明。

2 标准制订的必要性分析

2.1 挥发性有机物的环境危害

（1）挥发性有机化合物（volatile organic compounds）定义有好几种，如美国的定义，对沸点初馏点不作限定，强调参加大气光化学反应。不参加大气光化学反应的就叫作豁免溶剂，如丙酮、四氯乙烯等。而世界卫生组织和巴斯夫则对沸点或初馏点作限定，不管其是否参加大气光化学反应。国际标准 ISO 4618/1-1998 和德国 DIN 55649-2000 标准对沸点初馏点不作限定，也不管是否参加大气光化学反应，只强调在常温常压下能自挥发。

（2）由于挥发性有机化合物并非单一的化合物，各化合物之间的相加、相乘作用不够清楚，且不同时间地点挥发性有机化合物的组分也不尽相同，因此对人体健康的影响也有所变化。大体的危害如下：影响中枢神经系统，出现头晕、头痛、无力、胸闷等症状；感觉性刺激，嗅味不舒适，刺激上呼吸道及皮肤；影响消化系统，出现食欲不振、恶心等；怀疑性危害：局部组织炎症反应、过敏反应、神经毒性作用。能引起机体免疫水平失调，严重时可损伤肝脏和造血系统，出现变态反应等。

2.2 相关环保标准和环保工作的需要

挥发性有机化合物广泛存在于空气、水、土壤以及其它介质中。大多数挥发性有机物都是对人体有毒有害的物质。随着人们对挥发性有机物生态毒理效应研究的不断深入，建立高效灵敏的分析检测方法越来越重要。

风险评价基准值见表2，执行《固体废弃物试验分析评价手册》（中国环境科学出版社，1992）规定的测试方法，其中挥发性有机物的测定气相色谱-质谱法来源于美国EPA方法8240，现EPA8240方法已作废。我国目前还没有测定土壤、沉积物中挥发性有机物的吹扫捕集气相色谱质谱法国标方法。

<table>
<thead>
<tr>
<th>化学物质名称</th>
<th>土壤基准（mg/kg）</th>
<th>土壤基准（mg/kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯甲烷</td>
<td>10900</td>
<td>11700</td>
</tr>
<tr>
<td>氯乙烷</td>
<td>10000000</td>
<td>11700000</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>6340</td>
<td>684</td>
</tr>
<tr>
<td>1,1-二氯乙烷</td>
<td>272000</td>
<td>293000</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>522</td>
<td>56</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>95100</td>
<td>103000</td>
</tr>
</tbody>
</table>
1,1,2-三氯乙烷 834 90
四氯化碳 366 40
1,2-二氯乙烷 0.6 0.1
二溴氯甲烷 566 61
正己烷 163000 17600
氯乙烯 25 2.7
1,1-二氯乙烯 79 8.6
顺式-1,2-二氯乙烯 27200 2930
反式-1,2-二氯乙烯 54300 5860
三氯乙烯 4320 466
四氯乙烯 914 99
苯乙烯 543000 —
苯 1640 177
甲苯 543000 —
乙苯 272000 —
二甲苯 1000000 586000
1,2,4-三甲苯 136000 14700
1,3,5-三甲苯 136000 14700
氯苯 54300 5860
1,2-二氯苯 341000 —
1,3-二氯苯 337000 26100
1,4-二氯苯 2760 214
1,2,4-三氯苯 37900 2930
异丙基苯 109000 11700
仲丁苯 27200 2930
2-丁酮 1000000 11700
4-甲基-2-戊酮 217000 23400
萘 152000 —

《荷兰环境污染物标准》对于某一环境污染案例，其大于25m²的土壤遭到污染，超过干涉值，则可定义为严重污染。其中挥发性有机物限值具体见表3。

<table>
<thead>
<tr>
<th>项目</th>
<th>参考值</th>
<th>干涉值</th>
</tr>
</thead>
<tbody>
<tr>
<td>苯</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>甲苯</td>
<td>0.01</td>
<td>130</td>
</tr>
<tr>
<td>乙苯</td>
<td>0.03</td>
<td>50</td>
</tr>
<tr>
<td>二甲苯</td>
<td>0.1</td>
<td>25</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>0.3</td>
<td>100</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>0.4</td>
<td>10</td>
</tr>
<tr>
<td>三氯甲烷</td>
<td>0.02</td>
<td>10</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>0.1</td>
<td>60</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>0.002</td>
<td>4</td>
</tr>
<tr>
<td>1,1-二氯乙烷</td>
<td>0.02</td>
<td>15</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>0.02</td>
<td>4</td>
</tr>
<tr>
<td>1,2-二氯乙烯</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>氯乙烯</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>0.07</td>
<td>15</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>0.4</td>
<td>10</td>
</tr>
<tr>
<td>溴仿</td>
<td>—</td>
<td>75</td>
</tr>
<tr>
<td>氯苯（总量含1、2、3、4、5、6氯苯）</td>
<td>0.03</td>
<td>30</td>
</tr>
</tbody>
</table>
日本在制定土壤环境标准时，特别设立了浸出液（将土壤和10倍量的水混合，将污染物浸出）标准，其中挥发性有机物限值具体见表4。

<table>
<thead>
<tr>
<th>项目</th>
<th>浸出液</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯甲烷</td>
<td>0.02mg/L以下</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>0.002mg/L以下</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>0.004mg/L以下</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>0.02mg/L以下</td>
</tr>
<tr>
<td>顺式-1,2-二氯乙烯</td>
<td>0.04mg/L以下</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>1mg/L以下</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>0.006mg/L以下</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>0.03mg/L以下</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>0.01mg/L以下</td>
</tr>
<tr>
<td>1,3-二氯丙烯</td>
<td>0.002mg/L以下</td>
</tr>
<tr>
<td>苯</td>
<td>0.01mg/L以下</td>
</tr>
</tbody>
</table>

3 国内外相关分析方法研究

3.1 主要国家、地区及国际组织相关分析方法研究

美国EPA方法中测定挥发性有机物的方法有很多种，涉及样品采集、保存、样品前处理、分析、结果计算以及质量保证和质量控制等多方面的内容。5000系列为挥发性有机物的采样及前处理方法，如5021为样品中挥发性有机物的顶空法、5030为水样中挥发性有机物的吹扫捕集法、5031为样品中挥发的、水溶的不可吹扫的有机化合物的共沸蒸馏法、5032为水及固体样品中挥发性有机物的真空蒸馏法、5035为固体有机溶剂和含油废物中挥发性有机物的密闭系统吹扫捕集法、5041为分析吸附管采样测定挥发性有机物。8000系列中涉及到挥发性有机物的分析方法有：8015为测定非卤代挥发性有机物的填充柱/毛细柱/GC-FID法、8021为测定挥发性有机物的毛细柱GC-MSD法、8026为测定挥发性有机物的毛细柱GC-PID/ELCD法。其中，吹扫捕集技术是20世纪70年代中期Benar和Lichtenberg等推出的一种复杂样品的前处理方法，具有快速、准确、高灵敏度、高富集效率、高精密度和不使用有机溶剂等优点，能够与GC、GC-MS、GC-FTIR和HPLC等分析仪器联用，实现吹扫、捕集、色谱分离全过程的自动化而不损失精密度和准确度，因此这种方法受到人们的普遍重视。

吹扫捕集技术对于200℃以下疏水性的挥发性有机物有较高的富集效率；而水溶性较大的挥发性有机物，可适当延长吹扫时间或加热样品以提高吹扫效率。用吹扫捕集技术可富集绝大多数样品中的挥发性有机物，常用于富集水质、泥沙及沉积物等环境样品中的痕量挥发性有机物。

美国EPA方法500、600和800系列中有10种分析方法采用了吹扫捕集样品前处理技术,
分析可吹扫有机物，在各种前处理方法中居第二位，仅次于液液萃取法。美国 EPA 方法 5030、
5035、5015、8021、8260 等详细介绍了吹扫捕集技术在环境有机污染分析中的技术标准。

国际标准 ISO 15009:2002 与日本方法类似。

在我国，吹扫捕集技术也受到重视，并基于此技术针对水体、土壤和空气等样品开展了
大量的分析工作，但还没有标准化的分析方法，有待制定吹扫捕集和 GC、GC-MS 等仪器联用
的标准方法及统一的监测分析方法。

本标准的制定采用了美国 EPA 方法 8260B、8260C 和 5035 的相关内容。

以下是对上述标准分析方法的简单介绍。

（1）美国 EPA 方法 8260B、8260C：为了气相色谱质谱的分析方法，与不同的前处理方法
结合，分析相应的目标化合物，包括不溶、微溶和易溶于水的挥发性有机物。其前处理方法
包括吹扫捕集（5030、5035）、顶空（5021）、共沸蒸馏（5031）、真空蒸馏（5032）、吸附管
采样（5041）以及直接注射。

方法 8260B：概述了采用不同的样品前处理和样品导入方法，用于分析沸点在 200℃以
下大部分 VOC 的定量分析，列出了 108 种化合物，其中 7 种是内标或代用品，9 种是吹扫捕
集方法不推荐使用的化合物，3 种必须在 80℃吹扫才能保证有效的回收率。挥发性水溶性的
化合物可以用共沸蒸馏或密闭系统真空蒸馏的前处理方法。1.3 节增加了 22 种化合物，其
它分析物在水溶性和挥发性方面有相当大的差异，从而使这种方法很难优化。

内标和代用品：推荐使用氯苯、氯苯-d5 和 1,4-二氯苯-d4 作为内标，二溴氟甲烷、1,2-
二氯乙烷-d4、4-溴氟苯和甲苯-d8 作为代用品（表中内标较 5.10 节多一种 1,4-二氯苯，代用
品较 5.9 节少一种二溴氟甲烷）。也可使用其它化合物代替。标准溶液贮存条件为在甲醇中
零下 10℃以下保存。

内标的选择应满足大部分化合物的保留时间在与其对应的内标的保留时间的
0.80~1.20 以内。

调谐要求：在分析样品前，必须对质谱进行调谐，使其通过方法 8260B 的 BFB 特定调谐。
然而，本方法也允许用 CLP、EPA524.2 或厂商推荐的特定 BFB 离子比率代替。下表列出了三
种 EPA 方法的 BFB 调谐参数。扫描范围建议 35~260m/z。
表 5 三种挥发性有机物测定方法的 BFB 标准

<table>
<thead>
<tr>
<th>质量 (m/z)</th>
<th>8260B/8260C</th>
<th>EPA524.2</th>
<th>CLP-SOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>质量 95 的 15%~40%</td>
<td>质量 95 的 15%~40%</td>
<td>质量 95 的 8%~40%</td>
</tr>
<tr>
<td>75</td>
<td>质量 95 的 30%~60%</td>
<td>质量 95 的 30%~80%</td>
<td>质量 95 的 30%~66%</td>
</tr>
<tr>
<td>95</td>
<td>基峰，100%相对丰度</td>
<td>基峰，100%相对丰度</td>
<td>基峰，100%相对丰度</td>
</tr>
<tr>
<td>96</td>
<td>质量 95 的 5%~9%</td>
<td>质量 95 的 5%~9%</td>
<td>质量 95 的 5%~9%</td>
</tr>
<tr>
<td>173</td>
<td>＜质量 174 的 2%</td>
<td>＜质量 174 的 2%</td>
<td>＜质量 174 的 2%</td>
</tr>
<tr>
<td>174</td>
<td>大于质量 95 的 50%</td>
<td>大于质量 95 的 50%</td>
<td>质量 95 的 50%~120%</td>
</tr>
<tr>
<td>175</td>
<td>质量 174 的 5%~9%</td>
<td>质量 174 的 5%~9%</td>
<td>质量 174 的 4%~9%</td>
</tr>
<tr>
<td>176</td>
<td>质量 174 的 95%~101%</td>
<td>质量 174 的 95%~101%</td>
<td>质量 174 的 93%~101%</td>
</tr>
<tr>
<td>177</td>
<td>质量 176 的 5%~9%</td>
<td>质量 176 的 5%~9%</td>
<td>质量 176 的 5%~9%</td>
</tr>
</tbody>
</table>

可以使用以上任一标准，包括厂商提供的对方法性能不产生负面影响的标准

系统性能检查化合物（SPCC）：SPCC 用于校正后和样品分析前对系统性能检查。普遍认为这类化合物对活性点和仪器污染敏感。氯甲烷、1,1 二氯乙烷及溴仿的相对响应因子 RRF 值不应小于 0.10, 氯苯及 1,1,2,2-四氯乙烷 RRF 值不应小于 0.30。

校正要求：方法 8260 要求一条至少 5 点的曲线。为了呈现校准曲线的线性，所有目标化合物的相对响应因子的相对标准偏差必须小于等于 15%。如果超过 15%，必须用其它合适的曲线代替平均相对响应因子。设计了 6 种校准检查化合物（CCC）：氯乙烯、1,1 二氯乙烯、氯仿、乙苯、甲苯以及 1,2-二氯丙烷，其 RRF 的相对标准偏差（RSD）应小于等于 30%，否则仪器需要维护。

GC/MS 每 12 小时位移的校正确认：PT/GC/MS 的性能必须每 12 小时重新评定一次。最重要的要求如下：

A、BFB 调谐必须重新检查，并通过最初的调谐要求。

B、必须用 PT 导入分析一个接近校准曲线中间点的样品，以确认：每个 SPCC 都符合其最小的相对响应因子。每个 CCC 的百分比偏差（当前与起始的响应）必须小于 20%。每个内标的保留时间漂移不能超过 30 秒，面积与起始校准曲线中间点相比不能改变 2 倍以上（50%~200%）。必须运行方法空白，以证明没有交叉污染或系统污染。

吹扫捕集前处理分析固体样品要求吹扫温度 40℃。为了提高吹扫效率可以提高吹扫温度（如 80℃），但要注意处理额外的水分，并且校准曲线等在同样温度下进行分析。

方法8260C：叙述了采用不同的样品前处理和样品导入方法，用于分析沸点在 200℃以下大部分 V0C的定量分析，列出了 111 种化合物（去掉了 8260B 中的两种化合物吹扫捕集方法不
推荐使用的化合物，增加了8260B中未列的三种适用于吹扫捕集前处理的化合物，其中7种是内标或代用品，7种是吹扫捕集方法不推荐使用的化合物，5种必须在80℃吹扫才能保证有效的回收率。挥发性水溶性的化合物可以用共沸蒸馏或密闭系统真空蒸馏的前处理方法。1.3节增加了23种化合物，其它分析物在水溶性和挥发性方面有相当大的差异，从而使这种方法很难优化。

内标和代用品：推荐使用氟苯、氯苯-d5和1,4-二氯苯-d4作为内标，1,2-二氯乙烷-d4，4-溴氟苯和甲苯-d8作为代用品（表中内标较5.10节多一种1,4-二氟苯）。也可使用其它化合物代替。标准溶液贮存条件为避光最小顶空6℃以下保存或参照制造商推荐。

内标的选择应满足大部分化合物的保留时间在与其对应的内标的保留时间的0.80-1.20以内。使用自动进样器自动稀释制备校准曲线时，代用品浓度值相同时，用平均响应因子计算。

调谐要求：在分析样品前，必须对质谱进行调谐，具体规定同8260B。扫描范围建议35-270m/z。

取消了系统性能检查化合物，推荐了部分化合物的最小响应因子。

校正要求：方法8260要求一条至少5点的曲线。若目标化合物RRF的RSD小于等于20%，可以用平均响应因子来定量；若目标化合物RRF的RSD超过20%，则此目标化合物需用线性或非线性拟合曲线进行校准，其相关系数应大于等于0.99。若10%以上的目标化合物RRF的RSD超过20%并且其相关系数小于0.99，需调整水分控制参数，更换捕集管或色谱柱，然后重新分析校准曲线。

若小于10%的目标化合物RRF的RSD超过20%并且其相关系数小于0.99，这些化合物值应为估计值。

GC/MS每12小时位移的校正确认：PT/GC/MS的性能必须每12小时重新评定一次。最重要要求如下：

A、BFB调谐必须重新检查，并通过最初的调谐要求。

B、必须用PT导入分析一个接近校准曲线中间点的样品，以确认：每个目标化合物都符合其最小的相对响应因子。80%以上的化合物的百分比偏差（当前与起始的响应）必须小于20%。每个内标保留时间与初始校准曲线中间点内标的漂移不能超过10秒，面积与起始校准曲线中间点相比不能改变2倍以上（50%~200%）。必须运行方法空白，以证明没有交叉污染或系统污染。

吹扫捕集前处理分析固体样品要求吹扫温度40℃，对于水溶性的化合物，为了提高吹
扫效率可以提高吹扫温度（如 80℃），但要注意处理额外的水分，并且校准曲线等在同样温度下进行分析。

（2）美国 EPA 方法 5030C：适用于大多数沸点低于 200° C 以及不溶于水或者微溶于水的挥发性有机物质。挥发性的、溶于水的物质也可以采用这种分析技术进行分析。本方法描述了吹扫捕集过程分析水中及易溶于水的液体样品中的挥发性有机物，也适用于用 5035 中萃取后的高浓度土壤及固体样品。

水样品可直接用吹扫捕集和气相色谱分析，高浓度的水样品可通过直接注射或稀释后通过吹扫捕集分析。通过 5035 准备的萃取样品，可取适量到装空白水的吹扫管中按照水方法分析。

（3）美国 EPA 方法 5035：适用于大多数沸点低于 200° C 以及不溶于水或者微溶于水的挥发性有机物质。挥发性的、溶于水的物质也可以采用这种分析技术进行分析。5035 方法与 8015 方法（GC/FID）配合使用，可用于分析总石油烃类物质中轻的部分——脂肪族烃类物质，例如汽油。对于芳香族的物质（BTEX），采用 5035 和 8021 方法（GC/PID）配合使用。汽油部分物质的总量检测可以采用 8021 方法与 8015 方法串联使用，进行检测。

低浓度土壤的方法利用一个与外界隔绝的、密封的样品瓶，从采样到最终的分析，这个密封绝不会破坏。取 5 克土样到 40mL 吹扫瓶中，加入 5mL 水直接进行吹扫，通常的范围是 0.5—200 μg/kg。

低浓度土壤样品：

加一个清洁的磁力搅拌棒到每一个清洁的瓶中。在运输瓶子到现场之前，加入保存溶液到每一个瓶子。加入大约 1 g 硫酸氢钠到每个瓶子（每 1 g 样品相应地加入 0.2 g 硫酸氢钠）。足量的硫酸氢钠将确保样品的 pH≤2。加 5 mL 无有机物的试剂水到每个瓶子。水与保存试剂混合将得到一个酸性的溶液，能够降低或者消除样品的生物活性的大部分，因此能够避免挥发性目标分析物的生物降解。采用适当的样品收集装置，收集大约 5 g 的样品。采用适当的样品收集装置，加入大约 5 g 的土壤到含有保存溶液的样品瓶中。快速地擦掉瓶子螺纹上粘附的土壤，然后立刻用螺旋帽和隔垫密封住瓶子。

含有碳酸盐矿物质的土壤样品（可能是天然的，也可能是改质的）会与低浓度样品瓶中的酸性保存溶液接触发生泡腾反应。如果生成了大量的气体，不仅样品将损失大量的分析物，而且如果样品瓶是密封的，气体压力将损害瓶子。因此，当已知样品或者怀疑样品含有高浓度的碳酸盐矿物质时，需要收集一份测试样品加到瓶子中，检查其泡腾情况。如果发生了快速或者剧烈的反应，倒掉样品，收集低浓度的样品于不含有保存溶液的瓶子中。
校准标样也需要含有大致等量的硫酸氢钠保存溶液，因为保存溶液的存在将影响分析物的吹扫效率。

高浓度土壤样品:

（1）在现场保存：采用样品收集装置，加入大约 5g 的土壤到含有 10mL 甲醇的样品瓶中。快速地擦掉瓶子螺纹上粘附的土壤，然后立刻用螺旋帽和隔垫密封住瓶子。用冰储存样品于 4°C。可以采用其它的样品质量或者甲醇的体积，分析人员需要证明整个分析过程的灵敏度对于当前的应用是适当的。

（2）不在现场保存：收集不带保存液的高浓度的土壤样品，就是样品小瓶中，既不含有保存溶液，也不含有甲醇。当不采用在现场保存的方法时，最好收集大量的样品，尽可能地填充满整个样品容器，使顶空最小。

所有进行挥发性分析的样品需要冷却到大约 4°C，存放于适当的容器中，按照采样计划中的描述，加冰运输到实验室。

（4）国际标准 ISO 15009:2002：土壤样品用甲醇萃取，取 50g 土到离心管中，加 50mL 甲醇后将离心管密闭离心 30min。离心之后取 5-50uL 甲醇萃取液到装 50mL 水的吹扫瓶中加热到 95°C 进行吹扫。吹扫装置为自制装置，即圆底烧瓶上装一个冷凝管，冷凝管上装一根填适当填料的玻璃管，烧瓶可通气进行吹扫，吹扫完成后将玻璃吸附管取下进行解析，见图 1。测量范围为挥发性芳香烃（苯、甲苯、乙苯、三个二甲苯和苯乙烯）和萘 0.1mg/kg（湿重），挥发性卤代烃为 0.01 mg/kg（湿重）。

![图 1 土壤样品的吹扫装置](image)
（5）日本环境省《底质调查方法》：取 20 g 样品（对于含水量高的样品，称取 20g 样品放到离心管中离心 20min，弃去上层水）到离心管中加入 10mL 甲醇，超声波萃取 10min 后，离心 10min，上层液转移至容量瓶中，离心管中再加 10mL 甲醇超声萃取 10min，离心 10min，上层液转移至上述容量瓶中用甲醇定容至刻度（25~50mL），进行萃取后，按照 9.8mL 水对 0.2mL 萃取液的比例在 5 mL ~ 25 mL 水中吹扫分析。

3.2 国内相关分析方法研究

我国测定挥发性有机物的测定方法基本上采用顶空气相色谱法（GB11890-89）测定水中挥发性有机物，还没有测固体中挥发性有机物的标准方法。与吹扫捕集气相色谱质谱法相比，顶空气相色谱法灵敏度低、人为误差大，不利于多项目的同时监测。利用吹扫捕集气相色谱质谱测定挥发性有机物的方法具有灵敏度高、检测范围广等优点，非常适合土壤和沉积物中挥发性有机物的测定，是我国进行挥发性有机物测定的发展方向。

4 标准制订的基本原则和技术路线

4.1 标准制订的基本原则

（1）方法的检出限和测定范围满足相关环保标准和环保工作的要求。

（2）方法准确可靠，满足各方法特性指标的要求。

（3）方法具有普遍适用性，易于推广使用。

4.2 标准制订的技术路线

（1）本标准采用吹扫捕集装置，用氮气或氩气吹扫土壤沉积物中的挥发性有机物，用捕集管捕集，加热解吸，用色质谱联用仪进行分析。查阅国内外相关标准和文献资料，主要是查询美国EPA方法最新的有关测定土壤及沉积物中挥发性有机物的样品前处理及分析方法。

（2）组织专家论证，确定技术路线，拟定实验方案，在借鉴国外标准（主要是美国EPA方法8260B、8260C、5030B和5035）的基础上，对有关内容进行整理修改，参照其他文献和通过实验摸索实验条件，确定比较理想的实际参数。按照规范确定实验方案，并根据方案进行实验室内的试验。

（3）进行验证试验；

（4）编制标准文本征求意见稿和编制说明；

（5）对征求的意见进行汇总，编制标准文本的送审稿和编制说明；

（6）送审稿经审查合格后，提交标准文本的报批稿和编制说明；
（7）报批稿经审查后标准发布。

根据相关文献检索和专家论证意见，得出的主要结论、工作思路和需要解决的关键技术如下：

（1）方法适用范围与国家现行的质量标准的衔接，进一步明确目标化合物；
（2）样品采集与保存中增加沉积物的相关内容，细化采样技术要求；
（3）确定空白控制指标；

本标准制定的技术路线图，见图 2。
图 2 环境污染物监测方法标准制修订基本工作程序流程
5 方法研究报告

5.1 方法研究的目标

（1）确定方法的适用范围。
（2）确定方法的目标化合物。
（3）参照 EPA5035A 和 8260C 的方法，编写标准文本。
（4）通过实验和验证确定方法的可行性和适用性。

5.2 方法的适用范围

本方法的适用范围借鉴 EPA8260C，规定了土壤和沉积物中挥发性有机物测定的吹扫捕集气相色谱-质谱法。本标准适用于土壤和沉积物中 63 种挥发性有机物的测定。其他的挥发性有机物如果通过验证也可适用于本标准。涵盖了前述相关质量标准和排放标准中规定的吹扫捕集分析的化合物。方法的检出限满足相关标准的要求。

5.3 规范性引用文件

本标准只是对于采集到的样品如何放到采样瓶中进行了规定，对于样品的采集方法直接引用了《海洋监测规范》(GB 17378.3) 中第 3 部分“样品采集储存与运输”和《土壤环境监测技术规范》(HJ/T 166) 两个标准文件。

5.4 术语和定义

考虑到应用方便，本标准中增加了内标、代用品、基体加标、实验室控制样品和校准确认样品等定义。定义参照了 EPA 和欧盟相关标准的内容。

5.5 方法原理

引用了美国 EPA 方法 8260C 中的描述。

5.6 试剂和材料

试剂和材料中增加了二次蒸馏水、市售矿泉水或通过纯水设备制备的无有机物水的相关内容，在 8260C 中规定所有的试剂都应符合美国化学协会分析试剂委员会的说明，美国商业实验室无有机物的水是将自来水通过活性炭过滤制取的。我国实验室中无有机物的水主要是通过上述方式取得的，经过多年的研究证明满足使用要求，而且获得方便。
5.7 仪器和设备

引用了美国 EPA SW846 方法 8260C 和 5035A 中的部分描述。

5.8 样品

（1）在 EPA8260C 的基础上，增加了用 200ml 采样瓶采样的方法，主要原因在于国内许多吹扫捕集装置没有配备自动进样器。

（2）在方法 5035A 中规定了目标化合物浓度大于 200 µg/kg 时为高浓度样品，用甲醇萃取方法。当浓度在 200 µg/kg 到 1000 µg/kg 时，甲醇萃取要求吹扫捕集具有冷聚焦功能，否则方法定量限达不到要求。而国内目前配备的吹扫捕集装置大多不具备冷聚焦功能，所以本方法将浓度在 200 µg/kg 到 1000 µg/kg 的样品只取 1g 进行吹扫，美国商业实验室允许最小称样量为 0.5g。

（3）EPA5035A 中规定每 1 g 样品相应地加入 0.2 g 硫酸氢钠保存试剂（含有碳酸盐高的土壤样品，不加保存试剂）。本方法采用《土壤环境监测技术规范》(HJ/T 166) 中的规定，对于测定 VOC 的土壤样品不加保存试剂。

（4）样品保存

《水和废水监测分析方法》（第四版）对于土壤或（和）沉积物和污泥样品，规定在 4℃冷藏保存，可保存 14 天。美国 EPA 方法 5035A 规定：样品放在不含有有机试剂的地方低温保存（一般 4℃±2℃），所有样品应尽快分析。《土壤环境监测技术规范》(HJ/T166) 要求样品低温保存（小于 4℃）存放区域须无有机物干扰，保存期为 7d。本方法采用《土壤环境监测技术规范》(HJ/T 166) 中的规定。

5.9 分析步骤

（1）吹扫捕集吸附剂的选择

参考美国 EPA 方法 5035A 及吹扫捕集仪器制造商的推荐，选用 1/3 Tenax、1/3 硅胶、1/3 活性炭混合吸附剂来吸附多组分易挥发性有机物。

活性炭主要用于吸附挥发性碳氟化合物。Tenax 是一类有机合成吸附剂，热稳定性好，特别适合于非极性和中等极性的微量挥发性物质的吸附，是吹扫捕集最常用的吸附剂之一。硅胶主要用于吸附沸点低于 35℃的化合物以及低级脂肪醇、脂肪族羧酸等极性化合物并且能够在吹扫阶段保留住水份。若不分析二氯二氟甲烷或类似的挥发性碳氟化合物，可不用活性炭，若只分析沸点高于 35℃的化合物则可只用 Tenax 吸附剂。
随着技术的发展，更多高性能的吸附材料将不断出现，若能满足质量保证要求，也可使用其它类型吸附剂。

（2）吹扫气流速的选择

美国 EPA 方法 5035A 规定吹扫气流量为 40 ml/min（根据目标分析物的不同，流量可以从 20 ml/min – 40 ml/min）。

吹扫气流速取决于样品中待测物的浓度、挥发性、与样品基质的相互作用（如溶解度）以及其在捕集管中的吸附作用大小。本课题组用无有机物的纯水作空白样品，定量加入待测物，以氦气作为吹扫气，分别选取 20、40、50 和 60 ml/min 作为吹扫流速进行分析，吹扫气总量为 440ml，部分化合物结果见下表 6。

表 6 部分挥发性有机物吹扫气流量与部分化合物峰面积关系表

<table>
<thead>
<tr>
<th>吹扫气流量 (mL/min)</th>
<th>峰面积</th>
<th>20</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯甲烷</td>
<td></td>
<td>312228</td>
<td>312514</td>
<td>310624</td>
<td>312077</td>
</tr>
<tr>
<td>1,1-二氯乙烷</td>
<td></td>
<td>642298</td>
<td>645585</td>
<td>651281</td>
<td>643489</td>
</tr>
<tr>
<td>氟苯</td>
<td></td>
<td>170248</td>
<td>165282</td>
<td>160055</td>
<td>155365</td>
</tr>
<tr>
<td>氟苯—D5</td>
<td></td>
<td>346399</td>
<td>349853</td>
<td>345067</td>
<td>330902</td>
</tr>
<tr>
<td>氯苯</td>
<td></td>
<td>1018009</td>
<td>1039087</td>
<td>1031551</td>
<td>998974</td>
</tr>
<tr>
<td>溴代</td>
<td>115464</td>
<td>115397</td>
<td>114601</td>
<td>101650</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-四氯乙烷</td>
<td></td>
<td>113605</td>
<td>115381</td>
<td>98535</td>
<td>97676</td>
</tr>
<tr>
<td>1,4-二氯苯-D4</td>
<td></td>
<td>238223</td>
<td>238360</td>
<td>236336</td>
<td>221707</td>
</tr>
</tbody>
</table>

从表中可以看出：吹扫流速太大时会影响样品的捕集，造成样品组分的损失。吹扫流速太小时会延长样品的分析时间，本课题组参照美国 EPA 方法 5035A 及吹扫捕集仪器制造商的推荐，选择 40 ml/min 作为吹扫气流速。

（3）吹扫时间及温度的选择

吹扫时间是吹扫捕集技术的重要参数之一，须根据具体目标化合物来优化确定。美国 EPA 方法 5035A 规定吹扫时间为 11min。

本课题组用无有机物的纯水作空白样品，定量加入待测物，在吹扫流速为 40ml/min 的情况下，分别选取 3 min、9 min、11 min 13 min、15 min、20 min、25 min 和 30min 作为吹扫时间分析，部分化合物结果见下表 7。
表 7 部分挥发性有机物吹扫时间与峰面积关系表

<table>
<thead>
<tr>
<th>吹扫时间（min）</th>
<th>3</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>峰面积</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>氯甲烷</td>
<td>237069</td>
<td>493896</td>
<td>440495</td>
<td>418485</td>
<td>409525</td>
<td>250216</td>
<td>135390</td>
<td>101904</td>
</tr>
<tr>
<td>1,1-二氯乙烷</td>
<td>327774</td>
<td>731747</td>
<td>740712</td>
<td>750917</td>
<td>789217</td>
<td>769887</td>
<td>773905</td>
<td>883747</td>
</tr>
<tr>
<td>氯苯</td>
<td>111876</td>
<td>204418</td>
<td>202621</td>
<td>203631</td>
<td>213456</td>
<td>221915</td>
<td>229064</td>
<td>228235</td>
</tr>
<tr>
<td>氯苯-D5</td>
<td>136035</td>
<td>356258</td>
<td>378552</td>
<td>414846</td>
<td>424181</td>
<td>450750</td>
<td>455626</td>
<td>452791</td>
</tr>
<tr>
<td>氯苯-D4</td>
<td>396502</td>
<td>1094281</td>
<td>1136851</td>
<td>1220835</td>
<td>1247462</td>
<td>1309591</td>
<td>1332939</td>
<td>1336413</td>
</tr>
<tr>
<td>溴仿</td>
<td>35692</td>
<td>102279</td>
<td>118472</td>
<td>138242</td>
<td>162341</td>
<td>207666</td>
<td>240995</td>
<td>253308</td>
</tr>
<tr>
<td>1,1,2,2-四氯乙烷</td>
<td>36209</td>
<td>105765</td>
<td>117827</td>
<td>134315</td>
<td>166025</td>
<td>209079</td>
<td>241335</td>
<td>253898</td>
</tr>
<tr>
<td>1,4-二氯苯-D4</td>
<td>65302</td>
<td>225429</td>
<td>24809</td>
<td>275282</td>
<td>293845</td>
<td>320599</td>
<td>331824</td>
<td>325356</td>
</tr>
</tbody>
</table>

从表中可以看出：对于任一目标化合物，随着吹扫时间的增加，其峰面积先增大，然后减小；对于易吹扫的化合物如氯甲烷，很快峰面积就出现最大值，但对于溴仿、1，1，2，2-四氯乙烷等物质在短时间内不易吹扫，吹扫时间越长吹扫越完全。吹扫气的总体积越大，吹出的效率越高。但总体积太大，对后面的捕集效率不利，会将捕集在吸附剂或冷阱中的被分析物吹落。吹扫时间越长，分析重现性和灵敏度越高。但考虑到分析时间和工作效率，应尽量选择尽可能短的吹扫时间。吹扫气的总体积一般控制在 400 ml～500 ml 之间，故我们也选择 11 min 为吹扫时间。

提高吹扫温度相当于提高蒸汽压，因此吹扫效率也会提高。但是温度过高带出的水蒸气量增加，不利于下一步的吸附，给气相色谱柱的分离带来困难。所以一般采用 40 ℃以下。通常，水溶性极性化合物与内标物相比在水中溶解度较高，其 RF 值趋于减少。溶解度越高的组分，其吹扫效率越低。对于高沸点高水溶性组分，只有提高吹扫温度才能提高吹扫效率。

理论上，加入 NaCl 或 Na2SO4 和加热样品至合适的温度可降低有机污染物的溶解度，从而提高吹扫效率。本课题组用无有机物的纯水将不含目标物的海水稀释 1 倍、2 倍、4 倍、10 倍和 20 倍作空白样品，分别定量加入待测物，在吹扫流速为 40ml/min、吹扫时间为 11 min 进行分析，结果显示稀释后的海水其测定结果目标化合物回收率在 90％～95％之间，盐效应可以忽略。

（4）热脱附条件的选择

一个快速升温和重复性好的热脱附温度是吹扫捕集气相色谱分析的关键。它影响整个分析方法的准确度和重复性。较高的热脱附温度能够更好地将挥发性有机物送入气相色谱柱，得到窄的色谱峰。因此一般都选择较高的热脱附温度，在热脱附温度确定后，热脱附时间越短越好，从而得到好的对称的色谱峰。对挥发性有机物标准样品，通过改变热脱附温度及时间进行色谱分析。在一定范围内，热脱附温度越高易脱附，热脱附时间越长脱附越完全，
并趋于稳定。但热脱附温度过高，热脱附时间过长会造成吸附剂分解，减低吸附剂寿命。对于不同吸附剂的捕集管，其热脱附温度及脱附时间参照制造商推荐的值进行设定。

美国 EPA 方法 5035A 规定热脱附温度 245 ℃，本标准参照仪器制造商的推荐值，用本标准推荐的吸附剂，热脱附温度为 180 ℃。

提高热脱附流速，从而使捕集管上脱附下的目标化合物带宽变窄，有利于所有化合物迅速进入色谱柱。美国 EPA 方法 5035A 规定：对于非冷聚焦接口热脱附流量为 10ml/min，冷聚焦接口热脱附流量为 4ml/min。本标准参照仪器制造商的推荐值，对于非冷聚焦接口的吹扫捕集装置，热脱附流量为 40 ml/min 左右（将通向气相色谱进样口的载气管线切断，接入吹扫捕集装置的入口，吹扫捕集装置的出接气相色谱进样口的载气管线）。这种连接方式的好处是可以利用气相色谱精确的载气流量控制以及进样口的分流设置，此时热脱附流量与色谱柱流量和分流比有关，柱流量与气相色谱进样口总流量的乘积）。

(5) 色谱条件的选择

美国 EPA 方法 8260C 提供了 5 种色谱柱，柱长从 20m 到 75m，内径从 0.18mm 到 0.53mm，膜厚均大于 1μm。多年来，一直将 60 m 的色谱柱作为质谱检测器使用的标准。当前的趋势是采用更短的、更细的色谱柱。利用这种色谱柱，总的 GC 分析时间可以缩短。窄口径毛细管色谱柱效率更高（即可以分离更多的分析物），但其柱容量更低（即无色谱峰消失时可以容纳较少的样品量），通常需要分流进样。直接联用的 GC/MS 需要小口径柱，因为真空泵不能处理大口径柱的大流量。一般来说，对于流出温度在 200℃以下的物质，用 1μm ~ 1.5μm 的液膜效果较好。所以，本课题组首先排除了柱 1（柱长 60m）、柱 2（内径 0.53mm）和柱 4（柱长 60m），另外柱 5 为柱长 20m 内径为 0.18mm 内径的柱子，柱流量不能过大，在非冷聚焦的情况下，分流比过大，且美国 EPA 方法 8260C 给出的分析条件起始温度为 30℃，分析时需开空调，否则降温时间太长甚至环境温度经常超过 30℃，从节能角度不予考虑。柱 3 为 DB5 的色谱柱，目前最多的是用来分析半挥发性有机物。在实际工作中，用来分析挥发性有机物最多的为 DB624 的柱子。因此本课题组兼顾分析速度和分离效果采用 30 m × 0.25 mm（内径）× 1.4 μm（膜厚）DB-624 毛细柱，柱流速为 1.5 ml/min。分析条件参照美国商业实验室的色谱柱升温程序，按照美国 TO15 的要求，苯和四氯化碳可以达到基线分离。

通常在样品中最易挥发组分的沸点附近来确定起始温度，若温度选得太低会延长分析时间，选得太高会降低沸点组分的分离度。终止温度是由样品中沸点组分的保留温度和固定液最高使用温度决定的，当固定液最高使用温度大于样品中组分的保留温度，可选用稍高于最高保留温度的温度作为终止温度。本方法将初始炉温设为 38 ℃，终止温度为 240℃。

捕集管与色谱柱的流量最佳化条件不尽相同，这可以用 EPC 分流方式解决。对于未使用低温聚焦系统的吹扫捕集装置，在分流比为 20:1 ~ 50:1 时，得到尖锐、对称的色谱峰，并有较高的响应值。而采用“不分流”模式时，则有部分目标峰出现峰形拉宽、拖尾现象，响应值也较低。这是由于当处于“分流”进样模式时，进样口始终能提供一个较大的流量，
以保证在进样的瞬间被热脱附样品能在尽可能短的时间内被吹进分离柱。从而得到尖锐、对称的色谱流出峰。

美国 EPA 方法 8260B 中质谱范围为 35 amu - 260 amu。美国 EPA 方法 8260C 中质谱范围为 35 amu - 270 amu。本标准为 35 amu - 270 amu。

(6) 校准曲线的制备

美国 EPA 方法 8260C 典型的 5mL 水中 5 点校准曲线梯度为 20, 50, 100, 150 和 200µg/L。

EPA524.2 规定曲线最低点应为目标化合物检出限浓度的 2 倍 ~ 10 倍。可以根据分析仪器的性能不同而改变校准曲线范围，但最高点浓度值不能使检测器饱和或者系统有残留，即随后分析空白样不得检出目标化合物。曲线范围因子为 20，则曲线浓度点至少为 3 个；曲线范围因子为 50，则曲线浓度点至少为 4 个；曲线范围因子为 100，则曲线浓度点至少为 5 个。EPA8260C 规定曲线最低点带入校准曲线，其计算值偏差应在实际值的 30% 以内，综上所述以及经试验验证，本标准规定曲线浓度点为 5 个，依次为 5, 20, 50, 100 和 200µg/L。

本标准取 EPA8260C、EPA524.2 及 CLP－SOW 中的最大者作为 BFB 的标准限值。

(7) 样品分析

本标准引用 EPA 方法 5035A 及 8260C 中的部分内容。

5.10 结果计算与表示

EPA 方法中没有公式，本标准按照 HJ168 的规定，增加了结果的计算公式和结果表示内容。化合物的定性定量引用了 EPA8260C 的部分内容。

样品含水率的测定引用《土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法》(HJ 77.4－2008)。

5.11 精密度和准确度

根据开题报告专家组的建议，在标准征求意见稿中明确了目标化合物为本课题组实验过程中验证过的化合物。增加了沉积物采样的内容。本课题组选取了农田土、山土、沙土、海沙、建筑物填埋土以及海洋沉积物和河道中沉积物进行了加标回收率的测定，加标样品中所有目标化合物的回收率均在 70% ~ 130% 之间。

本标准按照 HJ168 规定，经 5 家实验室进行验证，得出了精密度和准确度的数据。

5.12 质量保证和质量控制

本标准引用 EPA 方法 8260C 中的部分规定。

经过实验室验证，大部分空白样品测定值小于方法检出限，由于实验室环境不同，污染
物不尽相同。从本实验室多年的分析结果得出：本实验室出现频率最多的为二氯甲烷污染，个别空白样品中的二氯甲烷能够达到 0.003mg/kg，按照现有的《展览会用地土壤环境质量评价标准（暂行）》（HJ 350-2007），低于标准限值的 2 mg/kg 的 5%，且在荷兰土壤环境质量标准 0.4 mg/kg 的 5%以下，满足方法中关于方法空白的要求。

6 方法验证

6.1 方法验证方案

（1）参与方法验证的实验室、验证人员的基本情况。
有五家单位参加了方法验证工作，具体名单如下表

<table>
<thead>
<tr>
<th>姓名</th>
<th>性别</th>
<th>年龄</th>
<th>职务或职称</th>
<th>所学专业</th>
<th>参加分析工作年限</th>
<th>所在单位名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>赵丽娟</td>
<td>女</td>
<td>27</td>
<td>工程师</td>
<td>环境工程</td>
<td>5 年</td>
<td>辽宁省环境监测中心站</td>
</tr>
<tr>
<td>田靖</td>
<td>男</td>
<td>33</td>
<td>工程师</td>
<td>工业分析</td>
<td>10 年</td>
<td>鞍山市环境监测中心站</td>
</tr>
<tr>
<td>李娟</td>
<td>女</td>
<td>35</td>
<td>高工</td>
<td>化学</td>
<td>11</td>
<td>江苏省环境监测中心</td>
</tr>
<tr>
<td>戴军升</td>
<td>男</td>
<td>32</td>
<td>工程师</td>
<td>环境监测</td>
<td>10</td>
<td>上海市环境监测中心站</td>
</tr>
<tr>
<td>王玲玲</td>
<td>女</td>
<td>40</td>
<td>高工</td>
<td>环境监测</td>
<td>18</td>
<td>河南省环境监测中心站</td>
</tr>
</tbody>
</table>

按照《环境监测分析方法标准制订技术导则》（HJ/T168）和《国家环境污染物监测方法标准制修订工作暂行要求》（环科函[2009]10 号）的要求，组织 5 家有资质的实验室进行验证。根据影响方法的精密度和准确度的主要因素和数理统计学的要求，编制方法验证报告，验证数据主要包括检出限、测定下限、相对响应因子、精密度以及加标回收率等。

（2）方法验证方案如下

方法检出限：分别测定浓度为 1 µg/L 和 5 µg/L 的实验室空白加标样品，剔除离群值后将各自的 7 次测定结果计算其标准偏差 \(S \)，此时检出限 \(MDL = S \times 3.143 \)。

方法的测定下限：参照 HJ168，以 4 倍方法检出限确定为本方法目标物的测定下限。

方法精密度准确度：配制浓度为 5 µg/L 的标准溶液和 100 µg/L 的标准溶液，对上述两种溶液测定结果剔除离群值后将各平行测定 6 次的结果计算平均值，标准偏差，相对标准偏差等。

加标回收率：选取 1 个实际土壤和 1 个沉积物样品，每一个样品平行测定 6 次取其平均值，再将实际样品加入标准溶液（目标化合物为 250 ng）平行测定剔除离群值后将 6 次测定结果，分别计算平均值、标准偏差、相对标准偏差、加标回收率等。
6.2 方法验证过程

（1）首先，通过筛选确定方法验证单位。按照方法验证方案准备实验用品，与验证单位确定验证时间。在方法验证前，参加验证的操作人员应熟悉和掌握方法原理、操作步骤及流程。方法验证过程中所用的试剂和材料、仪器和设备及分析步骤应符合方法相关要求。

（2）《方法验证报告》见附件一。

6.3 方法验证数据的取舍

（1）检出限：本标准验证方案分别测定浓度为 1 µg/L 和 5 µg/L 的实验室空白加标样品计算方法检出限。按照 HJ 168-2010 的要求，测定平均值与检出限比值在 3~5 之间。由于目标化合物共有 63 种，若完全符合要求需做多个浓度的样品，本课题组经实验室验证，测定 1 µg/L 和 5 µg/L 两种浓度的实验室空白加标样品计算方法检出限可以满足大多数目标化合物的测定平均值与检出限比值在 3~5 之间。因此验证方案采用两个浓度值进行验证，其检出限最终值选取 5 家实验室两个浓度测定的平均值与检出限比值在 3~5 之间的最大值，若某一化合物找不出这样的值，将平均值与检出限比值扩大到 2~8，再在找出 5 家实验室测定的结果中找其中的最大值，定为该化合物的检出限。

（2）以本方法确定的 4 倍检出限为目标物的测定下限。

（3）本课题组在进行方法验证报告数据统计时，所有数据全部采用，未进行取舍。

（4）方法精密度和准确度统计结果能满足方法特性指标要求。

7 与开题报告的差异说明

本标准的征求意见稿中目标化合物名单较开题报告中少，开题报告中的名单来源于 EPA 方法 8260C 中列出的可用吹扫捕集前处理的化合物，本标准仅列出本课题组验证过的化合物，涵盖了 HJ 350-2007 和 HJ/T25-1999 中的全部可用吹扫捕集前处理的化合物。

开题报告中采用 EPA8260B 中的校准检查化合物，根据专家委员会的建议，取消系统性能检查化合物及校准检查化合物，采用 8260C 中的标准，规定部分目标化合物的最小相对响应因子值。

8 标准的实施建议

国内现行的各质量标准中，涉及土壤和沉积物中挥发性有机物的指标不多，建议国家重新制定土壤质量标准，把挥发性有机物的限值纳入标准中。
由于现在分析仪器的价格越来越便宜，建议下次修订标准时，强制要求使用土壤自动进样器分析低浓度土壤样品。

9 参考文献

[1] 许瑛华，罗振奎，李少霞. 吹扫捕集—GC/MS 法测定生活饮用水中 13 种苯系物的方法研究. 中国卫生检验杂志 2006 年 8 月第 16 卷第 8 期

[9]《方法的精密度 通过实验室间确定标准测试方法的重复性和再现性》GB/T 1379—1986

[12]《固体废弃物试验分析评价手册》（中国环境科学出版社，1992）.

方法验证报告

方法名称：土壤、沉积物挥发性有机物的测定

吹脱捕集 气相色谱-质谱法

项目负责单位：大连市环境监测中心

项目负责人及职称：刘景泰 高级工程师

通讯地址：大连市沙河口区连山街58号 电话：0411-84671505

报告编写：李振国

报告复核：王钢栋

报告审核：包艳英

报告批准：刘景泰

报告日期：2009年12月20日
目 录

1、目标化合物的检出限原始测试数据 ..25
2、浓度为 5 μg/L 的样品目标化合物的精密度原始测试数据28
3、浓度为 100 μg/L 的样品目标化合物的精密度原始测试数据35
4、5 家实验室土壤样品加标的原始测试数据 ..43
5、5 家实验室沉积物样品加标的原始测试数据 ..50
6、5 家实验室检出限及精密度的统计分析 ...58
7、5 家实验室目标化合物的精密度原始测试数据 ...61
8、方法特性指标汇总表 ..64
9、方法验证结论 ...69
本方法的5家验证实验室依次为：1-辽宁省环境监测中心、2-鞍山市环境监测中心站、3-江苏省环境监测中心、4-上海市环境监测中心、5-河南省环境监测中心。对《土壤、沉积物挥发性有机物的测定 吹脱捕集/气相色谱-质谱法》进行方法验证的结果进行汇总及统计分析，其结果如下：

5 1、目标化合物的检出限原始测试数据

附表1 为5家实验室对《土壤、沉积物挥发性有机物的测定 吹脱捕集/气相色谱-质谱法》中目标化合物检出限的原始测试数据。

附表1 方法检出限的测试数据表

<table>
<thead>
<tr>
<th>化合物名称</th>
<th>检出限</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a-b* (µg/kg)</td>
<td>A-B*</td>
<td>a-b* (µg/kg)</td>
<td>A-B*</td>
<td>a-b* (µg/kg)</td>
<td>A-B*</td>
</tr>
<tr>
<td>二氯二氟甲烷</td>
<td>0.09-0.61</td>
<td>4.9-2.4</td>
<td>0.09-0.40</td>
<td>4.8-3.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯甲烷</td>
<td>0.07-0.06</td>
<td>8.1-1.5</td>
<td>0.06-0.97</td>
<td>9.7-1.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯乙烯</td>
<td>0.11-0.09</td>
<td>6.5-1.8</td>
<td>0.14-0.98</td>
<td>5.2-1.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>溴甲烷</td>
<td>0.30-0.36</td>
<td>5.5-2.0</td>
<td>0.27-1.32</td>
<td>6.1-2.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯乙烷</td>
<td>0.09-0.84</td>
<td>6.2-3.9</td>
<td>0.11-0.81</td>
<td>4.7-4.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>三氯氟甲烷</td>
<td>0.14-1.26</td>
<td>6.1-4.2</td>
<td>0.12-1.30</td>
<td>4.5-3.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>0.20-0.20</td>
<td>8.1-4.0</td>
<td>0.17-0.96</td>
<td>4.4-4.0</td>
<td>6.0-9.5</td>
<td>0.49-1.92</td>
</tr>
<tr>
<td>丙酮</td>
<td>0.12-0.70</td>
<td>3.3-3.5</td>
<td>0.13-1.30</td>
<td>4.1-3.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>磷乙烷</td>
<td>0.27-0.70</td>
<td>2.5-2.0</td>
<td>0.24-1.08</td>
<td>5.3-4.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>二硫化碳</td>
<td>0.09-0.93</td>
<td>1.3-3.5</td>
<td>0.08-1.00</td>
<td>3.2-3.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>0.08-1.28</td>
<td>0.2-3.5</td>
<td>0.07-1.71</td>
<td>4.6-2.5</td>
<td>0.5-3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>对二-1,2-二氯乙烯</td>
<td>0.20-0.20</td>
<td>1.3-3.2</td>
<td>0.18-1.34</td>
<td>7-3.4</td>
<td>0.2-0.8</td>
<td>5.8</td>
</tr>
<tr>
<td>1,1-二氯乙烷</td>
<td>0.10-0.10</td>
<td>4.4-1.0</td>
<td>0.09-0.81</td>
<td>2.5-7.6</td>
<td>0.1-0.1</td>
<td>8.1-1.8</td>
</tr>
<tr>
<td>顺式-1,2-二氯乙烯</td>
<td>0.12-0.168</td>
<td>7.9-8.7</td>
<td>0.10-1.31</td>
<td>1.3-4.3</td>
<td>0.3-0.4</td>
<td>3.0</td>
</tr>
<tr>
<td>2-丁酮</td>
<td>0.11-0.348</td>
<td>9.1-1.3</td>
<td>0.13-3.56</td>
<td>8.0-1.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,2-二氯丙烷</td>
<td>0.07-1.28</td>
<td>7.7-3.4</td>
<td>0.09-1.17</td>
<td>6.4-3.7</td>
<td>0.2-1.1</td>
<td>4.3-4.6</td>
</tr>
<tr>
<td>溴氯甲烷</td>
<td>0.08-0.99</td>
<td>9.0-4.3</td>
<td>0.07-1.05</td>
<td>10.3-4.2</td>
<td>0.2-0.7</td>
<td>5.4-7.1</td>
</tr>
<tr>
<td>氯仿</td>
<td>0.30-1.09</td>
<td>2.2-4.3</td>
<td>0.27-1.14</td>
<td>2.5-4.1</td>
<td>0.1-0.8</td>
<td>8.1-6.1</td>
</tr>
<tr>
<td>化合物名称</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a-b* (µg/kg)</td>
<td>A-B* (µg/kg)</td>
<td>a-b* (µg/kg)</td>
<td>A-B* (µg/kg)</td>
<td>a-b* (µg/kg)</td>
<td>A-B* (µg/kg)</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>0.38-1.40</td>
<td>2.6-3.0</td>
<td>0.25-1.34</td>
<td>4.0-3.3</td>
<td>0.2-0.8</td>
<td>5.5-5.8</td>
</tr>
<tr>
<td>1,1-二氯丙烯</td>
<td>0.06-1.22</td>
<td>12.9-3.3</td>
<td>0.06-1.21</td>
<td>14.6-3.4</td>
<td>0.3-1.6</td>
<td>3.2-2.8</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>0.45-1.97</td>
<td>2.2-2.1</td>
<td>0.47-2.00</td>
<td>2.2-2.1</td>
<td>0.3-1.3</td>
<td>3.0-3.6</td>
</tr>
<tr>
<td>1,2-二氯乙烯</td>
<td>0.10-1.33</td>
<td>4.6-3.6</td>
<td>0.08-1.31</td>
<td>5.4-3.6</td>
<td>0.1-0.6</td>
<td>8.1-8.4</td>
</tr>
<tr>
<td>苯</td>
<td>0.06-1.85</td>
<td>11.0-4.1</td>
<td>0.06-3.76</td>
<td>10.3-2.0</td>
<td>0.1-0.6</td>
<td>8.4-8.3</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>0.15-1.16</td>
<td>5.6-3.8</td>
<td>0.14-1.12</td>
<td>6.2-4.0</td>
<td>0.2-0.8</td>
<td>4.5-6.2</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>0.17-1.13</td>
<td>2.3-4.1</td>
<td>0.15-1.12</td>
<td>2.8-4.2</td>
<td>0.2-0.7</td>
<td>6.6-7.4</td>
</tr>
<tr>
<td>二溴甲烷</td>
<td>0.09-1.22</td>
<td>9.2-3.7</td>
<td>0.09-1.17</td>
<td>9.9-3.9</td>
<td>0.3-1.1</td>
<td>3.8-4.4</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>0.28-1.06</td>
<td>4.3-1.1</td>
<td>0.29-1.06</td>
<td>4.1-4.2</td>
<td>0.2-1.2</td>
<td>3.8-3.9</td>
</tr>
<tr>
<td>4-甲基-2-戊酮</td>
<td>0.26-3.56</td>
<td>5.3-1.3</td>
<td>0.25-3.50</td>
<td>5.6-1.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>甲苯</td>
<td>0.20-1.06</td>
<td>4.6-4.1</td>
<td>0.16-1.25</td>
<td>5.7-3.5</td>
<td>0.2-1.6</td>
<td>4.12.9</td>
</tr>
<tr>
<td>1,1,2-三氯乙烯</td>
<td>0.09-1.16</td>
<td>8.9-4.1</td>
<td>0.08-1.15</td>
<td>9.3-4.0</td>
<td>0.2-0.9</td>
<td>5.6-5.4</td>
</tr>
<tr>
<td>1,3-二氯丙烷</td>
<td>1.18-1.08</td>
<td>0.8-4.2</td>
<td>0.13-1.04</td>
<td>8.2-4.5</td>
<td>0.3-1.1</td>
<td>4.1-4.6</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>0.18-1.36</td>
<td>4.8-3.2</td>
<td>0.12-1.29</td>
<td>7.5-3.4</td>
<td>0.2-0.8</td>
<td>4.5-6.2</td>
</tr>
<tr>
<td>2-己酮</td>
<td>0.16-2.33</td>
<td>3.9-1.9</td>
<td>0.11-2.27</td>
<td>5.9-2.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>二溴氯甲烷</td>
<td>0.42-1.07</td>
<td>3.5-3.7</td>
<td>0.25-1.06</td>
<td>5.9-3.8</td>
<td>0.2-0.7</td>
<td>6.6-7.2</td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td>0.08-1.13</td>
<td>6.7-3.8</td>
<td>0.12-1.07</td>
<td>4.8-4.1</td>
<td>0.2-1.0</td>
<td>5.4-5.0</td>
</tr>
<tr>
<td>氯苯</td>
<td>0.19-1.24</td>
<td>5.7-3.6</td>
<td>0.17-1.13</td>
<td>6.4-4.0</td>
<td>0.2-0.8</td>
<td>4.5-6.2</td>
</tr>
<tr>
<td>1,1,1,2-四氯乙烷</td>
<td>0.24-1.23</td>
<td>1.0-3.6</td>
<td>0.21-1.16</td>
<td>1.2-3.9</td>
<td>0.2-0.9</td>
<td>4.5-5.4</td>
</tr>
<tr>
<td>乙苯</td>
<td>0.15-1.15</td>
<td>8.2-3.7</td>
<td>0.13-1.11</td>
<td>10.0-3.9</td>
<td>0.2-0.8</td>
<td>5.4-6.2</td>
</tr>
<tr>
<td>间对二甲苯</td>
<td>0.15-1.22</td>
<td>4.1-3.5</td>
<td>0.16-1.14</td>
<td>4.0-3.9</td>
<td>0.6-2.1</td>
<td>3.8-4.3</td>
</tr>
<tr>
<td>邻二甲苯</td>
<td>0.21-1.24</td>
<td>2.2-3.4</td>
<td>0.18-1.20</td>
<td>2.6-3.6</td>
<td>0.2-0.8</td>
<td>4.5-6.1</td>
</tr>
<tr>
<td>化合物名称</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>a-b* (µg/kg)</td>
<td>A-B* (µg/kg)</td>
<td>a-b* (µg/kg)</td>
<td>A-B* (µg/kg)</td>
<td>a-b* (µg/kg)</td>
<td>A-B* (µg/kg)</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>0.14-0.98</td>
<td>5.4-4.1</td>
<td>0.12-0.93</td>
<td>6.5-4.3</td>
<td>0.2-1.1</td>
<td>4.0-4.4</td>
</tr>
<tr>
<td>溴仿</td>
<td>0.09-1.45</td>
<td>8.0-2.6</td>
<td>0.10-1.42</td>
<td>6.9-2.7</td>
<td>0.3-0.9</td>
<td>3.8-5.3</td>
</tr>
<tr>
<td>异丙苯</td>
<td>0.20-1.22</td>
<td>2.7-3.4</td>
<td>0.24-1.17</td>
<td>2.2-3.5</td>
<td>0.3-1.5</td>
<td>3.8-3.3</td>
</tr>
<tr>
<td>1,1,2,2-四氯乙烷</td>
<td>0.09-1.74</td>
<td>6.9-2.7</td>
<td>0.08-1.73</td>
<td>8.6-2.7</td>
<td>0.2-1.2</td>
<td>4.5-4.1</td>
</tr>
<tr>
<td>溴苯</td>
<td>0.08-1.17</td>
<td>9.8-3.7</td>
<td>0.10-1.42</td>
<td>8.8-4.0</td>
<td>0.2-1.2</td>
<td>4.5-4.1</td>
</tr>
<tr>
<td>1,2,3-三氯丙烷</td>
<td>0.34-2.14</td>
<td>1.6-2.4</td>
<td>0.22-2.13</td>
<td>2.6-2.5</td>
<td>0.3-1.2</td>
<td>4.2-4.3</td>
</tr>
<tr>
<td>正丙苯</td>
<td>0.13-1.24</td>
<td>6.3-3.3</td>
<td>0.15-1.19</td>
<td>5.5-3.5</td>
<td>0.2-1.0</td>
<td>4.5-4.9</td>
</tr>
<tr>
<td>2-氯甲苯</td>
<td>0.07-1.28</td>
<td>7.3-3.4</td>
<td>0.09-1.20</td>
<td>6.0-3.6</td>
<td>0.2-0.8</td>
<td>5.6-6.0</td>
</tr>
<tr>
<td>1,3,5-三甲基苯</td>
<td>0.14-1.36</td>
<td>4.1-3.1</td>
<td>0.17-1.26</td>
<td>3.5-3.4</td>
<td>0.3-1.0</td>
<td>3.8-4.8</td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td>0.07-1.28</td>
<td>13.0-3.4</td>
<td>0.09-1.20</td>
<td>10.0-3.6</td>
<td>0.2-1.0</td>
<td>5.4-5.0</td>
</tr>
<tr>
<td>叔丁基苯</td>
<td>0.31-1.61</td>
<td>6.9-2.4</td>
<td>0.31-1.48</td>
<td>6.9-2.6</td>
<td>0.2-1.2</td>
<td>4.0-4.1</td>
</tr>
<tr>
<td>1,2,4-三甲基苯</td>
<td>0.11-1.40</td>
<td>6.7-3.0</td>
<td>0.12-1.28</td>
<td>6.5-3.3</td>
<td>0.2-1.0</td>
<td>4.5-4.9</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td>0.13-1.87</td>
<td>5.5-2.2</td>
<td>0.09-1.81</td>
<td>8.2-2.3</td>
<td>0.3-1.1</td>
<td>3.8-4.4</td>
</tr>
<tr>
<td>4-异丙基甲苯</td>
<td>0.20-1.39</td>
<td>4.0-3.0</td>
<td>0.21-1.28</td>
<td>3.9-3.3</td>
<td>0.2-0.6</td>
<td>5.4-8.2</td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td>0.10-1.45</td>
<td>3.7-3.1</td>
<td>0.15-1.34</td>
<td>2.4-3.4</td>
<td>0.2-0.7</td>
<td>6.6-7.3</td>
</tr>
<tr>
<td>1,4-二氯苯</td>
<td>0.10-1.45</td>
<td>3.3-3.1</td>
<td>0.10-1.34</td>
<td>3.4-3.4</td>
<td>0.2-0.9</td>
<td>4.5-5.4</td>
</tr>
<tr>
<td>正丁基苯</td>
<td>0.06-1.66</td>
<td>3.7-2.6</td>
<td>0.08-1.51</td>
<td>2.6-3.0</td>
<td>0.1-0.7</td>
<td>8.4-7.1</td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td>0.07-1.56</td>
<td>10.5-2.9</td>
<td>0.09-1.46</td>
<td>8.2-3.1</td>
<td>0.3-1.0</td>
<td>3.8-4.8</td>
</tr>
<tr>
<td>1,2-二溴-3-氯丙烷</td>
<td>0.09-6.51</td>
<td>6.6-0.5</td>
<td>0.08-1.87</td>
<td>7.0-2.6</td>
<td>0.2-0.6</td>
<td>5.6-8.1</td>
</tr>
<tr>
<td>1,2,4-三氯苯</td>
<td>2.47-2.21</td>
<td>0.3-1.9</td>
<td>0.29-2.14</td>
<td>1.9-2.0</td>
<td>0.2-0.7</td>
<td>5.4-7.1</td>
</tr>
<tr>
<td>化合物名称</td>
<td>限检出限（µg/kg）</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>六氯丁二烯</td>
<td>0.38-1.95</td>
<td>1.0-2.4</td>
<td>0.26-1.85</td>
<td>1.6-2.5</td>
<td>0.2-0.7</td>
<td>5.6-6.9</td>
</tr>
<tr>
<td>萘</td>
<td>0.07-5.58</td>
<td>5.9-0.9</td>
<td>0.07-3.31</td>
<td>6.1-1.4</td>
<td>0.2-0.4</td>
<td>5.6-12.1</td>
</tr>
<tr>
<td>1,2,3-三氯苯</td>
<td>0.07-2.87</td>
<td>6.6-1.5</td>
<td>0.11-0.63</td>
<td>4.6-6.9</td>
<td>0.2-0.5</td>
<td>3.8-9.7</td>
</tr>
</tbody>
</table>

注1：检出限一栏中，a为浓度1 µg/L，b为浓度5 µg/L各加标七次得出的结果。
注2：检出限一栏中A—B、AB为测定平均值与计算的检出限比值。其中A为浓度1 µg/L，B为浓度5 µg/L时的结果。

2、浓度为5 µg/L的样品目标化合物的精密度原始测试数据

附表2为5家实验室对《土壤、沉积物挥发性有机物的测定 吹脱捕集/气相色谱-质谱法》中浓度为5 µg/L的标准溶液中的目标化合物进行测定的精密度原始测试数据。

附表2 5 µg/L标准溶液的精密度测试数据

<table>
<thead>
<tr>
<th>化合物名称</th>
<th>实验室号</th>
<th>测定值(µg/L)</th>
<th>平均值(µg/L)</th>
<th>标准偏差Si</th>
<th>相对标准偏差(%)</th>
<th>回收率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯二氟甲烷</td>
<td>1</td>
<td>1.15 1.32 1.64 1.58 1.49 1.48</td>
<td>1.44 0.18</td>
<td>12.48</td>
<td>28.87</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.59 1.64 1.58 1.48 1.15 1.32</td>
<td>1.46 0.19</td>
<td>13.0</td>
<td>29.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- - - - - -</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.12 4.45 5.01 3.88 6.01 5.23</td>
<td>4.95 0.73</td>
<td>14.65</td>
<td>99.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.14 4.79 5.02 5.15 4.96 5.04</td>
<td>5.02 0.134</td>
<td>3</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>氯甲烷</td>
<td>1</td>
<td>1.35 2.04 1.59 1.22 1.48 1.94</td>
<td>1.60 0.33</td>
<td>20.32</td>
<td>32.07</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.48 1.59 1.62 1.94 1.35 2.04</td>
<td>1.67 0.27</td>
<td>16.0</td>
<td>33.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- - - - - -</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.68 4.25 4.58 3.99 5.2 5.22</td>
<td>4.65 0.50</td>
<td>10.65</td>
<td>93.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.01 5.10 5.50 5.47 4.90 4.28</td>
<td>5.04 1.00</td>
<td>20</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>氯乙烯</td>
<td>1</td>
<td>2.39 1.97 1.43 1.70 1.85 1.57</td>
<td>1.82 0.34</td>
<td>18.69</td>
<td>36.37</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.85 1.43 1.78 1.57 2.39 1.97</td>
<td>1.83 0.34</td>
<td>18.3</td>
<td>36.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- - - - - -</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.14 4.51 5.04 4.35 6.12 5.38</td>
<td>5.09 0.64</td>
<td>12.53</td>
<td>101.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.46 4.38 4.16 4.66 5.09 4.78</td>
<td>4.76 1.11</td>
<td>23</td>
<td>80.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>三氯氟甲烷</td>
<td></td>
<td>3.70 2.51 3.32 2.91 3.34 3.07 3.14 0.41 13.05 62.83</td>
<td>3.34 3.32 2.91 3.07 3.78 2.51 3.16 0.43 13.7 63.1</td>
<td>0.42 81 10.64</td>
<td>3.14</td>
<td>13.4</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>0.41</td>
<td>4.57 4.75 4.71 4.48 4.8 4.2 4.5</td>
<td>0.27 7.14 75.1</td>
<td>0.21 4.5</td>
<td>92.0-104</td>
<td>1.03 22.17 92.90</td>
</tr>
<tr>
<td>丙酮</td>
<td>0.37</td>
<td>5.06 5.13 5.08 4.96 4.96 4.90 5.01 4.02 3.70</td>
<td>0.29 7.71 65.5</td>
<td>0.06 3.04 101</td>
<td>0.39 8.75 88.9</td>
<td>0.27 7.14 75.1</td>
</tr>
<tr>
<td>碘甲烷</td>
<td>0.21</td>
<td>5.01 4.96 4.96 5.08 5.25 5.13 5.06 4.02 3.70</td>
<td>0.29 7.71 65.5</td>
<td>0.06 3.04 101</td>
<td>0.39 8.75 88.9</td>
<td>0.27 7.14 75.1</td>
</tr>
<tr>
<td>二硫化碳</td>
<td>0.21</td>
<td>5.01 4.96 4.96 5.08 5.25 5.13 5.06 4.02 3.70</td>
<td>0.29 7.71 65.5</td>
<td>0.06 3.04 101</td>
<td>0.39 8.75 88.9</td>
<td>0.27 7.14 75.1</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>0.08</td>
<td>4.73 4.49 4.57 4.12 4.75 4.92 4.60 0.28 6.04 91.93</td>
<td>4.82 4.92 4.73 4.49 4.57 4.75 4.71 0.16 3.37 94.3</td>
<td>0.32 7.13 90.03</td>
<td>0.24 5.13 5.35</td>
<td></td>
</tr>
<tr>
<td>反式1,2-二氯乙烯</td>
<td>0.08</td>
<td>4.73 4.49 4.57 4.12 4.75 4.92 4.60 0.28 6.04 91.93</td>
<td>4.82 4.92 4.73 4.49 4.57 4.75 4.71 0.16 3.37 94.3</td>
<td>0.32 7.13 90.03</td>
<td>0.24 5.13 5.35</td>
<td></td>
</tr>
<tr>
<td>化合物</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>顺式-1,2-二氯乙烯</td>
<td>4.62</td>
<td>4.04</td>
<td>4.27</td>
<td>3.85</td>
<td>5.01</td>
<td></td>
</tr>
<tr>
<td>2-丁酮</td>
<td>4.85</td>
<td>4.19</td>
<td>4.62</td>
<td>4.04</td>
<td>4.27</td>
<td></td>
</tr>
<tr>
<td>2,2-二氯丙烷</td>
<td>5.8</td>
<td>5.5</td>
<td>5</td>
<td>5.1</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>溴氯甲烷</td>
<td>3.57</td>
<td>3.61</td>
<td>3.88</td>
<td>4.51</td>
<td>4.77</td>
<td></td>
</tr>
<tr>
<td>氯仿</td>
<td>5.5</td>
<td>5.04</td>
<td>4.90</td>
<td>5.10</td>
<td>5.58</td>
<td></td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>4.48</td>
<td>3.97</td>
<td>3.97</td>
<td>3.53</td>
<td>4.20</td>
<td></td>
</tr>
<tr>
<td>四氯化碳</td>
<td>4.8</td>
<td>4.58</td>
<td>4.58</td>
<td>4.58</td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>4.93</td>
<td>4.95</td>
<td>4.95</td>
<td>4.95</td>
<td>4.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.39</td>
<td>4.29</td>
<td>4.64</td>
<td>5.21</td>
<td>4.32</td>
<td>5.11</td>
<td>4.66</td>
</tr>
<tr>
<td>5.4</td>
<td>4.9</td>
<td>5</td>
<td>4.9</td>
<td>4.9</td>
<td>5.0</td>
<td>0.20</td>
</tr>
<tr>
<td>3.71</td>
<td>3.92</td>
<td>4.12</td>
<td>5.21</td>
<td>3.99</td>
<td>4.10</td>
<td>0.57</td>
</tr>
<tr>
<td>5.13</td>
<td>5.37</td>
<td>5.15</td>
<td>5.06</td>
<td>5.18</td>
<td>0.150</td>
<td>5.2</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.63</td>
<td>4.07</td>
<td>4.36</td>
<td>3.78</td>
<td>4.53</td>
<td>4.39</td>
<td>4.29</td>
</tr>
<tr>
<td>3.78</td>
<td>4.53</td>
<td>4.63</td>
<td>4.97</td>
<td>4.36</td>
<td>4.44</td>
<td>0.39</td>
</tr>
<tr>
<td>5.4</td>
<td>5.4</td>
<td>4.8</td>
<td>5.1</td>
<td>4.8</td>
<td>4.7</td>
<td>0.26</td>
</tr>
<tr>
<td>1.2-二氯丙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.70</td>
<td>4.36</td>
<td>4.64</td>
<td>4.01</td>
<td>4.85</td>
<td>4.83</td>
<td>4.57</td>
</tr>
<tr>
<td>4.01</td>
<td>4.83</td>
<td>4.79</td>
<td>4.36</td>
<td>4.64</td>
<td>4.58</td>
<td>0.33</td>
</tr>
<tr>
<td>5.5</td>
<td>5.1</td>
<td>5.2</td>
<td>5.4</td>
<td>5.1</td>
<td>4.9</td>
<td>0.22</td>
</tr>
<tr>
<td>4.05</td>
<td>3.95</td>
<td>4.28</td>
<td>4.66</td>
<td>5.14</td>
<td>4.01</td>
<td>4.35</td>
</tr>
<tr>
<td>1,2-三氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.20</td>
<td>4.97</td>
<td>5.38</td>
<td>5.24</td>
<td>4.87</td>
<td>5.09</td>
<td>5.12</td>
</tr>
<tr>
<td>二溴甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.69</td>
<td>4.49</td>
<td>3.84</td>
<td>4.64</td>
<td>4.62</td>
<td>4.41</td>
<td>0.34</td>
</tr>
<tr>
<td>4.84</td>
<td>4.64</td>
<td>4.69</td>
<td>4.15</td>
<td>4.49</td>
<td>4.57</td>
<td>0.24</td>
</tr>
<tr>
<td>5.4</td>
<td>4.9</td>
<td>4.6</td>
<td>5.1</td>
<td>4.6</td>
<td>4.5</td>
<td>0.35</td>
</tr>
<tr>
<td>4.47</td>
<td>4.18</td>
<td>4.73</td>
<td>4.98</td>
<td>5.38</td>
<td>4.87</td>
<td>4.77</td>
</tr>
<tr>
<td>5.20</td>
<td>5.28</td>
<td>5.45</td>
<td>5.29</td>
<td>5.41</td>
<td>5.10</td>
<td>5.29</td>
</tr>
<tr>
<td>一氯二氯甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.83</td>
<td>4.01</td>
<td>4.34</td>
<td>3.45</td>
<td>4.20</td>
<td>4.96</td>
<td>4.63</td>
</tr>
<tr>
<td>4.45</td>
<td>4.29</td>
<td>4.96</td>
<td>5.83</td>
<td>4.01</td>
<td>4.34</td>
<td>4.65</td>
</tr>
<tr>
<td>4.47</td>
<td>4.94</td>
<td>5.25</td>
<td>5.18</td>
<td>5.05</td>
<td>4.94</td>
<td>5.07</td>
</tr>
<tr>
<td>4-甲基-2-戊酮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.61</td>
<td>4.94</td>
<td>4.85</td>
<td>4.52</td>
<td>5.08</td>
<td>4.52</td>
<td>4.75</td>
</tr>
<tr>
<td>甲苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.44</td>
<td>4.03</td>
<td>4.22</td>
<td>3.71</td>
<td>4.45</td>
<td>4.32</td>
<td>4.20</td>
</tr>
<tr>
<td>4.71</td>
<td>4.45</td>
<td>4.32</td>
<td>4.44</td>
<td>4.03</td>
<td>4.36</td>
<td>0.23</td>
</tr>
<tr>
<td>5.4</td>
<td>5.1</td>
<td>4.7</td>
<td>4</td>
<td>4.5</td>
<td>4.7</td>
<td>0.52</td>
</tr>
<tr>
<td>4.92</td>
<td>5.47</td>
<td>5.22</td>
<td>5.18</td>
<td>5.01</td>
<td>4.82</td>
<td>5.10</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.92</td>
<td>4.38</td>
<td>4.64</td>
<td>4.07</td>
<td>4.66</td>
<td>4.85</td>
<td>4.59</td>
</tr>
<tr>
<td>4.07</td>
<td>4.66</td>
<td>4.85</td>
<td>4.92</td>
<td>4.38</td>
<td>4.64</td>
<td>4.59</td>
</tr>
<tr>
<td>4.06</td>
<td>4.14</td>
<td>4.29</td>
<td>4.33</td>
<td>4.87</td>
<td>4.86</td>
<td>4.43</td>
</tr>
<tr>
<td>5.73</td>
<td>5.17</td>
<td>5.11</td>
<td>4.90</td>
<td>5.06</td>
<td>4.64</td>
<td>4.94</td>
</tr>
<tr>
<td>1,3-二氯甲苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.76</td>
<td>4.24</td>
<td>4.47</td>
<td>3.99</td>
<td>4.73</td>
<td>4.57</td>
<td>4.46</td>
</tr>
<tr>
<td>丙烷</td>
<td>2</td>
<td>3.99</td>
<td>4.73</td>
<td>4.57</td>
<td>4.76</td>
<td>4.24</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.8</td>
<td>5.1</td>
<td>5.3</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.6</td>
<td>3.66</td>
<td>3.99</td>
<td>4.1</td>
<td>4.99</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.09</td>
<td>5.19</td>
<td>5.23</td>
<td>5.19</td>
<td>5.22</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>1</td>
<td>4.84</td>
<td>4.08</td>
<td>4.24</td>
<td>3.68</td>
<td>4.47</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.68</td>
<td>4.47</td>
<td>4.55</td>
<td>4.84</td>
<td>4.08</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.3</td>
<td>5.0</td>
<td>5.0</td>
<td>5.1</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.79</td>
<td>3.65</td>
<td>5.1</td>
<td>5.12</td>
<td>5.01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.17</td>
<td>5.24</td>
<td>4.96</td>
<td>5.13</td>
<td>5.03</td>
</tr>
<tr>
<td>2-己酮</td>
<td>1</td>
<td>6.09</td>
<td>4.10</td>
<td>4.26</td>
<td>3.81</td>
<td>4.43</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.81</td>
<td>4.43</td>
<td>4.28</td>
<td>6.09</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.07</td>
<td>5.01</td>
<td>5.06</td>
<td>4.66</td>
<td>5.22</td>
</tr>
<tr>
<td>二氯二丙烷</td>
<td>1</td>
<td>4.24</td>
<td>3.80</td>
<td>3.75</td>
<td>3.41</td>
<td>4.22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.41</td>
<td>4.22</td>
<td>4.16</td>
<td>4.24</td>
<td>3.89</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.4</td>
<td>5.1</td>
<td>5.0</td>
<td>5.3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.67</td>
<td>3.56</td>
<td>3.89</td>
<td>3.99</td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.73</td>
<td>4.61</td>
<td>5.02</td>
<td>4.91</td>
<td>4.94</td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td>1</td>
<td>4.75</td>
<td>4.09</td>
<td>4.27</td>
<td>3.78</td>
<td>4.38</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.78</td>
<td>4.38</td>
<td>4.37</td>
<td>4.75</td>
<td>4.09</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.6</td>
<td>5.2</td>
<td>4.8</td>
<td>5.1</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.76</td>
<td>3.67</td>
<td>3.97</td>
<td>4.21</td>
<td>4.67</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.74</td>
<td>4.95</td>
<td>5.08</td>
<td>5.10</td>
<td>5.10</td>
</tr>
<tr>
<td>氯苯</td>
<td>1</td>
<td>4.70</td>
<td>4.09</td>
<td>4.40</td>
<td>3.83</td>
<td>4.58</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.83</td>
<td>4.58</td>
<td>4.63</td>
<td>4.79</td>
<td>4.09</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.4</td>
<td>5.0</td>
<td>4.8</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.92</td>
<td>3.78</td>
<td>4.04</td>
<td>4.56</td>
<td>4.87</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.84</td>
<td>5.05</td>
<td>5.13</td>
<td>5.07</td>
<td>5.18</td>
</tr>
<tr>
<td>1,1,1,2-四氯乙烷</td>
<td>1</td>
<td>4.59</td>
<td>4.14</td>
<td>4.34</td>
<td>3.81</td>
<td>4.58</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.81</td>
<td>4.58</td>
<td>4.62</td>
<td>4.59</td>
<td>4.14</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.4</td>
<td>5.1</td>
<td>4.8</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.17</td>
<td>3.82</td>
<td>4.68</td>
<td>5.74</td>
<td>5.87</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.02</td>
<td>4.63</td>
<td>5.29</td>
<td>5.15</td>
<td>5.10</td>
</tr>
<tr>
<td>乙苯</td>
<td>1</td>
<td>4.57</td>
<td>4.06</td>
<td>4.28</td>
<td>3.69</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.69</td>
<td>4.41</td>
<td>4.26</td>
<td>4.57</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.4</td>
<td>5.0</td>
<td>4.8</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.38</td>
<td>3.2</td>
<td>3.87</td>
<td>5.34</td>
<td>5.64</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.28</td>
<td>4.75</td>
<td>5.03</td>
<td>4.96</td>
<td>5.09</td>
</tr>
<tr>
<td>间,对-二甲苯</td>
<td>1</td>
<td>4.70</td>
<td>4.01</td>
<td>4.22</td>
<td>3.74</td>
<td>4.47</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.74</td>
<td>4.47</td>
<td>4.36</td>
<td>4.79</td>
<td>4.01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.4</td>
<td>9.8</td>
<td>9.2</td>
<td>9.6</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.6</td>
<td>6.32</td>
<td>6.97</td>
<td>6.98</td>
<td>6.34</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>邻-二甲苯</td>
<td>4.54</td>
<td>4.55</td>
<td>5.3</td>
<td>2.91</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.02</td>
<td>4.32</td>
<td>5.1</td>
<td>2.64</td>
<td>5.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.18</td>
<td>4.28</td>
<td>5.0</td>
<td>3.07</td>
<td>4.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.55</td>
<td>4.54</td>
<td>4.8</td>
<td>4.04</td>
<td>4.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.32</td>
<td>4.02</td>
<td>4.7</td>
<td>4.12</td>
<td>4.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.28</td>
<td>4.18</td>
<td>5.0</td>
<td>3.44</td>
<td>4.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.15</td>
<td>4.32</td>
<td>4.7</td>
<td>3.44</td>
<td>4.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.21</td>
<td>0.22</td>
<td>0.64</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.18</td>
<td>4.78</td>
<td>4.3</td>
<td>18.67</td>
<td>5.98</td>
<td></td>
</tr>
<tr>
<td>苯乙烯</td>
<td>4.54</td>
<td>4.03</td>
<td>5.5</td>
<td>2.98</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.02</td>
<td>4.21</td>
<td>4.21</td>
<td>2.72</td>
<td>4.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.18</td>
<td>3.92</td>
<td>4.09</td>
<td>4.11</td>
<td>4.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>4.77</td>
<td>5.25</td>
<td>4.22</td>
<td>4.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.04</td>
<td>0.29</td>
<td>7.47</td>
<td>5.37</td>
<td>98.2</td>
<td></td>
</tr>
<tr>
<td>溴仿</td>
<td>4.41</td>
<td>3.98</td>
<td>5.5</td>
<td>4.71</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.56</td>
<td>3.56</td>
<td>4.41</td>
<td>4.43</td>
<td>4.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.05</td>
<td>3.05</td>
<td>3.56</td>
<td>4.34</td>
<td>4.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.75</td>
<td>3.75</td>
<td>3.56</td>
<td>4.03</td>
<td>4.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.47</td>
<td>0.68</td>
<td>17.2</td>
<td>0.88</td>
<td>12.42</td>
<td></td>
</tr>
<tr>
<td>异丙苯</td>
<td>4.46</td>
<td>4.19</td>
<td>5.7</td>
<td>4.71</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.86</td>
<td>4.29</td>
<td>4.5</td>
<td>4.6</td>
<td>4.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.01</td>
<td>3.86</td>
<td>4.9</td>
<td>4.8</td>
<td>4.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.19</td>
<td>4.04</td>
<td>4.8</td>
<td>4.8</td>
<td>4.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>0.36</td>
<td>0.5</td>
<td>0.46</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.72</td>
<td>8.95</td>
<td>9.2</td>
<td>96.0</td>
<td>98.6</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-四氯乙烷</td>
<td>4.87</td>
<td>4.31</td>
<td>5.6</td>
<td>4.71</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.10</td>
<td>4.92</td>
<td>4.8</td>
<td>4.6</td>
<td>4.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.85</td>
<td>4.28</td>
<td>4.6</td>
<td>4.6</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.40</td>
<td>4.68</td>
<td>4.8</td>
<td>4.8</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.30</td>
<td>4.01</td>
<td>4.8</td>
<td>4.8</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.54</td>
<td>11.7</td>
<td>0.15</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.00</td>
<td>8.95</td>
<td>11.7</td>
<td>90.3</td>
<td>85.70</td>
<td></td>
</tr>
<tr>
<td>溴苯</td>
<td>4.87</td>
<td>4.31</td>
<td>5.6</td>
<td>4.71</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.10</td>
<td>4.92</td>
<td>4.8</td>
<td>4.6</td>
<td>4.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.85</td>
<td>4.28</td>
<td>4.6</td>
<td>4.6</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.40</td>
<td>4.68</td>
<td>4.8</td>
<td>4.8</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.30</td>
<td>4.01</td>
<td>4.8</td>
<td>4.8</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.54</td>
<td>11.7</td>
<td>0.15</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.00</td>
<td>8.95</td>
<td>11.7</td>
<td>90.3</td>
<td>85.70</td>
<td></td>
</tr>
<tr>
<td>1,2,3-三氯丙烷</td>
<td>6.31</td>
<td>5.28</td>
<td>5.8</td>
<td>4.22</td>
<td>5.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.02</td>
<td>5.23</td>
<td>5.4</td>
<td>4.46</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.95</td>
<td>5.02</td>
<td>5.5</td>
<td>4.46</td>
<td>5.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.07</td>
<td>4.07</td>
<td>5.4</td>
<td>4.46</td>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.07</td>
<td>4.07</td>
<td>5.4</td>
<td>4.46</td>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>0.5</td>
<td>14.0</td>
<td>0.17</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>102.9</td>
<td>9.39</td>
<td>99.5</td>
<td>153</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>正丙苯</td>
<td>4.66</td>
<td>4.07</td>
<td>5.5</td>
<td>4.22</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.87</td>
<td>4.16</td>
<td>5.0</td>
<td>4.61</td>
<td>4.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.11</td>
<td>4.66</td>
<td>4.8</td>
<td>4.46</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.54</td>
<td>3.87</td>
<td>4.8</td>
<td>3.97</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.07</td>
<td>4.07</td>
<td>5.4</td>
<td>3.97</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.37</td>
<td>0.78</td>
<td>0.17</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.06</td>
<td>9.06</td>
<td>153</td>
<td>4</td>
<td>8.83</td>
<td></td>
</tr>
<tr>
<td>2-氯甲苯</td>
<td>4.72</td>
<td>4.37</td>
<td>4.72</td>
<td>4.18</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.01</td>
<td>4.38</td>
<td>4.18</td>
<td>4.01</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.25</td>
<td>4.38</td>
<td>4.46</td>
<td>4.01</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.24</td>
<td>4.38</td>
<td>4.91</td>
<td>4.12</td>
<td>4.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>0.35</td>
<td>0.93</td>
<td>0.27</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.33</td>
<td>8.33</td>
<td>94.0</td>
<td>6.46</td>
<td>84.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>81.37</td>
<td>81.37</td>
<td>94.0</td>
<td>82.4</td>
<td>84.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1,3,5-三甲基苯</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>叔丁基苯</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1,2,4-三甲基苯</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4-异丙基甲苯</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1,4-二氯苯</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
附表3 100 µg/L 标准溶液的精密度原始测试数据

<table>
<thead>
<tr>
<th>化合物名称</th>
<th>测定值 (µg/L)</th>
<th>第一次</th>
<th>第二次</th>
<th>第三次</th>
<th>第四次</th>
<th>第五次</th>
<th>第六次</th>
<th>平均值 (µg/L)</th>
<th>标准偏差</th>
<th>相对标准偏差</th>
<th>回收率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>正丁基苯</td>
<td>5.00</td>
<td>3.88</td>
<td>4.30</td>
<td>3.61</td>
<td>4.40</td>
<td>4.46</td>
<td>0.48</td>
<td>11.34</td>
<td>85.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td>5.25</td>
<td>4.29</td>
<td>4.46</td>
<td>4.37</td>
<td>3.86</td>
<td>4.50</td>
<td>0.44</td>
<td>10.77</td>
<td>88.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-二氯-3-氯丙烷</td>
<td>5.25</td>
<td>3.89</td>
<td>5.22</td>
<td>4.13</td>
<td>4.59</td>
<td>4.72</td>
<td>0.44</td>
<td>11.34</td>
<td>90.6-108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-三氯苯</td>
<td>5.25</td>
<td>3.89</td>
<td>5.22</td>
<td>4.13</td>
<td>4.59</td>
<td>4.72</td>
<td>0.44</td>
<td>11.34</td>
<td>90.6-108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>六氯丁二烯</td>
<td>5.25</td>
<td>3.89</td>
<td>5.22</td>
<td>4.13</td>
<td>4.59</td>
<td>4.72</td>
<td>0.44</td>
<td>11.34</td>
<td>90.6-108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>萘</td>
<td>5.25</td>
<td>3.89</td>
<td>5.22</td>
<td>4.13</td>
<td>4.59</td>
<td>4.72</td>
<td>0.44</td>
<td>11.34</td>
<td>90.6-108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-三氯苯</td>
<td>5.25</td>
<td>3.89</td>
<td>5.22</td>
<td>4.13</td>
<td>4.59</td>
<td>4.72</td>
<td>0.44</td>
<td>11.34</td>
<td>90.6-108</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 3、浓度为 100 µg/L 的样品目标化合物的精密度原始测试数据

附表3 为5家实验室对《土壤、沉积物挥发性有机物的测定 带顶吹集/气相色谱-质谱法》中浓度为 100 µg/L 的标准溶液中的目标化合物进行测定的精密度原始测试数据。
<table>
<thead>
<tr>
<th></th>
<th>室号</th>
<th>次</th>
<th>次</th>
<th>Si</th>
<th>偏差（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯二氟甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>89.36</td>
<td>109.8</td>
<td>97.83</td>
<td>89.95</td>
<td>93.16</td>
</tr>
<tr>
<td>2</td>
<td>93.2</td>
<td>95.2</td>
<td>90.0</td>
<td>110</td>
<td>97.8</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>102.0</td>
<td>87.6</td>
<td>120.9</td>
<td>119.3</td>
<td>112.0</td>
</tr>
<tr>
<td>5</td>
<td>103</td>
<td>99.2</td>
<td>100.8</td>
<td>102.8</td>
<td>95.8</td>
</tr>
<tr>
<td>氯甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>85.85</td>
<td>106.8</td>
<td>100.7</td>
<td>99.85</td>
<td>95.43</td>
</tr>
<tr>
<td>2</td>
<td>95.4</td>
<td>98.5</td>
<td>99.9</td>
<td>104</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>105.3</td>
<td>93.2</td>
<td>110.7</td>
<td>105.7</td>
<td>108.5</td>
</tr>
<tr>
<td>5</td>
<td>109.4</td>
<td>98</td>
<td>85.6</td>
<td>100.2</td>
<td>102</td>
</tr>
<tr>
<td>氯乙烯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>102.0</td>
<td>87.6</td>
<td>120.9</td>
<td>119.3</td>
<td>112.0</td>
</tr>
<tr>
<td>2</td>
<td>93.2</td>
<td>95.2</td>
<td>90.0</td>
<td>110</td>
<td>97.8</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>102.5</td>
<td>91.0</td>
<td>106.5</td>
<td>122.0</td>
<td>105.0</td>
</tr>
<tr>
<td>5</td>
<td>93.2</td>
<td>101.8</td>
<td>95.6</td>
<td>109.2</td>
<td>87.6</td>
</tr>
<tr>
<td>溴甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>78.12</td>
<td>99.29</td>
<td>85.12</td>
<td>100.0</td>
<td>74.13</td>
</tr>
<tr>
<td>2</td>
<td>70.1</td>
<td>81.3</td>
<td>100</td>
<td>99.3</td>
<td>85.1</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>115.6</td>
<td>111.4</td>
<td>103.7</td>
<td>111.5</td>
<td>110.2</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>80.71</td>
<td>98.40</td>
<td>101.1</td>
<td>89.19</td>
<td>81.60</td>
</tr>
<tr>
<td>2</td>
<td>81.6</td>
<td>95.5</td>
<td>89.2</td>
<td>98.4</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>108.9</td>
<td>102.1</td>
<td>85.4</td>
<td>84.8</td>
<td>97.7</td>
</tr>
<tr>
<td>5</td>
<td>115.8</td>
<td>102.8</td>
<td>110.8</td>
<td>113</td>
<td>100.2</td>
</tr>
<tr>
<td>三氯氟甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>85.80</td>
<td>100.7</td>
<td>103.1</td>
<td>91.47</td>
<td>88.07</td>
</tr>
<tr>
<td>2</td>
<td>88.9</td>
<td>90.1</td>
<td>91.5</td>
<td>100.7</td>
<td>103</td>
</tr>
<tr>
<td>3</td>
<td>102</td>
<td>98.2</td>
<td>96.8</td>
<td>106</td>
<td>105</td>
</tr>
<tr>
<td>4</td>
<td>109.0</td>
<td>100.6</td>
<td>89.8</td>
<td>97.4</td>
<td>99.9</td>
</tr>
<tr>
<td>5</td>
<td>101.6</td>
<td>105</td>
<td>102.6</td>
<td>100.2</td>
<td>99.2</td>
</tr>
<tr>
<td>丙酮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>109.64</td>
<td>110.73</td>
<td>120.64</td>
<td>97.87</td>
<td>95.44</td>
</tr>
<tr>
<td>2</td>
<td>95.4</td>
<td>99.3</td>
<td>97.9</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>113</td>
<td>107.6</td>
<td>113</td>
<td>107.2</td>
<td>112</td>
</tr>
<tr>
<td>碘甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>86.39</td>
<td>101.7</td>
<td>101.9</td>
<td>93.33</td>
<td>88.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>88.2</td>
<td>95.5</td>
<td>91.1</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>二硫化碳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>82.21</td>
<td>101.03</td>
<td>101.58</td>
<td>87.80</td>
<td>80.99</td>
</tr>
<tr>
<td>2</td>
<td>89.6</td>
<td>90.7</td>
<td>87.8</td>
<td>101</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>111</td>
<td>103.4</td>
<td>108.8</td>
<td>100</td>
<td>106.8</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>91.13</td>
<td>100.46</td>
<td>103.11</td>
<td>96.74</td>
<td>92.94</td>
</tr>
<tr>
<td>2</td>
<td>89.6</td>
<td>95.4</td>
<td>96.7</td>
<td>100</td>
<td>103</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,1-二氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>89.61</td>
<td>101.80</td>
<td>102.69</td>
<td>96.58</td>
<td>93.28</td>
</tr>
<tr>
<td>2</td>
<td>93.3</td>
<td>78.2</td>
<td>96.6</td>
<td>102</td>
<td>103</td>
</tr>
<tr>
<td>3</td>
<td>102</td>
<td>101</td>
<td>99.5</td>
<td>102</td>
<td>103</td>
</tr>
<tr>
<td>4</td>
<td>110.5</td>
<td>106.5</td>
<td>100.6</td>
<td>104.9</td>
<td>106.1</td>
</tr>
<tr>
<td>5</td>
<td>112.6</td>
<td>111.2</td>
<td>108.8</td>
<td>111</td>
<td>112.2</td>
</tr>
<tr>
<td>顺式-1,2-二氯乙烯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>90.86</td>
<td>101.05</td>
<td>103.56</td>
<td>96.11</td>
<td>93.14</td>
</tr>
<tr>
<td>2</td>
<td>95.5</td>
<td>90.9</td>
<td>101</td>
<td>104</td>
<td>96.1</td>
</tr>
<tr>
<td>3</td>
<td>98.5</td>
<td>105</td>
<td>109</td>
<td>108</td>
<td>98.5</td>
</tr>
<tr>
<td>4</td>
<td>113.3</td>
<td>107.9</td>
<td>108.8</td>
<td>114.4</td>
<td>111.6</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-丁酮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>104.61</td>
<td>102.52</td>
<td>114.09</td>
<td>96.01</td>
<td>94.94</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>105</td>
<td>103</td>
<td>114</td>
<td>96.0</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>102</td>
<td>111.6</td>
<td>90.8</td>
<td>100.8</td>
<td>96.8</td>
</tr>
<tr>
<td>2,2-二氯丙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>90.66</td>
<td>99.00</td>
<td>103.19</td>
<td>99.42</td>
<td>95.70</td>
</tr>
<tr>
<td>2</td>
<td>98.5</td>
<td>94.9</td>
<td>99.0</td>
<td>103</td>
<td>99.4</td>
</tr>
<tr>
<td>3</td>
<td>102</td>
<td>105</td>
<td>98.1</td>
<td>96.2</td>
<td>97.6</td>
</tr>
<tr>
<td>4</td>
<td>103.6</td>
<td>96.9</td>
<td>117.4</td>
<td>125.6</td>
<td>111.0</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>溴氯甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>92.84</td>
<td>100.36</td>
<td>103.04</td>
<td>97.90</td>
<td>84.31</td>
</tr>
<tr>
<td>2</td>
<td>96.8</td>
<td>92.8</td>
<td>100</td>
<td>103</td>
<td>97.9</td>
</tr>
<tr>
<td>3</td>
<td>98.6</td>
<td>94.5</td>
<td>99.2</td>
<td>105</td>
<td>99.5</td>
</tr>
<tr>
<td>4</td>
<td>104.0</td>
<td>98.2</td>
<td>94.0</td>
<td>99.8</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>氯仿</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>105.8</td>
<td>104.8</td>
<td>105.6</td>
<td>107.8</td>
<td>109</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>106.6</td>
<td>103.2</td>
<td>101.6</td>
<td>103.6</td>
<td>95.8</td>
</tr>
<tr>
<td>1,1-二氯丙烯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>109.8</td>
<td>105.8</td>
<td>103.6</td>
<td>105.6</td>
<td>102.4</td>
</tr>
<tr>
<td>四氯化碳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.8</td>
<td>104.8</td>
<td>103.4</td>
<td>103.4</td>
<td>97.6</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>105.1</td>
<td>98.3</td>
<td>105.2</td>
<td>102.1</td>
<td>104.7</td>
</tr>
<tr>
<td>苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>103.0</td>
<td>101.2</td>
<td>100.6</td>
<td>102.6</td>
<td>107.4</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>101.4</td>
<td>101.6</td>
<td>100.0</td>
<td>98.35</td>
<td>96.41</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96.4</td>
<td>97.9</td>
<td>101</td>
<td>102</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>95.8</td>
<td>96.7</td>
<td>94.8</td>
<td>92.7</td>
</tr>
<tr>
<td></td>
<td>104.5</td>
<td>97.8</td>
<td>87.9</td>
<td>94.1</td>
<td>96.7</td>
</tr>
<tr>
<td>105.8</td>
<td>108.2</td>
<td>102</td>
<td>104</td>
<td>105.6</td>
<td>109</td>
</tr>
<tr>
<td>1</td>
<td>92.19</td>
<td>99.97</td>
<td>102.06</td>
<td>97.73</td>
<td>95.16</td>
</tr>
<tr>
<td>2</td>
<td>99.6</td>
<td>92.2</td>
<td>97.9</td>
<td>102</td>
<td>97.7</td>
</tr>
<tr>
<td>3</td>
<td>98.6</td>
<td>100</td>
<td>95.8</td>
<td>97.2</td>
<td>93.7</td>
</tr>
<tr>
<td>4</td>
<td>108.8</td>
<td>101.7</td>
<td>101.4</td>
<td>108.8</td>
<td>105.6</td>
</tr>
<tr>
<td>5</td>
<td>103.6</td>
<td>101</td>
<td>98.8</td>
<td>100.8</td>
<td>98.8</td>
</tr>
<tr>
<td>1</td>
<td>102.46</td>
<td>103.27</td>
<td>106.68</td>
<td>99.36</td>
<td>94.74</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>102</td>
<td>103</td>
<td>107</td>
<td>98.1</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>90.4</td>
<td>101.6</td>
<td>90.4</td>
<td>92.2</td>
<td>98.8</td>
</tr>
<tr>
<td>1</td>
<td>91.75</td>
<td>101.03</td>
<td>101.18</td>
<td>100.00</td>
<td>96.57</td>
</tr>
<tr>
<td>2</td>
<td>98.8</td>
<td>91.8</td>
<td>98.1</td>
<td>101</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>105</td>
<td>98.1</td>
<td>95.6</td>
<td>94.8</td>
<td>95.2</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>95.4</td>
<td>105.9</td>
<td>110.9</td>
<td>103.5</td>
</tr>
<tr>
<td>5</td>
<td>103.6</td>
<td>100.2</td>
<td>96.4</td>
<td>98.4</td>
<td>109.4</td>
</tr>
<tr>
<td>1</td>
<td>94.82</td>
<td>100.25</td>
<td>104.29</td>
<td>98.08</td>
<td>96.05</td>
</tr>
<tr>
<td>2</td>
<td>98.1</td>
<td>94.8</td>
<td>100</td>
<td>104</td>
<td>98.1</td>
</tr>
<tr>
<td>3</td>
<td>102</td>
<td>99.2</td>
<td>96.7</td>
<td>94.9</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>105.6</td>
<td>99.3</td>
<td>106.9</td>
<td>113.8</td>
<td>106.8</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>101.2</td>
<td>92.8</td>
<td>94.6</td>
<td>103.4</td>
</tr>
<tr>
<td>1</td>
<td>94.72</td>
<td>100.87</td>
<td>104.10</td>
<td>98.45</td>
<td>96.50</td>
</tr>
<tr>
<td>2</td>
<td>97.5</td>
<td>94.7</td>
<td>101</td>
<td>104</td>
<td>98.5</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>98.3</td>
<td>95.7</td>
<td>99.4</td>
<td>97.8</td>
</tr>
<tr>
<td>4</td>
<td>110.8</td>
<td>104.9</td>
<td>113.0</td>
<td>119.3</td>
<td>112.4</td>
</tr>
<tr>
<td>5</td>
<td>103.8</td>
<td>104.4</td>
<td>99.8</td>
<td>101.8</td>
<td>103.8</td>
</tr>
<tr>
<td>1</td>
<td>93.06</td>
<td>100.50</td>
<td>100.80</td>
<td>97.15</td>
<td>92.61</td>
</tr>
<tr>
<td>2</td>
<td>98.3</td>
<td>93.1</td>
<td>98.1</td>
<td>101</td>
<td>97.2</td>
</tr>
<tr>
<td>3</td>
<td>102</td>
<td>108</td>
<td>99.2</td>
<td>102</td>
<td>96.9</td>
</tr>
<tr>
<td>4</td>
<td>107.7</td>
<td>103.5</td>
<td>106.1</td>
<td>110.4</td>
<td>107.4</td>
</tr>
<tr>
<td>5</td>
<td>102.6</td>
<td>100.6</td>
<td>97.2</td>
<td>103.4</td>
<td>104.8</td>
</tr>
<tr>
<td>1</td>
<td>111.67</td>
<td>106.70</td>
<td>114.42</td>
<td>103.95</td>
<td>95.44</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>98.1</td>
<td>107</td>
<td>114</td>
<td>104</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>95.4</td>
<td>98.6</td>
<td>97.2</td>
<td>95.3</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>93.2</td>
<td>104.4</td>
<td>98.2</td>
<td>101.4</td>
<td>100.2</td>
</tr>
<tr>
<td>1</td>
<td>96.05</td>
<td>99.84</td>
<td>102.51</td>
<td>97.63</td>
<td>94.98</td>
</tr>
<tr>
<td>2</td>
<td>98.6</td>
<td>96.1</td>
<td>99.8</td>
<td>103</td>
<td>97.6</td>
</tr>
<tr>
<td>3</td>
<td>103</td>
<td>98.6</td>
<td>95.7</td>
<td>99.5</td>
<td>97.2</td>
</tr>
<tr>
<td>4</td>
<td>110.7</td>
<td>105.7</td>
<td>102.7</td>
<td>107.6</td>
<td>107.2</td>
</tr>
<tr>
<td>5</td>
<td>98.2</td>
<td>98.8</td>
<td>92.8</td>
<td>94.6</td>
<td>92.2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td>97.91</td>
<td>98.1</td>
<td>103</td>
<td>109.9</td>
<td>102</td>
</tr>
<tr>
<td>氯苯</td>
<td>94.29</td>
<td>93.8</td>
<td>104</td>
<td>90.5</td>
<td>97.6</td>
</tr>
<tr>
<td>1,1,1,2-四氟乙烷</td>
<td>96.38</td>
<td>92.6</td>
<td>102</td>
<td>96.8</td>
<td>99.2</td>
</tr>
<tr>
<td>乙苯</td>
<td>95.45</td>
<td>92.6</td>
<td>106</td>
<td>98.19</td>
<td>96.8</td>
</tr>
<tr>
<td>间,对-二甲苯</td>
<td>98.19</td>
<td>92.8</td>
<td>104</td>
<td>98.92</td>
<td>98.92</td>
</tr>
<tr>
<td>邻-二甲苯</td>
<td>98.92</td>
<td>92.8</td>
<td>104</td>
<td>98.92</td>
<td>98.92</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>98.92</td>
<td>92.8</td>
<td>104</td>
<td>98.92</td>
<td>98.92</td>
</tr>
<tr>
<td>溴仿</td>
<td>97.30</td>
<td>93.9</td>
<td>103</td>
<td>116.5</td>
<td>91.8</td>
</tr>
<tr>
<td>异丙苯</td>
<td>97.30</td>
<td>93.9</td>
<td>103</td>
<td>116.5</td>
<td>91.8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1,1,2,2-四</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>氯乙烷</td>
<td></td>
<td>112.11</td>
<td>104.05</td>
<td>111.07</td>
<td>104.08</td>
</tr>
<tr>
<td>溴苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-三</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>氯丙烷</td>
<td>104.1</td>
<td>101.3</td>
<td>118.2</td>
<td>121.5</td>
<td>111.7</td>
</tr>
<tr>
<td>正丙苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-氯甲苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-三</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>甲基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>叔丁基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-三</td>
<td>97.49</td>
<td>102.06</td>
<td>102.06</td>
<td>99.00</td>
<td>93.77</td>
</tr>
<tr>
<td>四</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>溴苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-三</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>氯丙烷</td>
<td>104.1</td>
<td>101.3</td>
<td>118.2</td>
<td>121.5</td>
<td>111.7</td>
</tr>
<tr>
<td>正丙苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-氯甲苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-三</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>甲基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>叔丁基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-三</td>
<td>97.49</td>
<td>102.06</td>
<td>102.06</td>
<td>99.00</td>
<td>93.77</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>甲基苯</td>
<td>96.36</td>
<td>94.4</td>
<td>95.8</td>
<td>109.9</td>
<td>88.4</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td>2.31</td>
<td>2.56</td>
<td>1.59</td>
<td>0.97</td>
<td>2.98</td>
</tr>
<tr>
<td>4-异丙基苯</td>
<td>112.8</td>
<td>116.7</td>
<td>113.5</td>
<td>100.7</td>
<td>113.5</td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td>100.7</td>
<td>102.7</td>
<td>99.2</td>
<td>102.6</td>
<td>111.3</td>
</tr>
<tr>
<td>1,4-二氯苯</td>
<td>100.7</td>
<td>102.7</td>
<td>99.2</td>
<td>102.6</td>
<td>111.3</td>
</tr>
<tr>
<td>正丁基苯</td>
<td>96.4</td>
<td>95.4</td>
<td>95.2</td>
<td>94.2</td>
<td>93.6</td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td>121.0</td>
<td>124.2</td>
<td>113.5</td>
<td>117.5</td>
<td>124.2</td>
</tr>
<tr>
<td>1,2,4-三氯苯</td>
<td>106.2</td>
<td>109.3</td>
<td>102.6</td>
<td>109.3</td>
<td>113.5</td>
</tr>
</tbody>
</table>

备注：
- 表中数据单位为度，温度范围用下标表示。
- 表中数据为实验测量结果。
- 表中数据仅供参考，实际使用时应根据具体情况进行调整。
<table>
<thead>
<tr>
<th>化合物名称</th>
<th>实验室号</th>
<th>第一次</th>
<th>第二次</th>
<th>第三次</th>
<th>第四次</th>
<th>第五次</th>
<th>第六次</th>
<th>平均值(µg/L)</th>
<th>标准偏差(Si)</th>
<th>相对标准偏差(%)</th>
<th>加标回收率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>六氯丁二烯</td>
<td>1</td>
<td>42.42</td>
<td>34.93</td>
<td>33.44</td>
<td>26.42</td>
<td>18.41</td>
<td>17.67</td>
<td>28.88</td>
<td>9.82</td>
<td>34.00</td>
<td>57.76</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>32.4</td>
<td>36.4</td>
<td>28.4</td>
<td>19.7</td>
<td>32.4</td>
<td>38.9</td>
<td>31.4</td>
<td>6.79</td>
<td>21.6</td>
<td>62.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>57.47</td>
<td>46.60</td>
<td>67.95</td>
<td>61.94</td>
<td>55.67</td>
<td>55.40</td>
<td>57.50</td>
<td>7.15</td>
<td>0.12</td>
<td>115.01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>42.3</td>
<td>36.3</td>
<td>46.3</td>
<td>43.3</td>
<td>48.7</td>
<td>37.7</td>
<td>42.4</td>
<td>4.80</td>
<td>11.3</td>
<td>84.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>51.80</td>
<td>47.44</td>
<td>52.72</td>
<td>56.00</td>
<td>52.08</td>
<td>52.51</td>
<td>52.09</td>
<td>2.74</td>
<td>0.05</td>
<td>104.18</td>
</tr>
<tr>
<td>萘</td>
<td>1</td>
<td>57.35</td>
<td>47.43</td>
<td>49.21</td>
<td>45.62</td>
<td>41.54</td>
<td>41.14</td>
<td>47.05</td>
<td>5.97</td>
<td>12.69</td>
<td>94.10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49.2</td>
<td>45.6</td>
<td>41.5</td>
<td>41.1</td>
<td>57.4</td>
<td>47.4</td>
<td>47.0</td>
<td>5.97</td>
<td>12.7</td>
<td>94.10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>52.69</td>
<td>47.92</td>
<td>52.16</td>
<td>50.69</td>
<td>50.09</td>
<td>50.51</td>
<td>50.99</td>
<td>2.74</td>
<td>0.05</td>
<td>104.18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>56.71</td>
<td>50.47</td>
<td>50.52</td>
<td>49.34</td>
<td>42.98</td>
<td>45.05</td>
<td>49.18</td>
<td>4.81</td>
<td>9.78</td>
<td>98.36</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>50.5</td>
<td>49.3</td>
<td>43.0</td>
<td>45.1</td>
<td>56.7</td>
<td>50.5</td>
<td>49.2</td>
<td>4.81</td>
<td>9.78</td>
<td>98.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>53.15</td>
<td>47.03</td>
<td>57.97</td>
<td>62.25</td>
<td>54.48</td>
<td>55.26</td>
<td>54.99</td>
<td>5.05</td>
<td>0.09</td>
<td>109.99</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>46.7</td>
<td>45.0</td>
<td>41.7</td>
<td>47.7</td>
<td>43.7</td>
<td>46.7</td>
<td>45.3</td>
<td>2.25</td>
<td>5.0</td>
<td>90.5</td>
</tr>
<tr>
<td>1,2,3-三氯苯</td>
<td>1</td>
<td>55.97</td>
<td>46.13</td>
<td>49.30</td>
<td>45.15</td>
<td>44.61</td>
<td>49.06</td>
<td>48.37</td>
<td>4.21</td>
<td>8.70</td>
<td>96.74</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49.3</td>
<td>45.2</td>
<td>44.6</td>
<td>49.1</td>
<td>56.0</td>
<td>46.1</td>
<td>48.4</td>
<td>4.21</td>
<td>8.70</td>
<td>96.7</td>
</tr>
</tbody>
</table>

8 4、5家实验室土壤样品加标的原始测试数据
附表4为5家实验室对《土壤、沉积物挥发性有机物的测定 吹脱捕集/气相色谱-质谱法》中土壤样品加标测定的原始测试数据。
<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73.06</td>
<td>50.86</td>
<td>66.27</td>
<td>65.04</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58.50</td>
<td>52.68</td>
<td>54.16</td>
<td>52.06</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54.2</td>
<td>52.1</td>
<td>51.9</td>
<td>52.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.18</td>
<td>47.37</td>
<td>58.29</td>
<td>64.25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.3</td>
<td>49.41</td>
<td>34.32</td>
<td>38.33</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.26</td>
<td>49.41</td>
<td>34.32</td>
<td>38.33</td>
</tr>
<tr>
<td>三氯氟甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.26</td>
<td>49.41</td>
<td>34.32</td>
<td>38.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43.3</td>
<td>39.0</td>
<td>34.7</td>
<td>44.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.66</td>
<td>54.00</td>
<td>57.61</td>
<td>56.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60.23</td>
<td>53.85</td>
<td>58.56</td>
<td>58.20</td>
</tr>
<tr>
<td>1, 1-二氯乙烯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58.2</td>
<td>53.5</td>
<td>57.8</td>
<td>58.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.8</td>
<td>30.1</td>
<td>38.1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.21</td>
<td>48.02</td>
<td>39.21</td>
<td>41.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.7</td>
<td>34.0</td>
<td>33.7</td>
<td>40.3</td>
</tr>
<tr>
<td>丙酮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60.23</td>
<td>53.85</td>
<td>58.56</td>
<td>58.20</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.7</td>
<td>34.0</td>
<td>33.7</td>
<td>40.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.26</td>
<td>49.41</td>
<td>34.32</td>
<td>38.33</td>
</tr>
<tr>
<td>碘甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.26</td>
<td>49.41</td>
<td>34.32</td>
<td>38.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.7</td>
<td>37.7</td>
<td>34.7</td>
<td>41.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.33</td>
<td>53.59</td>
<td>57.96</td>
<td>57.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57.3</td>
<td>54.2</td>
<td>55.6</td>
<td>58.0</td>
</tr>
<tr>
<td>二硫化碳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.33</td>
<td>53.53</td>
<td>56.79</td>
<td>56.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55.4</td>
<td>52.1</td>
<td>54.5</td>
<td>56.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.00</td>
<td>40.29</td>
<td>41.36</td>
<td>42.80</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.89</td>
<td>56.95</td>
<td>60.63</td>
<td>60.98</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43.0</td>
<td>39.0</td>
<td>38.0</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.33</td>
<td>53.53</td>
<td>56.79</td>
<td>56.55</td>
</tr>
<tr>
<td>反式-1,2-二氯乙烯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60.23</td>
<td>53.85</td>
<td>58.56</td>
<td>58.20</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.72</td>
<td>49.45</td>
<td>41.56</td>
<td>46.72</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61.01</td>
<td>55.38</td>
<td>59.81</td>
<td>60.47</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57.7</td>
<td>55.4</td>
<td>59.9</td>
<td>61.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.4</td>
<td>38.8</td>
<td>41.9</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.72</td>
<td>49.45</td>
<td>41.56</td>
<td>46.72</td>
</tr>
</tbody>
</table>

氯乙烷
氯乙烷由氯和乙烷组成，氯原子的加入使得分子的正电荷密度增加，从而影响其化学性质。氯乙烷在工业中有广泛的应用，如作为有机合成的中间体、溶剂、麻醉剂等。氯乙烷的沸点较高，适用于冷却和冷冻。在空气中燃烧时，会产生氯和乙烷的混合气体，因此在使用时需要注意安全。氯乙烷在健康和安全方面也需要注意，避免吸入其蒸气或接触皮肤。氯乙烷的化学性质相对稳定，不易与其他物质发生反应，但在高温或光照下可能分解产生氯和乙烷。总之，氯乙烷作为一种常见的氯化氢化合物，具有多方面的用途和应用，需要在使用时充分考虑其特性和安全性。
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-二氯乙烷</td>
<td>61.56</td>
<td>56.46</td>
<td>61.33</td>
<td>62.16</td>
<td>58.80</td>
</tr>
<tr>
<td>2</td>
<td>55.5</td>
<td>47.1</td>
<td>48.8</td>
<td>58.8</td>
<td>53.3</td>
</tr>
<tr>
<td>3</td>
<td>46.3</td>
<td>42.5</td>
<td>44.4</td>
<td>41.3</td>
<td>40.6</td>
</tr>
<tr>
<td>4</td>
<td>42.65</td>
<td>48.53</td>
<td>44.02</td>
<td>49.29</td>
<td>47.16</td>
</tr>
<tr>
<td>5</td>
<td>48.7</td>
<td>40.3</td>
<td>34.0</td>
<td>49.7</td>
<td>35.7</td>
</tr>
<tr>
<td>顺式-1,2-二氯乙烯</td>
<td>53.16</td>
<td>54.4</td>
<td>56.9</td>
<td>52.3</td>
<td>47.6</td>
</tr>
<tr>
<td>2</td>
<td>57.6</td>
<td>54.4</td>
<td>56.9</td>
<td>52.3</td>
<td>47.6</td>
</tr>
<tr>
<td>3</td>
<td>41.9</td>
<td>40.0</td>
<td>50.0</td>
<td>38.1</td>
<td>38.8</td>
</tr>
<tr>
<td>4</td>
<td>44.41</td>
<td>47.33</td>
<td>51.59</td>
<td>57.29</td>
<td>50.01</td>
</tr>
<tr>
<td>5</td>
<td>43.3</td>
<td>40.7</td>
<td>41.3</td>
<td>44.3</td>
<td>43.3</td>
</tr>
<tr>
<td>2-丁酮</td>
<td>78.97</td>
<td>70.89</td>
<td>74.83</td>
<td>81.19</td>
<td>55.52</td>
</tr>
<tr>
<td>2</td>
<td>57.0</td>
<td>54.2</td>
<td>57.7</td>
<td>56.5</td>
<td>49.7</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,2-二氯丙烷</td>
<td>57.12</td>
<td>52.19</td>
<td>57.03</td>
<td>57.66</td>
<td>55.36</td>
</tr>
<tr>
<td>2</td>
<td>53.2</td>
<td>49.8</td>
<td>53.5</td>
<td>59.8</td>
<td>51.8</td>
</tr>
<tr>
<td>3</td>
<td>46.3</td>
<td>44.4</td>
<td>45.6</td>
<td>47.5</td>
<td>44.4</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>溴氯甲烷</td>
<td>54.92</td>
<td>49.81</td>
<td>52.43</td>
<td>55.53</td>
<td>47.14</td>
</tr>
<tr>
<td>2</td>
<td>56.7</td>
<td>53.0</td>
<td>57.6</td>
<td>56.9</td>
<td>51.0</td>
</tr>
<tr>
<td>3</td>
<td>45.0</td>
<td>41.9</td>
<td>39.4</td>
<td>41.9</td>
<td>40.6</td>
</tr>
<tr>
<td>4</td>
<td>39.03</td>
<td>46.94</td>
<td>40.21</td>
<td>45.01</td>
<td>43.99</td>
</tr>
<tr>
<td>氯仿</td>
<td>57.12</td>
<td>52.19</td>
<td>57.03</td>
<td>57.66</td>
<td>55.36</td>
</tr>
<tr>
<td>2</td>
<td>53.2</td>
<td>49.8</td>
<td>53.5</td>
<td>59.8</td>
<td>51.8</td>
</tr>
<tr>
<td>3</td>
<td>46.3</td>
<td>44.4</td>
<td>45.6</td>
<td>47.5</td>
<td>44.4</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>56.72</td>
<td>52.05</td>
<td>56.42</td>
<td>57.55</td>
<td>54.38</td>
</tr>
<tr>
<td>2</td>
<td>60.5</td>
<td>56.8</td>
<td>60.0</td>
<td>61.0</td>
<td>55.4</td>
</tr>
<tr>
<td>3</td>
<td>39.4</td>
<td>36.9</td>
<td>45.0</td>
<td>43.1</td>
<td>40.6</td>
</tr>
<tr>
<td>4</td>
<td>41.77</td>
<td>47.06</td>
<td>43.84</td>
<td>49.19</td>
<td>49.34</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>56.28</td>
<td>51.86</td>
<td>56.49</td>
<td>57.03</td>
<td>54.24</td>
</tr>
<tr>
<td>2</td>
<td>62.2</td>
<td>58.8</td>
<td>61.9</td>
<td>61.6</td>
<td>56.5</td>
</tr>
<tr>
<td>3</td>
<td>45.6</td>
<td>37.5</td>
<td>41.3</td>
<td>48.8</td>
<td>39.4</td>
</tr>
<tr>
<td>4</td>
<td>40.98</td>
<td>47.49</td>
<td>43.51</td>
<td>49.36</td>
<td>46.28</td>
</tr>
<tr>
<td>1,1-二氯丙烯</td>
<td>52.11</td>
<td>48.50</td>
<td>52.33</td>
<td>53.24</td>
<td>49.79</td>
</tr>
<tr>
<td>2</td>
<td>54.4</td>
<td>51.4</td>
<td>53.4</td>
<td>53.2</td>
<td>48.6</td>
</tr>
<tr>
<td>3</td>
<td>43.8</td>
<td>43.8</td>
<td>35.6</td>
<td>46.9</td>
<td>40.6</td>
</tr>
<tr>
<td>4</td>
<td>44.97</td>
<td>51.16</td>
<td>43.25</td>
<td>48.86</td>
<td>48.66</td>
</tr>
<tr>
<td>5</td>
<td>43.0</td>
<td>39.7</td>
<td>40.0</td>
<td>44.0</td>
<td>42.0</td>
</tr>
</tbody>
</table>

45
<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-二氯乙烷</td>
<td>43.0 34.3 36.7 44.0 38.3 35.7 38.7 3.98 0.12 83.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>61.67 55.52 59.44 60.80 52.72 53.36 57.25 3.89 6.79 114.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>54.5 47.0 47.9 57.1 52.2 57.0 52.6 4.43 8.43 105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>45.6 41.9 50.6 52.5 41.9 40.0 45.4 5.12 11.28 90.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>42.77 47.35 42.36 47.17 46.10 47.54 45.55 2.37 0.05 91.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>— — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>二氯乙烷</td>
<td>58.77 53.27 58.33 59.39 56.43 59.23 57.57 2.36 4.10 115.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>52.28 47.55 51.15 52.37 50.64 54.64 51.44 2.35 4.57 102.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>52.1 50.3 54.2 56.7 52.1 56.4 53.6 2.58 4.81 107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>46.3 41.9 52.5 50.0 47.5 40.6 46.5 4.59 9.87 92.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>42.50 49.10 42.89 49.23 47.28 49.20 46.70 3.19 0.07 93.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>47.0 36.3 41.7 47.7 44.0 37.7 42.4 4.72 11.1 84.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>56.52 49.71 54.17 55.68 52.45 54.53 53.84 2.46 4.56 107.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>57.3 44.0 40.8 56.3 51.9 56.5 51.1 7.09 13.87 102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48.1 43.8 40.0 48.1 46.3 41.9 44.7 3.36 7.51 89.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>44.2 48.85 47.02 53.19 49.15 51.06 48.95 3.06 0.06 97.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>48.3 46.0 41.7 49.3 43.7 48.0 46.2 2.96 6.4 92.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>59.81 51.77 55.20 56.60 48.44 49.11 53.49 4.48 8.37 107.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>54.3 47.4 48.5 52.1 48.5 52.3 50.5 2.75 5.45 101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>46.3 43.1 42.5 43.1 38.8 45.0 43.1 2.56 5.93 86.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>44.2 47.03 38.16 42.25 43.13 44.80 42.41 3.36 0.08 84.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>45.3 43.3 46.0 46.3 48.3 45.0 45.7 1.65 3.6 91.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>二溴甲烷</td>
<td>56.88 51.02 54.66 56.24 52.41 54.27 54.25 2.23 4.11 108.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>54.9 46.0 46.4 55.4 50.9 55.6 51.5 4.46 8.67 103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>45.0 48.1 41.9 39.4 40.6 41.3 42.7 3.24 7.57 85.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>41.94 47.47 42.02 47.25 45.89 47.54 45.35 2.68 0.06 90.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>48.7 46.3 44.7 49.7 47.0 48.0 47.4 1.79 3.8 94.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>56.40 48.56 51.74 57.03 44.14 42.50 50.06 6.10 12.18 100.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>60.8 52.7 53.4 57.4 47.7 53.2 54.2 4.47 8.25 108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>— — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>— — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>— — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>甲苯</td>
<td>53.39 48.25 52.58 53.82 52.23 55.12 52.57 2.35 4.46 105.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>59.4 56.4 59.2 56.3 47.4 52.8 55.3 4.53 8.19 111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>46.9 41.9 46.3 49.4 43.1 40.6 44.7 3.37 7.53 89.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>45.72 48.15 45.39 50.18 48.35 49.56 47.89 1.96 0.04 95.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>43.7 42.0 44.0 44.3 46.0 43.7 44.0 1.28 2.9 87.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-二甲苯</td>
<td>57.12 49.74 53.35 54.52 46.96 47.85 51.59 4.03 7.81 103.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>化合物</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>三氯乙烯</td>
<td></td>
</tr>
<tr>
<td>1,3-二氯丙烷</td>
<td></td>
</tr>
<tr>
<td>二氯乙烯</td>
<td></td>
</tr>
<tr>
<td>2-己酮</td>
<td></td>
</tr>
<tr>
<td>二溴氯甲烷</td>
<td></td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td></td>
</tr>
<tr>
<td>氯苯</td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-四氯乙烷</td>
<td></td>
</tr>
<tr>
<td>乙苯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>35.3</td>
<td>30.3</td>
<td>31.3</td>
<td>36.0</td>
<td>33.0</td>
<td>31.7</td>
<td>32.9</td>
<td>2.29</td>
<td>6.9</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>间,对-二甲苯</td>
<td>1</td>
<td>57.35</td>
<td>47.68</td>
<td>53.23</td>
<td>52.81</td>
<td>54.28</td>
<td>57.08</td>
<td>53.74</td>
<td>3.53</td>
<td>6.57</td>
</tr>
<tr>
<td>2</td>
<td>51.3</td>
<td>54.8</td>
<td>53.9</td>
<td>53.2</td>
<td>50.4</td>
<td>53.1</td>
<td>52.8</td>
<td>1.66</td>
<td>3.15</td>
<td>106</td>
</tr>
<tr>
<td>3</td>
<td>43.8</td>
<td>41.3</td>
<td>46.9</td>
<td>40.0</td>
<td>47.5</td>
<td>50.0</td>
<td>44.9</td>
<td>3.87</td>
<td>8.62</td>
<td>89.8</td>
</tr>
<tr>
<td>4</td>
<td>89.73</td>
<td>98.15</td>
<td>93.53</td>
<td>54.12</td>
<td>81.00</td>
<td>78.42</td>
<td>82.49</td>
<td>15.77</td>
<td>0.19</td>
<td>82.5</td>
</tr>
<tr>
<td>5</td>
<td>32.3</td>
<td>32.3</td>
<td>30.3</td>
<td>33.0</td>
<td>32.0</td>
<td>33.3</td>
<td>32.2</td>
<td>1.05</td>
<td>3.3</td>
<td>64.4</td>
</tr>
</tbody>
</table>

邻-二甲苯	1	56.33	47.44	53.19	53.84	56.39	53.33	3.27	6.14	106.7
2	45.6	50.4	46.6	54.5	53.5	55.9	51.1	4.27	8.37	102
3	45.6	41.9	46.9	40.0	46.9	31.9	42.2	5.78	13.69	84.4
4	45.02	50.12	52.84	52.34	49.50	51.32	49.15	2.81	0.06	98.30
5	38.3	31.0	33.7	39.0	35.3	34.9	32.2	3.22	9.2	69.9

苯乙烯	1	55.40	47.22	52.68	51.91	54.27	52.32	2.81	5.38	104.6
2	48.9	53.6	49.7	54.1	56.6	52.6	2.88	5.47	105	
3	45.6	41.9	46.9	40.0	56.9	54.2	3.53	6.66	104.6	
4	44.04	49.38	44.99	50.02	48.15	49.85	47.74	2.60	0.05	95.47
5	35.3	32.7	34.3	36.0	36.3	34.8	3.16	3.9	69.5	

溴仿	1	54.93	47.03	52.57	52.78	53.93	57.73	53.16	3.54	6.66	106.3
2	48.4	53.7	52.7	56.4	52.5	53.2	52.8	2.59	4.91	106	
3	44.4	41.3	50.6	60.6	42.5	56.6	46.0	8.55	18.60	91.9	
4	44.64	51.82	44.80	50.51	49.32	51.22	49.82	3.21	0.07	97.43	
5	35.3	36.0	34.7	36.0	36.3	37.3	35.9	0.89	2.5	71.9	

异丙苯	1	52.27	45.99	50.33	51.72	52.41	52.22	50.37	2.39	4.74	100.7
2	47.1	51.7	52.5	53.4	52.7	52.7	48.8	51.0	2.49	4.88	102
3	40.6	33.8	38.1	35.6	41.3	28.8	36.4	4.68	12.88	72.7	
4	49.44	50.09	53.17	58.47	53.00	54.52	53.12	3.27	0.06	106.23	
5	34.3	32.0	31.7	35.0	33.0	33.2	3.28	3.9	66.4		

1,1,2,2-四氯乙烷	1	72.60	61.44	65.18	63.65	54.94	56.43	62.37	6.41	10.28	124.8
2	47.3	52.8	55.5	57.9	55.6	54.7	52.7	4.44	8.44	105	
3	46.9	44.4	37.5	49.4	37.5	33.1	41.5	6.36	15.35	82.9	
4	48.76	51.22	47.40	52.65	51.21	52.36	50.60	2.08	0.42	101.20	
5	—	—	—	—	—	—	—	—	—	—	

<p>| 正丙苯 | 1 | 52.23| 45.54| 51.50| 51.09| 52.70| 56.50| 51.59| 3.54 | 6.86 | 103.2|
| 2 | 56.4 | 46.1 | 50.8 | 50.5 | 51.7 | 45.0 | 50.1 | 4.11 | 8.21 | 100 |</p>
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3,5-甲苯</td>
<td>52.68</td>
<td>47.18</td>
<td>52.79</td>
<td>53.70</td>
<td>52.91</td>
</tr>
<tr>
<td>2,氯甲苯</td>
<td>45.9</td>
<td>50.9</td>
<td>55.7</td>
<td>54.3</td>
<td>51.1</td>
</tr>
<tr>
<td>1,3,5-三甲苯</td>
<td>38.1</td>
<td>33.8</td>
<td>26.3</td>
<td>34.4</td>
<td>40.0</td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td>52.53</td>
<td>53.52</td>
<td>55.49</td>
<td>62.33</td>
<td>56.46</td>
</tr>
<tr>
<td>叔丁基苯</td>
<td>52.96</td>
<td>53.52</td>
<td>55.49</td>
<td>62.33</td>
<td>56.46</td>
</tr>
<tr>
<td>1,2,4-三甲苯</td>
<td>53.65</td>
<td>48.83</td>
<td>54.47</td>
<td>54.78</td>
<td>55.53</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td>52.96</td>
<td>53.52</td>
<td>55.49</td>
<td>62.33</td>
<td>56.46</td>
</tr>
<tr>
<td>4-异丙基苯</td>
<td>54.33</td>
<td>53.18</td>
<td>56.33</td>
<td>63.30</td>
<td>56.93</td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td>47.56</td>
<td>45.18</td>
<td>50.01</td>
<td>50.64</td>
<td>48.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-二氯苯</td>
<td>53.33</td>
<td>53.18</td>
<td>56.33</td>
<td>63.30</td>
</tr>
<tr>
<td>2,氯甲苯</td>
<td>43.1</td>
<td>37.5</td>
<td>48.1</td>
<td>40.0</td>
</tr>
<tr>
<td>1,3,5-三甲苯</td>
<td>35.6</td>
<td>28.8</td>
<td>25.6</td>
<td>39.4</td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td>53.15</td>
<td>52.19</td>
<td>55.33</td>
<td>60.80</td>
</tr>
<tr>
<td>叔丁基苯</td>
<td>28.0</td>
<td>28.3</td>
<td>28.0</td>
<td>28.3</td>
</tr>
<tr>
<td>1,2,4-三甲苯</td>
<td>28.0</td>
<td>28.3</td>
<td>28.0</td>
<td>28.3</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td>20.7</td>
<td>20.3</td>
<td>21.3</td>
<td>21.0</td>
</tr>
<tr>
<td>4-异丙基苯</td>
<td>45.57</td>
<td>50.07</td>
<td>47.86</td>
<td>53.50</td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td>18.0</td>
<td>18.7</td>
<td>17.3</td>
<td>18.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-二氯苯</td>
<td>37.5</td>
<td>41.9</td>
<td>28.8</td>
</tr>
<tr>
<td>2,氯甲苯</td>
<td>54.3</td>
<td>53.0</td>
<td>56.8</td>
</tr>
<tr>
<td>1,3,5-三甲苯</td>
<td>35.6</td>
<td>28.8</td>
<td>25.6</td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td>53.15</td>
<td>52.19</td>
<td>55.33</td>
</tr>
<tr>
<td>叔丁基苯</td>
<td>20.7</td>
<td>20.3</td>
<td>21.3</td>
</tr>
<tr>
<td>1,2,4-三甲苯</td>
<td>20.7</td>
<td>20.3</td>
<td>21.3</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td>54.33</td>
<td>53.18</td>
<td>56.33</td>
</tr>
<tr>
<td>4-异丙基苯</td>
<td>45.57</td>
<td>50.07</td>
<td>47.86</td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td>18.0</td>
<td>18.7</td>
<td>17.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3,5-甲苯</td>
<td>52.61</td>
<td>46.14</td>
<td>51.25</td>
<td>51.75</td>
<td>52.45</td>
</tr>
<tr>
<td>2,氯甲苯</td>
<td>54.3</td>
<td>53.0</td>
<td>56.8</td>
<td>54.7</td>
<td>53.7</td>
</tr>
<tr>
<td>1,3,5-三甲苯</td>
<td>43.1</td>
<td>37.5</td>
<td>48.1</td>
<td>40.0</td>
<td>44.4</td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td>53.15</td>
<td>52.19</td>
<td>55.33</td>
<td>60.80</td>
<td>56.90</td>
</tr>
<tr>
<td>叔丁基苯</td>
<td>52.61</td>
<td>53.18</td>
<td>56.33</td>
<td>63.30</td>
<td>56.93</td>
</tr>
<tr>
<td>1,2,4-三甲苯</td>
<td>52.61</td>
<td>53.18</td>
<td>56.33</td>
<td>63.30</td>
<td>56.93</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td>20.7</td>
<td>20.3</td>
<td>21.3</td>
<td>21.0</td>
<td>22.3</td>
</tr>
<tr>
<td>4-异丙基苯</td>
<td>45.57</td>
<td>50.07</td>
<td>47.86</td>
<td>53.50</td>
<td>50.05</td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td>18.0</td>
<td>18.7</td>
<td>17.3</td>
<td>18.7</td>
<td>18.0</td>
</tr>
<tr>
<td>1,4-二氯苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>47.92</td>
<td>45.35</td>
<td>50.60</td>
<td>51.16</td>
<td>49.00</td>
</tr>
<tr>
<td>2</td>
<td>57.5</td>
<td>46.9</td>
<td>49.0</td>
<td>52.7</td>
<td>48.7</td>
</tr>
<tr>
<td>3</td>
<td>35.6</td>
<td>30.6</td>
<td>26.9</td>
<td>41.9</td>
<td>28.1</td>
</tr>
<tr>
<td>4</td>
<td>45.57</td>
<td>50.07</td>
<td>46.64</td>
<td>52.14</td>
<td>49.59</td>
</tr>
<tr>
<td>5</td>
<td>17.0</td>
<td>15.3</td>
<td>16.3</td>
<td>17.3</td>
<td>17.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>正丁基苯</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44.74</td>
<td>44.30</td>
<td>50.51</td>
<td>50.24</td>
<td>48.66</td>
<td>53.90</td>
<td>48.73</td>
<td>3.68</td>
<td>7.55</td>
<td>97.45</td>
</tr>
<tr>
<td>2</td>
<td>58.5</td>
<td>46.2</td>
<td>48.6</td>
<td>47.6</td>
<td>48.1</td>
<td>46.2</td>
<td>49.2</td>
<td>4.64</td>
<td>9.44</td>
<td>98.4</td>
</tr>
<tr>
<td>3</td>
<td>34.4</td>
<td>28.1</td>
<td>28.8</td>
<td>26.9</td>
<td>30.0</td>
<td>36.9</td>
<td>30.9</td>
<td>3.93</td>
<td>12.74</td>
<td>61.7</td>
</tr>
<tr>
<td>4</td>
<td>44.79</td>
<td>49.19</td>
<td>47.86</td>
<td>53.04</td>
<td>49.34</td>
<td>51.19</td>
<td>49.23</td>
<td>2.83</td>
<td>0.06</td>
<td>98.47</td>
</tr>
<tr>
<td>5</td>
<td>19.3</td>
<td>16.3</td>
<td>17.7</td>
<td>19.7</td>
<td>18.7</td>
<td>18.1</td>
<td>1.34</td>
<td>7.4</td>
<td>36.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2-二氯苯</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.75</td>
<td>44.02</td>
<td>49.58</td>
<td>50.14</td>
<td>46.21</td>
<td>48.96</td>
<td>47.44</td>
<td>2.46</td>
<td>5.18</td>
<td>94.89</td>
</tr>
<tr>
<td>2</td>
<td>58.5</td>
<td>42.4</td>
<td>47.6</td>
<td>50.8</td>
<td>47.6</td>
<td>42.1</td>
<td>46.5</td>
<td>3.52</td>
<td>7.57</td>
<td>93.0</td>
</tr>
<tr>
<td>3</td>
<td>33.1</td>
<td>31.3</td>
<td>37.5</td>
<td>26.9</td>
<td>29.4</td>
<td>38.1</td>
<td>32.0</td>
<td>5.33</td>
<td>16.67</td>
<td>64.0</td>
</tr>
<tr>
<td>4</td>
<td>58.32</td>
<td>54.73</td>
<td>43.75</td>
<td>50.04</td>
<td>54.70</td>
<td>53.82</td>
<td>52.56</td>
<td>5.06</td>
<td>0.10</td>
<td>105.12</td>
</tr>
<tr>
<td>5</td>
<td>16.0</td>
<td>16.3</td>
<td>15.0</td>
<td>16.3</td>
<td>16.0</td>
<td>17.0</td>
<td>16.1</td>
<td>0.65</td>
<td>4.0</td>
<td>32.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2-溴-3-氯丙烷</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.35</td>
<td>37.62</td>
<td>42.98</td>
<td>43.83</td>
<td>38.68</td>
<td>38.39</td>
<td>38.51</td>
<td>4.54</td>
<td>11.79</td>
<td>77.01</td>
</tr>
<tr>
<td>2</td>
<td>40.6</td>
<td>50.1</td>
<td>43.0</td>
<td>40.6</td>
<td>44.7</td>
<td>39.0</td>
<td>43.0</td>
<td>4.04</td>
<td>9.40</td>
<td>86.0</td>
</tr>
<tr>
<td>3</td>
<td>20.6</td>
<td>26.3</td>
<td>20.0</td>
<td>25.0</td>
<td>25.6</td>
<td>18.8</td>
<td>22.7</td>
<td>3.27</td>
<td>14.41</td>
<td>45.4</td>
</tr>
<tr>
<td>4</td>
<td>48.01</td>
<td>52.36</td>
<td>46.34</td>
<td>46.52</td>
<td>49.30</td>
<td>50.06</td>
<td>48.77</td>
<td>2.30</td>
<td>0.05</td>
<td>97.53</td>
</tr>
<tr>
<td>5</td>
<td>31.3</td>
<td>31.0</td>
<td>30.3</td>
<td>32.0</td>
<td>31.7</td>
<td>32.3</td>
<td>31.4</td>
<td>0.73</td>
<td>2.3</td>
<td>62.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2,4-三氯苯</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.95</td>
<td>36.20</td>
<td>41.86</td>
<td>41.77</td>
<td>34.96</td>
<td>38.56</td>
<td>37.05</td>
<td>4.87</td>
<td>13.13</td>
<td>74.10</td>
</tr>
<tr>
<td>2</td>
<td>50.6</td>
<td>42.2</td>
<td>51.3</td>
<td>50.5</td>
<td>45.8</td>
<td>38.4</td>
<td>46.5</td>
<td>5.32</td>
<td>11.5</td>
<td>92.9</td>
</tr>
<tr>
<td>3</td>
<td>33.8</td>
<td>27.5</td>
<td>38.1</td>
<td>26.9</td>
<td>26.3</td>
<td>33.1</td>
<td>31.0</td>
<td>4.77</td>
<td>15.41</td>
<td>61.9</td>
</tr>
<tr>
<td>4</td>
<td>31.41</td>
<td>51.90</td>
<td>44.78</td>
<td>48.19</td>
<td>44.17</td>
<td>48.76</td>
<td>44.87</td>
<td>7.17</td>
<td>0.16</td>
<td>89.74</td>
</tr>
<tr>
<td>5</td>
<td>26.0</td>
<td>25.3</td>
<td>22.7</td>
<td>26.7</td>
<td>23.7</td>
<td>26.7</td>
<td>25.8</td>
<td>0.87</td>
<td>3.4</td>
<td>51.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6氯丁二烯</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.38</td>
<td>34.62</td>
<td>41.53</td>
<td>42.10</td>
<td>32.36</td>
<td>31.60</td>
<td>34.93</td>
<td>5.83</td>
<td>16.68</td>
<td>69.86</td>
</tr>
<tr>
<td>2</td>
<td>34.2</td>
<td>33.8</td>
<td>51.3</td>
<td>39.6</td>
<td>43.7</td>
<td>37.5</td>
<td>40.0</td>
<td>6.63</td>
<td>16.6</td>
<td>80.0</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>16.9</td>
<td>20.0</td>
<td>28.8</td>
<td>19.4</td>
<td>22.5</td>
<td>21.3</td>
<td>4.10</td>
<td>19.28</td>
<td>42.5</td>
</tr>
<tr>
<td>4</td>
<td>46.24</td>
<td>42.98</td>
<td>41.87</td>
<td>48.84</td>
<td>46.35</td>
<td>46.72</td>
<td>45.50</td>
<td>2.59</td>
<td>0.06</td>
<td>91.00</td>
</tr>
<tr>
<td>5</td>
<td>25.3</td>
<td>20.7</td>
<td>21.0</td>
<td>25.7</td>
<td>22.0</td>
<td>21.7</td>
<td>22.7</td>
<td>2.20</td>
<td>9.7</td>
<td>45.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>萘</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.52</td>
<td>35.28</td>
<td>41.32</td>
<td>42.31</td>
<td>33.19</td>
<td>33.99</td>
<td>35.60</td>
<td>5.51</td>
<td>15.46</td>
<td>71.20</td>
</tr>
<tr>
<td>2</td>
<td>40.2</td>
<td>41.8</td>
<td>41.3</td>
<td>43.1</td>
<td>31.4</td>
<td>43.2</td>
<td>39.8</td>
<td>4.27</td>
<td>10.7</td>
<td>79.7</td>
</tr>
<tr>
<td>3</td>
<td>20.6</td>
<td>25.6</td>
<td>25.0</td>
<td>20.6</td>
<td>17.5</td>
<td>22.2</td>
<td>22.0</td>
<td>3.05</td>
<td>13.86</td>
<td>43.9</td>
</tr>
<tr>
<td>4</td>
<td>47.56</td>
<td>52.36</td>
<td>46.97</td>
<td>47.56</td>
<td>49.49</td>
<td>50.47</td>
<td>49.07</td>
<td>2.10</td>
<td>0.04</td>
<td>98.14</td>
</tr>
<tr>
<td>5</td>
<td>24.7</td>
<td>24.0</td>
<td>24.7</td>
<td>25.3</td>
<td>25.7</td>
<td>25.0</td>
<td>24.9</td>
<td>0.58</td>
<td>2.3</td>
<td>49.8</td>
</tr>
</tbody>
</table>

9 5、5 家实验室沉积物样品加标的原始测试数据
附表 5 为 5 家实验室对《土壤、沉积物 挥发性有机物的测定 吹脱捕集/气相色谱-质
附表 5 沉积物加标测定的准确度原始测试数据

<table>
<thead>
<tr>
<th>化合物名称</th>
<th>实验室号</th>
<th>测定值（µg/L）</th>
<th>平均值（µg/L）</th>
<th>标准偏差</th>
<th>相对标准偏差</th>
<th>加标回收率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯二氟甲烷</td>
<td>1</td>
<td>35.83</td>
<td>34.45</td>
<td>27.52</td>
<td>28.51</td>
<td>36.93</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>27.5</td>
<td>27.5</td>
<td>36.9</td>
<td>30.8</td>
<td>35.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>57.61</td>
<td>56.73</td>
<td>45.31</td>
<td>56.63</td>
<td>47.75</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>43.6</td>
<td>35.2</td>
<td>45.4</td>
<td>41.6</td>
<td>50.2</td>
</tr>
<tr>
<td>氯甲烷</td>
<td>1</td>
<td>72.00</td>
<td>41.97</td>
<td>59.44</td>
<td>72.00</td>
<td>51.33</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>42.8</td>
<td>56.5</td>
<td>59.1</td>
<td>48.7</td>
<td>49.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>66.27</td>
<td>63.32</td>
<td>60.41</td>
<td>50.86</td>
<td>73.06</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯乙烯</td>
<td>1</td>
<td>65.25</td>
<td>44.85</td>
<td>54.52</td>
<td>65.25</td>
<td>52.57</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>45.8</td>
<td>58.5</td>
<td>72.0</td>
<td>42.0</td>
<td>59.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>58.29</td>
<td>54.64</td>
<td>56.09</td>
<td>47.37</td>
<td>51.30</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>48.1</td>
<td>43.7</td>
<td>40.9</td>
<td>45.8</td>
<td>45.0</td>
</tr>
<tr>
<td>溴甲烷</td>
<td>1</td>
<td>60.67</td>
<td>44.31</td>
<td>53.42</td>
<td>60.67</td>
<td>50.47</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>46.3</td>
<td>55.7</td>
<td>65.3</td>
<td>44.9</td>
<td>54.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>34.32</td>
<td>43.33</td>
<td>44.36</td>
<td>49.41</td>
<td>41.26</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯乙烷</td>
<td>1</td>
<td>58.69</td>
<td>49.19</td>
<td>50.00</td>
<td>58.69</td>
<td>55.11</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>52.3</td>
<td>54.4</td>
<td>60.7</td>
<td>44.3</td>
<td>53.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>39.21</td>
<td>43.98</td>
<td>45.24</td>
<td>48.02</td>
<td>41.21</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>三氯氟甲烷</td>
<td>1</td>
<td>54.19</td>
<td>50.05</td>
<td>55.84</td>
<td>54.19</td>
<td>57.09</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>54.1</td>
<td>58.4</td>
<td>58.7</td>
<td>49.2</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>52.72</td>
<td>52.08</td>
<td>52.51</td>
<td>47.44</td>
<td>51.80</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>44.6</td>
<td>37.8</td>
<td>34.0</td>
<td>42.5</td>
<td>37.4</td>
</tr>
<tr>
<td>1，1-二氯乙烯</td>
<td>1</td>
<td>54.37</td>
<td>48.89</td>
<td>52.62</td>
<td>54.37</td>
<td>57.55</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>52.0</td>
<td>51.3</td>
<td>54.2</td>
<td>50.1</td>
<td>55.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>32.9</td>
<td>35.0</td>
<td>33.8</td>
<td>34.1</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>57.79</td>
<td>54.48</td>
<td>55.26</td>
<td>47.03</td>
<td>53.15</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>40.9</td>
<td>33.0</td>
<td>33.0</td>
<td>38.7</td>
<td>36.4</td>
</tr>
<tr>
<td>丙酮</td>
<td>1</td>
<td>46.52</td>
<td>48.53</td>
<td>50.96</td>
<td>46.52</td>
<td>69.44</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>碘甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>65.3</td>
<td>52.6</td>
<td>54.4</td>
<td>48.9</td>
<td>52.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>41.9</td>
<td>36.6</td>
<td>34.0</td>
<td>39.6</td>
<td>37.4</td>
</tr>
<tr>
<td>二硫化碳</td>
<td>1</td>
<td>54.54</td>
<td>41.15</td>
<td>44.84</td>
<td>54.54</td>
<td>56.94</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60.7</td>
<td>50.5</td>
<td>46.5</td>
<td>48.5</td>
<td>51.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>1</td>
<td>57.66</td>
<td>47.56</td>
<td>50.24</td>
<td>57.66</td>
<td>56.55</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>48.7</td>
<td>51.1</td>
<td>44.5</td>
<td>41.2</td>
<td>44.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>反式-1,2-二氯乙烯</td>
<td>1</td>
<td>52.49</td>
<td>47.96</td>
<td>51.68</td>
<td>52.49</td>
<td>60.16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>54.2</td>
<td>57.1</td>
<td>57.7</td>
<td>47.6</td>
<td>50.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>45.1</td>
<td>48.0</td>
<td>36.3</td>
<td>41.9</td>
<td>45.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>47.11</td>
<td>48.46</td>
<td>49.90</td>
<td>47.79</td>
<td>45.12</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-二氯乙烷</td>
<td>1</td>
<td>52.58</td>
<td>49.21</td>
<td>49.93</td>
<td>52.58</td>
<td>58.73</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>54.4</td>
<td>57.6</td>
<td>52.5</td>
<td>48.0</td>
<td>51.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>31.9</td>
<td>42.1</td>
<td>43.9</td>
<td>41.0</td>
<td>34.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>47.50</td>
<td>49.61</td>
<td>51.18</td>
<td>49.08</td>
<td>45.91</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>顺式-1,2-二氯乙烯</td>
<td>1</td>
<td>51.52</td>
<td>49.60</td>
<td>50.33</td>
<td>51.52</td>
<td>59.78</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>46.5</td>
<td>49.4</td>
<td>52.6</td>
<td>49.2</td>
<td>49.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>41.4</td>
<td>41.2</td>
<td>48.6</td>
<td>39.6</td>
<td>48.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43.87</td>
<td>46.83</td>
<td>48.79</td>
<td>48.14</td>
<td>41.98</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>50.2</td>
<td>39.1</td>
<td>33.3</td>
<td>47.7</td>
<td>36.8</td>
</tr>
<tr>
<td>2-丁酮</td>
<td>1</td>
<td>48.41</td>
<td>48.69</td>
<td>49.34</td>
<td>48.41</td>
<td>51.47</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>54.5</td>
<td>56.9</td>
<td>51.5</td>
<td>49.6</td>
<td>50.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>50.0</td>
<td>36.1</td>
<td>37.8</td>
<td>45.3</td>
<td>31.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>41.36</td>
<td>41.03</td>
<td>42.04</td>
<td>40.29</td>
<td>39.00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>44.3</td>
<td>37.2</td>
<td>38.9</td>
<td>42.2</td>
<td>43.0</td>
</tr>
<tr>
<td>2,2-二氯丙烷</td>
<td>1</td>
<td>49.53</td>
<td>53.97</td>
<td>55.88</td>
<td>49.53</td>
<td>74.90</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>57.7</td>
<td>56.6</td>
<td>48.4</td>
<td>54.0</td>
<td>55.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

52
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>48.59</td>
<td>48.40</td>
<td>48.68</td>
<td>48.59</td>
<td>52.39</td>
<td>50.49</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>47.13</td>
<td>48.68</td>
<td>49.68</td>
<td>48.59</td>
<td>52.39</td>
<td>50.49</td>
<td>49.69</td>
<td>1.55</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.56</td>
<td>49.42</td>
<td>49.51</td>
<td>49.56</td>
<td>50.08</td>
<td>49.56</td>
<td>50.08</td>
<td>1.81</td>
<td>3.65</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>50.08</td>
<td>49.39</td>
<td>50.13</td>
<td>50.08</td>
<td>53.98</td>
<td>49.39</td>
<td>50.08</td>
<td>1.81</td>
<td>3.65</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>52.6</td>
<td>58.7</td>
<td>50.7</td>
<td>48.4</td>
<td>49.7</td>
<td>54.9</td>
<td>52.5</td>
<td>3.81</td>
<td>7.25</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>54.13</td>
<td>48.8</td>
<td>50.5</td>
<td>50.5</td>
<td>49.5</td>
<td>46.7</td>
<td>43.4</td>
<td>3.07</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>49.4</td>
<td>49.25</td>
<td>49.90</td>
<td>49.74</td>
<td>53.93</td>
<td>55.76</td>
<td>53.3</td>
<td>2.79</td>
<td>5.44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>53.6</td>
<td>47.7</td>
<td>49.3</td>
<td>49.1</td>
<td>53.9</td>
<td>55.8</td>
<td>51.5</td>
<td>3.22</td>
<td>6.26</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>50.6</td>
<td>52.6</td>
<td>41.9</td>
<td>40.0</td>
<td>45.6</td>
<td>41.9</td>
<td>45.4</td>
<td>5.12</td>
<td>11.28</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>47.02</td>
<td>49.15</td>
<td>51.06</td>
<td>48.85</td>
<td>44.42</td>
<td>43.19</td>
<td>48.9</td>
<td>3.06</td>
<td>6.25</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>41.4</td>
<td>41.4</td>
<td>33.3</td>
<td>39.4</td>
<td>36.8</td>
<td>41.6</td>
<td>39.0</td>
<td>3.35</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>48.32</td>
<td>47.77</td>
<td>50.51</td>
<td>48.32</td>
<td>50.33</td>
<td>52.55</td>
<td>49.97</td>
<td>1.59</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>56.3</td>
<td>48.0</td>
<td>55.6</td>
<td>51.4</td>
<td>49.2</td>
<td>49.8</td>
<td>51.7</td>
<td>3.46</td>
<td>6.69</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30.6</td>
<td>39.4</td>
<td>30.0</td>
<td>32.5</td>
<td>37.5</td>
<td>42.5</td>
<td>35.4</td>
<td>5.13</td>
<td>14.48</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43.51</td>
<td>46.28</td>
<td>48.38</td>
<td>47.49</td>
<td>40.98</td>
<td>49.36</td>
<td>46.0</td>
<td>3.18</td>
<td>6.92</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>43.6</td>
<td>32.3</td>
<td>37.9</td>
<td>41.3</td>
<td>41.9</td>
<td>32.6</td>
<td>38.3</td>
<td>4.87</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>49.20</td>
<td>49.75</td>
<td>50.62</td>
<td>49.20</td>
<td>53.47</td>
<td>54.22</td>
<td>51.08</td>
<td>2.22</td>
<td>4.34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>56.3</td>
<td>50.5</td>
<td>48.3</td>
<td>50.3</td>
<td>52.6</td>
<td>50.6</td>
<td>51.4</td>
<td>2.74</td>
<td>5.33</td>
</tr>
</tbody>
</table>

溴氯甲烷
氯仿
1,1,1-三氯乙烷
1,1-二氯丙烯
四氯化碳
1,2-二氯乙烷
苯
三氟乙烯
1,2-二氯丙烷
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>二溴甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>48.84</td>
<td>49.48</td>
<td>49.30</td>
<td>48.84</td>
<td>54.19</td>
</tr>
<tr>
<td>2</td>
<td>49.7</td>
<td>47.9</td>
<td>54.7</td>
<td>49.8</td>
<td>48.0</td>
</tr>
<tr>
<td>3</td>
<td>41.9</td>
<td>39.4</td>
<td>40.6</td>
<td>41.3</td>
<td>45.0</td>
</tr>
<tr>
<td>4</td>
<td>42.36</td>
<td>46.10</td>
<td>47.54</td>
<td>47.35</td>
<td>42.77</td>
</tr>
<tr>
<td>5</td>
<td>50.2</td>
<td>44.9</td>
<td>43.8</td>
<td>47.7</td>
<td>48.4</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>37.32</td>
<td>43.81</td>
<td>45.23</td>
<td>37.31</td>
<td>52.23</td>
</tr>
<tr>
<td>2</td>
<td>49.9</td>
<td>47.9</td>
<td>48.9</td>
<td>51.0</td>
<td>47.9</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>46.0</td>
<td>33.0</td>
<td>36.3</td>
<td>43.9</td>
<td>39.9</td>
</tr>
<tr>
<td>4-甲基-2-戊酮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>48.24</td>
<td>49.83</td>
<td>50.00</td>
<td>48.24</td>
<td>51.41</td>
</tr>
<tr>
<td>2</td>
<td>42.8</td>
<td>43.2</td>
<td>52.4</td>
<td>52.2</td>
<td>47.9</td>
</tr>
<tr>
<td>3</td>
<td>50.0</td>
<td>51.3</td>
<td>41.3</td>
<td>48.1</td>
<td>50.6</td>
</tr>
<tr>
<td>4</td>
<td>40.63</td>
<td>44.44</td>
<td>46.25</td>
<td>47.34</td>
<td>40.01</td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td>40.7</td>
<td>43.1</td>
<td>42.5</td>
<td>47.4</td>
</tr>
<tr>
<td>甲苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>48.02</td>
<td>48.95</td>
<td>49.77</td>
<td>48.02</td>
<td>53.40</td>
</tr>
<tr>
<td>2</td>
<td>48.2</td>
<td>46.3</td>
<td>52.0</td>
<td>47.4</td>
<td>43.2</td>
</tr>
<tr>
<td>3</td>
<td>43.8</td>
<td>47.5</td>
<td>40.0</td>
<td>40.6</td>
<td>46.3</td>
</tr>
<tr>
<td>4</td>
<td>41.56</td>
<td>46.29</td>
<td>48.15</td>
<td>49.45</td>
<td>41.72</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>47.93</td>
<td>49.03</td>
<td>49.67</td>
<td>47.93</td>
<td>54.65</td>
</tr>
<tr>
<td>2</td>
<td>49.0</td>
<td>46.1</td>
<td>53.0</td>
<td>50.1</td>
<td>46.3</td>
</tr>
<tr>
<td>3</td>
<td>48.8</td>
<td>40.0</td>
<td>48.1</td>
<td>32.5</td>
<td>46.9</td>
</tr>
<tr>
<td>4</td>
<td>44.02</td>
<td>47.16</td>
<td>48.99</td>
<td>48.53</td>
<td>42.65</td>
</tr>
<tr>
<td>5</td>
<td>44.3</td>
<td>33.0</td>
<td>36.0</td>
<td>42.2</td>
<td>39.4</td>
</tr>
<tr>
<td>1,3-二氯丙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>47.88</td>
<td>49.91</td>
<td>49.93</td>
<td>47.88</td>
<td>48.87</td>
</tr>
<tr>
<td>2</td>
<td>49.8</td>
<td>48.1</td>
<td>50.0</td>
<td>49.1</td>
<td>46.1</td>
</tr>
<tr>
<td>3</td>
<td>46.3</td>
<td>49.4</td>
<td>43.1</td>
<td>40.6</td>
<td>46.9</td>
</tr>
<tr>
<td>4</td>
<td>51.59</td>
<td>50.01</td>
<td>52.21</td>
<td>47.33</td>
<td>44.41</td>
</tr>
<tr>
<td>5</td>
<td>44.3</td>
<td>33.3</td>
<td>36.0</td>
<td>42.2</td>
<td>39.4</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>33.21</td>
<td>43.20</td>
<td>42.77</td>
<td>33.21</td>
<td>52.38</td>
</tr>
<tr>
<td>2</td>
<td>51.6</td>
<td>50.6</td>
<td>54.9</td>
<td>52.2</td>
<td>48.1</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>39.9</td>
<td>33.0</td>
<td>34.3</td>
<td>38.1</td>
<td>38.1</td>
</tr>
<tr>
<td>化合物</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>二溴氯甲烷</td>
<td>46.30</td>
<td>51.9</td>
<td>33.8</td>
<td>43.59</td>
<td>52.5</td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td>46.13</td>
<td>51.7</td>
<td>33.8</td>
<td>44.80</td>
<td>39.1</td>
</tr>
<tr>
<td>氯苯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>1,1,1,2-四氯乙烷</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>乙苯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>间-对-二甲苯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>邻-二甲苯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>溴仿</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>二溴氯甲烷</td>
<td>46.13</td>
<td>51.7</td>
<td>33.8</td>
<td>43.59</td>
<td>52.5</td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td>46.13</td>
<td>51.7</td>
<td>33.8</td>
<td>44.80</td>
<td>39.1</td>
</tr>
<tr>
<td>氯苯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>1,1,1,2-四氯乙烷</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>乙苯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>间-对-二甲苯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>邻-二甲苯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>46.13</td>
<td>51.7</td>
<td>49.36</td>
<td>48.05</td>
<td>50.61</td>
</tr>
<tr>
<td>溴仿</td>
<td>46.13</td>
<td>51.7</td>
<td>33.8</td>
<td>43.59</td>
<td>52.5</td>
</tr>
</tbody>
</table>

55
<table>
<thead>
<tr>
<th>异丙苯</th>
<th>1</th>
<th>49.05</th>
<th>51.20</th>
<th>51.50</th>
<th>49.05</th>
<th>51.51</th>
<th>54.81</th>
<th>51.19</th>
<th>2.12</th>
<th>4.14</th>
<th>102.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>48.3</td>
<td>48.5</td>
<td>45.7</td>
<td>48.4</td>
<td>41.9</td>
<td>48.2</td>
<td>46.8</td>
<td>2.64</td>
<td>5.64</td>
<td>93.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>46.9</td>
<td>40.0</td>
<td>46.9</td>
<td>31.9</td>
<td>45.6</td>
<td>41.9</td>
<td>42.2</td>
<td>5.78</td>
<td>13.69</td>
<td>84.4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>54.58</td>
<td>56.94</td>
<td>58.72</td>
<td>55.25</td>
<td>52.61</td>
<td>61.97</td>
<td>56.7</td>
<td>3.32</td>
<td>5.86</td>
<td>113.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>36.4</td>
<td>34.9</td>
<td>34.0</td>
<td>34.6</td>
<td>37.4</td>
<td>35.1</td>
<td>35.4</td>
<td>1.26</td>
<td>3.6</td>
<td>70.8</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-四氯乙烯</td>
<td>1</td>
<td>41.87</td>
<td>47.59</td>
<td>47.76</td>
<td>41.87</td>
<td>55.37</td>
<td>49.30</td>
<td>47.29</td>
<td>5.07</td>
<td>10.71</td>
<td>94.59</td>
</tr>
<tr>
<td>2</td>
<td>54.1</td>
<td>48.8</td>
<td>42.1</td>
<td>45.5</td>
<td>48.8</td>
<td>47.9</td>
<td>47.9</td>
<td>3.98</td>
<td>8.31</td>
<td>95.8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>43.8</td>
<td>47.5</td>
<td>40.0</td>
<td>40.6</td>
<td>46.3</td>
<td>40.6</td>
<td>43.1</td>
<td>3.23</td>
<td>7.49</td>
<td>86.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>55.46</td>
<td>55.54</td>
<td>57.03</td>
<td>52.45</td>
<td>52.06</td>
<td>61.10</td>
<td>55.6</td>
<td>3.31</td>
<td>5.95</td>
<td>111.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>39.1</td>
<td>35.2</td>
<td>36.0</td>
<td>37.2</td>
<td>39.9</td>
<td>35.4</td>
<td>37.1</td>
<td>1.98</td>
<td>5.3</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>溴苯</td>
<td>1</td>
<td>46.37</td>
<td>49.02</td>
<td>49.76</td>
<td>46.37</td>
<td>51.21</td>
<td>48.71</td>
<td>1.95</td>
<td>4.01</td>
<td>97.42</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>52.5</td>
<td>48.8</td>
<td>50.9</td>
<td>51.5</td>
<td>48.8</td>
<td>47.6</td>
<td>50.0</td>
<td>1.89</td>
<td>3.79</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26.3</td>
<td>34.4</td>
<td>44.4</td>
<td>36.3</td>
<td>40.0</td>
<td>38.1</td>
<td>36.6</td>
<td>6.09</td>
<td>16.66</td>
<td>73.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>51.88</td>
<td>54.07</td>
<td>55.50</td>
<td>55.07</td>
<td>50.78</td>
<td>55.35</td>
<td>53.8</td>
<td>1.99</td>
<td>3.70</td>
<td>107.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>35.3</td>
<td>31.0</td>
<td>31.1</td>
<td>33.6</td>
<td>34.0</td>
<td>31.3</td>
<td>32.7</td>
<td>1.83</td>
<td>5.6</td>
<td>65.4</td>
<td></td>
</tr>
<tr>
<td>1,2,3-三氯丙烷</td>
<td>1</td>
<td>38.82</td>
<td>42.13</td>
<td>15.51</td>
<td>38.82</td>
<td>66.41</td>
<td>58.34</td>
<td>43.34</td>
<td>17.74</td>
<td>40.94</td>
<td>86.68</td>
</tr>
<tr>
<td>2</td>
<td>52.2</td>
<td>48.8</td>
<td>50.5</td>
<td>51.2</td>
<td>48.8</td>
<td>48.0</td>
<td>46.6</td>
<td>7.68</td>
<td>16.5</td>
<td>93.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25.6</td>
<td>39.4</td>
<td>30.0</td>
<td>37.5</td>
<td>35.6</td>
<td>28.8</td>
<td>32.8</td>
<td>5.46</td>
<td>16.64</td>
<td>65.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>52.59</td>
<td>55.54</td>
<td>57.41</td>
<td>54.62</td>
<td>50.94</td>
<td>60.07</td>
<td>55.2</td>
<td>3.29</td>
<td>5.95</td>
<td>110.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>正丙苯</td>
<td>1</td>
<td>48.81</td>
<td>50.88</td>
<td>51.45</td>
<td>48.81</td>
<td>49.76</td>
<td>53.43</td>
<td>50.52</td>
<td>1.78</td>
<td>3.53</td>
<td>101.0</td>
</tr>
<tr>
<td>2</td>
<td>50.4</td>
<td>48.9</td>
<td>51.1</td>
<td>51.0</td>
<td>48.9</td>
<td>46.5</td>
<td>49.5</td>
<td>1.72</td>
<td>3.48</td>
<td>98.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26.9</td>
<td>41.9</td>
<td>28.1</td>
<td>38.8</td>
<td>35.6</td>
<td>30.6</td>
<td>33.7</td>
<td>6.07</td>
<td>18.03</td>
<td>67.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>47.86</td>
<td>50.05</td>
<td>51.87</td>
<td>50.07</td>
<td>45.57</td>
<td>53.50</td>
<td>49.8</td>
<td>2.82</td>
<td>5.66</td>
<td>99.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>21.3</td>
<td>19.7</td>
<td>20.9</td>
<td>20.2</td>
<td>23.0</td>
<td>19.7</td>
<td>20.8</td>
<td>1.26</td>
<td>6.0</td>
<td>41.6</td>
<td></td>
</tr>
<tr>
<td>2-氯甲苯</td>
<td>1</td>
<td>48.81</td>
<td>50.53</td>
<td>51.22</td>
<td>48.81</td>
<td>50.00</td>
<td>53.34</td>
<td>50.45</td>
<td>1.70</td>
<td>3.38</td>
<td>100.9</td>
</tr>
<tr>
<td>2</td>
<td>50.7</td>
<td>47.4</td>
<td>50.5</td>
<td>53.5</td>
<td>47.4</td>
<td>46.5</td>
<td>49.3</td>
<td>2.68</td>
<td>5.44</td>
<td>98.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25.6</td>
<td>39.4</td>
<td>30.0</td>
<td>37.5</td>
<td>30.6</td>
<td>28.8</td>
<td>32.0</td>
<td>5.33</td>
<td>16.67</td>
<td>64.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>41.87</td>
<td>46.35</td>
<td>46.72</td>
<td>42.98</td>
<td>46.24</td>
<td>48.84</td>
<td>45.5</td>
<td>2.59</td>
<td>5.68</td>
<td>91.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>28.8</td>
<td>27.5</td>
<td>27.4</td>
<td>27.2</td>
<td>30.2</td>
<td>27.9</td>
<td>28.2</td>
<td>1.15</td>
<td>4.1</td>
<td>56.3</td>
<td></td>
</tr>
<tr>
<td>1,3,5-三甲基苯</td>
<td>1</td>
<td>48.93</td>
<td>51.07</td>
<td>50.95</td>
<td>48.93</td>
<td>51.17</td>
<td>54.66</td>
<td>50.95</td>
<td>2.10</td>
<td>4.12</td>
<td>101.9</td>
</tr>
<tr>
<td>2</td>
<td>50.9</td>
<td>47.2</td>
<td>46.4</td>
<td>45.2</td>
<td>47.2</td>
<td>50.8</td>
<td>47.9</td>
<td>2.37</td>
<td>4.94</td>
<td>95.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>28.8</td>
<td>26.9</td>
<td>30.0</td>
<td>36.9</td>
<td>34.4</td>
<td>28.1</td>
<td>30.9</td>
<td>3.93</td>
<td>12.74</td>
<td>61.7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>46.97</td>
<td>49.49</td>
<td>50.47</td>
<td>52.36</td>
<td>47.56</td>
<td>47.56</td>
<td>49.1</td>
<td>2.09</td>
<td>4.27</td>
<td>98.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>29.9</td>
<td>27.2</td>
<td>27.1</td>
<td>28.5</td>
<td>29.9</td>
<td>27.5</td>
<td>28.4</td>
<td>1.30</td>
<td>4.6</td>
<td>56.7</td>
<td></td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td>1</td>
<td>47.42</td>
<td>50.58</td>
<td>53.46</td>
<td>47.42</td>
<td>52.98</td>
<td>56.26</td>
<td>51.35</td>
<td>3.54</td>
<td>6.90</td>
<td>102.7</td>
</tr>
<tr>
<td>2</td>
<td>48.4</td>
<td>48.5</td>
<td>50.0</td>
<td>50.5</td>
<td>48.5</td>
<td>47.3</td>
<td>48.9</td>
<td>1.18</td>
<td>2.42</td>
<td>97.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>37.5</td>
<td>26.9</td>
<td>29.4</td>
<td>38.1</td>
<td>33.1</td>
<td>31.3</td>
<td>32.7</td>
<td>4.45</td>
<td>13.59</td>
<td>65.4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>46.64</td>
<td>49.59</td>
<td>51.27</td>
<td>50.07</td>
<td>45.57</td>
<td>52.14</td>
<td>49.2</td>
<td>2.59</td>
<td>5.26</td>
<td>98.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>28.5</td>
<td>26.2</td>
<td>27.4</td>
<td>27.2</td>
<td>30.2</td>
<td>26.6</td>
<td>27.7</td>
<td>1.46</td>
<td>5.3</td>
<td>55.4</td>
<td></td>
</tr>
<tr>
<td>叔丁基</td>
<td>1</td>
<td>47.19</td>
<td>46.43</td>
<td>45.15</td>
<td>47.19</td>
<td>44.44</td>
<td>50.05</td>
<td>46.74</td>
<td>1.96</td>
<td>4.20</td>
<td>93.48</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>苯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-三甲基苯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>仲丁基苯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-异丙基甲苯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-二氯苯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>正丁基苯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-二溴-3-氯丙烷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>苯</th>
<th>146</th>
<th>146</th>
<th>146</th>
<th>146</th>
<th>146</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,4-三甲基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>4-异丙基甲苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>1,4-二氯苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>正丁基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>1,2-二溴-3-氯丙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>苯</th>
<th>146</th>
<th>146</th>
<th>146</th>
<th>146</th>
<th>146</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,4-三甲基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>仲丁基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>4-异丙基甲苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>1,4-二氯苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>正丁基苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>1,2-二溴-3-氯丙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
</tbody>
</table>

57
附表 6 检出限和精密度测试数据汇总表

<table>
<thead>
<tr>
<th>化合物名称</th>
<th>检出限 (µg/kg)</th>
<th>精密度统计结果</th>
<th>水平</th>
<th>总均值 (µg/L)</th>
<th>实验室内相对标准差 (%)</th>
<th>实验室间相对标准偏差 (%)</th>
<th>重复性限 r(µg/L)</th>
<th>再现性限 R(µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯二氟甲烷</td>
<td>0.40</td>
<td></td>
<td>1</td>
<td>3.22</td>
<td>3.0~14.7</td>
<td>63.4</td>
<td>1.10</td>
<td>5.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>100.74</td>
<td>3.0~12.4</td>
<td>7.0</td>
<td>24.6</td>
<td>29.9</td>
</tr>
<tr>
<td>氯甲烷</td>
<td>0.97</td>
<td></td>
<td>1</td>
<td>3.24</td>
<td>10.7~20.3</td>
<td>57.4</td>
<td>1.11</td>
<td>5.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>100.5</td>
<td>6.3~9.0</td>
<td>3.8</td>
<td>20.4</td>
<td>21.5</td>
</tr>
<tr>
<td>氯乙烯</td>
<td>0.99</td>
<td></td>
<td>1</td>
<td>3.37</td>
<td>12.5~23.0</td>
<td>53.2</td>
<td>1.30</td>
<td>5.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>96.00</td>
<td>10.0~13.5</td>
<td>8.2</td>
<td>31.5</td>
<td>36.2</td>
</tr>
<tr>
<td>溴甲烷</td>
<td>1.36</td>
<td></td>
<td>1</td>
<td>3.18</td>
<td>16.0~18.0</td>
<td>20.9</td>
<td>1.56</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>94.16</td>
<td>3.5~13.9</td>
<td>15.0</td>
<td>26.9</td>
<td>46.6</td>
</tr>
<tr>
<td>氯乙烷</td>
<td>0.84</td>
<td></td>
<td>1</td>
<td>3.83</td>
<td>7.84~8.10</td>
<td>27.0</td>
<td>0.88</td>
<td>3.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>98.44</td>
<td>8.0~15.6</td>
<td>14.4</td>
<td>34.0</td>
<td>50.3</td>
</tr>
<tr>
<td>三氯氟甲烷</td>
<td>1.05</td>
<td></td>
<td>1</td>
<td>4.10</td>
<td>7.0~22.2</td>
<td>27.9</td>
<td>1.72</td>
<td>3.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>96.54</td>
<td>6.0~10.5</td>
<td>8.7</td>
<td>23.2</td>
<td>31.8</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>0.96</td>
<td></td>
<td>1</td>
<td>4.44</td>
<td>3.0~23.2</td>
<td>14.2</td>
<td>1.52</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>97.47</td>
<td>2.0~7.6</td>
<td>4.1</td>
<td>15.9</td>
<td>18.2</td>
</tr>
<tr>
<td>化合物</td>
<td>沸点</td>
<td>临界点</td>
<td>闪点</td>
<td>汽化热</td>
<td>溶点</td>
<td>沸点</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>丙酮</td>
<td>1.30</td>
<td>1</td>
<td>4.82</td>
<td>3.0~8.8</td>
<td>13.7</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>基礽</td>
<td>1.08</td>
<td>1</td>
<td>3.59</td>
<td>5.73~5.81</td>
<td>0.2</td>
<td>0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>二硫化碳</td>
<td>1.00</td>
<td>1</td>
<td>3.93</td>
<td>5.0~9.9</td>
<td>31.6</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>1.50</td>
<td>1</td>
<td>4.67</td>
<td>2.0~9.7</td>
<td>9.5</td>
<td>2.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>反式-1,2-二氯乙烯</td>
<td>1.40</td>
<td>1</td>
<td>4.73</td>
<td>1.0~14.4</td>
<td>10.3</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-二氯乙烷</td>
<td>1.17</td>
<td>1</td>
<td>4.83</td>
<td>2.5~7.1</td>
<td>7.1</td>
<td>6.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>顺式-1,2-二氯乙烯</td>
<td>1.40</td>
<td>1</td>
<td>4.60</td>
<td>7.9~21.8</td>
<td>8.7</td>
<td>6.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-丁酮</td>
<td>3.56</td>
<td>1</td>
<td>4.58</td>
<td>12.0~27.6</td>
<td>8.1</td>
<td>2.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-二氯丙烷</td>
<td>1.28</td>
<td>1</td>
<td>4.58</td>
<td>6.9~8.9</td>
<td>9.5</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>溴氯甲烷</td>
<td>1.05</td>
<td>1</td>
<td>4.75</td>
<td>2.0~8.0</td>
<td>10.0</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>氯仿</td>
<td>1.14</td>
<td>1</td>
<td>4.83</td>
<td>3.0~5.8</td>
<td>5.7</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>1.34</td>
<td>1</td>
<td>4.53</td>
<td>3.0~8.9</td>
<td>11.5</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-二氯丙烯</td>
<td>1.22</td>
<td>1</td>
<td>4.12</td>
<td>8.8~19.9</td>
<td>7.8</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>四氯化碳</td>
<td>1.30</td>
<td>1</td>
<td>4.52</td>
<td>3.0~14.8</td>
<td>9.4</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>1.33</td>
<td>1</td>
<td>4.76</td>
<td>2.4~8.8</td>
<td>4.6</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>苯</td>
<td>1.85</td>
<td>1</td>
<td>5.55</td>
<td>3.0~14.0</td>
<td>23.0</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>1.16</td>
<td>1</td>
<td>4.67</td>
<td>3.0~16.1</td>
<td>12.1</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>1.13</td>
<td>1</td>
<td>4.76</td>
<td>4.0~10.7</td>
<td>7.9</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>二溴甲烷</td>
<td>1.22</td>
<td>1</td>
<td>4.78</td>
<td>2.0~8.7</td>
<td>7.0</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>1.06</td>
<td>1</td>
<td>4.58</td>
<td>3.0~12.1</td>
<td>7.2</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-甲基-2-戊酮</td>
<td>3.56</td>
<td>1</td>
<td>4.68</td>
<td>5.0~25.5</td>
<td>1.4</td>
<td>2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>甲苯</td>
<td>1.25</td>
<td>1</td>
<td>4.49</td>
<td>5.0~11.7</td>
<td>9.4</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>化合物</td>
<td>沸点 (°C)</td>
<td>闪点 (°C)</td>
<td>临界温度 (°C)</td>
<td>临界压力 (MPa)</td>
<td>临界密度 (g/cm³)</td>
<td>临界体积 (cm³/mol)</td>
<td>沸点相对密度</td>
<td>闪点相对密度</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>116</td>
<td>2</td>
<td>100.04</td>
<td>3.4–6.0</td>
<td>3.1</td>
<td>12.5</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>1,3-二氯丙烷</td>
<td>108</td>
<td>2</td>
<td>100.74</td>
<td>3.4–5.0</td>
<td>3.8</td>
<td>11.6</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>136</td>
<td>2</td>
<td>102.39</td>
<td>2.0–4.8</td>
<td>6.2</td>
<td>10.2</td>
<td>20.2</td>
<td></td>
</tr>
<tr>
<td>2-己酮</td>
<td>233</td>
<td>2</td>
<td>101.58</td>
<td>3.3–6.7</td>
<td>3.3</td>
<td>15.3</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td>二溴氯甲烷</td>
<td>107</td>
<td>2</td>
<td>99.74</td>
<td>3.8–9.5</td>
<td>12.7</td>
<td>0.82</td>
<td>1.74</td>
<td></td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td>113</td>
<td>2</td>
<td>101.82</td>
<td>2.5–4.8</td>
<td>4.7</td>
<td>10.6</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>氯苯</td>
<td>124</td>
<td>2</td>
<td>101.07</td>
<td>4.0–10.0</td>
<td>9.2</td>
<td>0.88</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-四氯乙烷</td>
<td>123</td>
<td>2</td>
<td>99.49</td>
<td>3.0–5.0</td>
<td>2.5</td>
<td>9.91</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>乙苯</td>
<td>115</td>
<td>2</td>
<td>99.94</td>
<td>2.5–5.0</td>
<td>4.0</td>
<td>9.64</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>间,对-二甲苯</td>
<td>122</td>
<td>2</td>
<td>202.6</td>
<td>4.0–8.6</td>
<td>19.1</td>
<td>1.69</td>
<td>5.55</td>
<td></td>
</tr>
<tr>
<td>邻-二甲苯</td>
<td>124</td>
<td>2</td>
<td>102.31</td>
<td>2.6–4.5</td>
<td>7.8</td>
<td>10.5</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>苯乙烯</td>
<td>110</td>
<td>2</td>
<td>101.07</td>
<td>2.8–5.0</td>
<td>6.8</td>
<td>10.3</td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td>溴仿</td>
<td>145</td>
<td>2</td>
<td>97.69</td>
<td>3.0–10.9</td>
<td>4.6</td>
<td>16.7</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td>异丙苯</td>
<td>122</td>
<td>2</td>
<td>101.35</td>
<td>2.5–4.4</td>
<td>7.4</td>
<td>9.72</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-四氯乙烷</td>
<td>120</td>
<td>2</td>
<td>99.42</td>
<td>3.0–7.9</td>
<td>5.5</td>
<td>15.9</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>溴苯</td>
<td>125</td>
<td>2</td>
<td>100.76</td>
<td>3.5–8.0</td>
<td>7.2</td>
<td>14.9</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>1,2,3-三氯丙烷</td>
<td>120</td>
<td>2</td>
<td>99.81</td>
<td>2.3–7.7</td>
<td>2.3</td>
<td>13.3</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>正丙苯</td>
<td>124</td>
<td>2</td>
<td>102.96</td>
<td>2.0–9.0</td>
<td>8.7</td>
<td>15.2</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>2-氯甲苯</td>
<td>128</td>
<td>2</td>
<td>100.09</td>
<td>3.0–13.6</td>
<td>9.6</td>
<td>25.9</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td>1,3,5-三氯基苯</td>
<td>136</td>
<td>2</td>
<td>101.11</td>
<td>2.7–8.0</td>
<td>9.4</td>
<td>14.3</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>4-氯甲苯</td>
<td>128</td>
<td>2</td>
<td>102.45</td>
<td>3.8–9.2</td>
<td>8.1</td>
<td>17.6</td>
<td>28.1</td>
<td></td>
</tr>
<tr>
<td>化合物名称</td>
<td>样品类型</td>
<td>水平</td>
<td>$\overline{p}%$</td>
<td>S_p</td>
<td>$p% \pm 2S_p$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>叔丁基苯</td>
<td>1</td>
<td>4.33</td>
<td>4.0~19.1</td>
<td>13.2</td>
<td>1.36</td>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>103.37</td>
<td>3.0~6.2</td>
<td>8.3</td>
<td>12.8</td>
<td>26.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-三甲基苯</td>
<td>1</td>
<td>4.40</td>
<td>4.0~11.9</td>
<td>11.2</td>
<td>1.01</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>101.95</td>
<td>2.8~8.3</td>
<td>8.1</td>
<td>14.4</td>
<td>26.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>仲丁基苯</td>
<td>1</td>
<td>4.41</td>
<td>3.0~18.9</td>
<td>8.1</td>
<td>1.39</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.96</td>
<td>2.6~4.4</td>
<td>8.3</td>
<td>9.27</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-异丙基甲苯</td>
<td>1</td>
<td>4.44</td>
<td>3.7~16.7</td>
<td>9.3</td>
<td>1.22</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.53</td>
<td>2.6~5.7</td>
<td>3.9</td>
<td>12.0</td>
<td>15.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-二氯苯</td>
<td>1</td>
<td>4.80</td>
<td>3.0~11.8</td>
<td>8.2</td>
<td>1.12</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>103.02</td>
<td>3.0~5.7</td>
<td>7.9</td>
<td>12.8</td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-二氯苯</td>
<td>1</td>
<td>4.73</td>
<td>4.0~13.7</td>
<td>7.4</td>
<td>1.26</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.15</td>
<td>2.7~4.1</td>
<td>3.0</td>
<td>9.92</td>
<td>12.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>正丁基苯</td>
<td>1</td>
<td>4.50</td>
<td>4.0~15.6</td>
<td>8.1</td>
<td>1.31</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.08</td>
<td>3.0~4.3</td>
<td>3.6</td>
<td>9.95</td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-二氯苯</td>
<td>1</td>
<td>4.70</td>
<td>3.0~10.8</td>
<td>5.1</td>
<td>1.01</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.59</td>
<td>3.0~4.9</td>
<td>3.0</td>
<td>12.8</td>
<td>14.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-二溴-3-氯丙烷</td>
<td>1</td>
<td>4.30</td>
<td>3.2~75.9</td>
<td>21.6</td>
<td>2.93</td>
<td>3.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>99.36</td>
<td>1.9~8.4</td>
<td>5.9</td>
<td>17.4</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-三氯苯</td>
<td>1</td>
<td>4.58</td>
<td>4.9~17.9</td>
<td>7.3</td>
<td>1.41</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>96.01</td>
<td>3.5~7.3</td>
<td>5.6</td>
<td>13.0</td>
<td>19.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>六氯丁二烯</td>
<td>1</td>
<td>4.89</td>
<td>3.9~13.9</td>
<td>9.4</td>
<td>1.31</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>96.95</td>
<td>2.5~8.2</td>
<td>5.0</td>
<td>12.4</td>
<td>17.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>萘</td>
<td>1</td>
<td>4.90</td>
<td>2.2~38.6</td>
<td>5.3</td>
<td>2.73</td>
<td>2.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>100.8</td>
<td>3.3~11.2</td>
<td>11.5</td>
<td>23.1</td>
<td>38.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-三氯苯</td>
<td>1</td>
<td>4.59</td>
<td>3.4~22.7</td>
<td>6.8</td>
<td>1.75</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>97.12</td>
<td>2.8~5.0</td>
<td>7.1</td>
<td>11.0</td>
<td>21.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11 7、5家实验室实际样品加标回收率统计结果

附表7为对5家实验室方法验证结果中的实际土壤及沉积物样品加标回收率进行统计分析，其结果如下：
<table>
<thead>
<tr>
<th>Compounds</th>
<th>Soils</th>
<th>3</th>
<th>96.3</th>
<th>17.2</th>
<th>96.3±34.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>99.8</td>
<td>11.6</td>
<td>99.8±23.2</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>99.5</td>
<td>14.3</td>
<td>99.5±28.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>90.6</td>
<td>21.5</td>
<td>90.6±43.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>92.0</td>
<td>21.3</td>
<td>92.0±42.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>109.2</td>
<td>28.3</td>
<td>109.2±56.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>96.4</td>
<td>18.1</td>
<td>96.4±36.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>90.6</td>
<td>21.3</td>
<td>90.6±42.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>109.2</td>
<td>28.3</td>
<td>109.2±56.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>96.4</td>
<td>18.1</td>
<td>96.4±36.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>106.5</td>
<td>13.5</td>
<td>106.5±27.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>99.4</td>
<td>10.1</td>
<td>99.4±20.2</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>97.9</td>
<td>15.9</td>
<td>97.9±31.8</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>93.6</td>
<td>9.8</td>
<td>93.6±19.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>96.6</td>
<td>10.6</td>
<td>96.6±21.2</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>90.0</td>
<td>12.0</td>
<td>90.0±24.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>124.3</td>
<td>20.2</td>
<td>124.3±40.4</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>112</td>
<td>5.5</td>
<td>112±11.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>104.0</td>
<td>11.6</td>
<td>104±23.2</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>98.6</td>
<td>11.9</td>
<td>98.6±23.8</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>93.4</td>
<td>12.3</td>
<td>93.4±24.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>92.6</td>
<td>9.6</td>
<td>92.6±19.2</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>100.7</td>
<td>14.0</td>
<td>100.7±28.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>96.1</td>
<td>8.1</td>
<td>96.1±16.2</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>98.1</td>
<td>17.4</td>
<td>98.1±34.8</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>94.9</td>
<td>10.8</td>
<td>94.9±21.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>94.0</td>
<td>10.5</td>
<td>94.0±21.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>91.9</td>
<td>9.0</td>
<td>91.9±18.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>89.8</td>
<td>18.0</td>
<td>89.8±36.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>84.9</td>
<td>28.5</td>
<td>84.9±57.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>100.3</td>
<td>11.5</td>
<td>100.3±23.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>97.8</td>
<td>9.3</td>
<td>97.8±18.6</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>95.0</td>
<td>14.0</td>
<td>95.0±28.0</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>94.9</td>
<td>14.1</td>
<td>94.9±28.2</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>94.8</td>
<td>11.4</td>
<td>94.8±22.8</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>88.4</td>
<td>14.2</td>
<td>88.4±28.4</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>97.9</td>
<td>7.4</td>
<td>97.9±14.8</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>95.6</td>
<td>7.2</td>
<td>95.6±14.4</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>94.1</td>
<td>9.6</td>
<td>94.1±19.2</td>
</tr>
<tr>
<td></td>
<td>Soils</td>
<td>3</td>
<td>90.9</td>
<td>9.2</td>
<td>90.9±18.4</td>
</tr>
<tr>
<td>化合物</td>
<td>土壤</td>
<td>3</td>
<td>96.5</td>
<td>9.3</td>
<td>96.5±18.6</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>沉积物</td>
<td>3</td>
<td>94.2</td>
<td>6.6</td>
<td>94.2±13.2</td>
</tr>
<tr>
<td>甲苯</td>
<td>土壤</td>
<td>3</td>
<td>95.5</td>
<td>15.3</td>
<td>95.5±30.6</td>
</tr>
<tr>
<td>甲苯</td>
<td>沉积物</td>
<td>3</td>
<td>87.8</td>
<td>10.4</td>
<td>87.8±20.8</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>土壤</td>
<td>3</td>
<td>97.8</td>
<td>15.3</td>
<td>97.8±18.6</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>沉积物</td>
<td>3</td>
<td>93.5</td>
<td>6.0</td>
<td>93.5±12.0</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>土壤</td>
<td>3</td>
<td>87.8</td>
<td>10.4</td>
<td>87.8±20.8</td>
</tr>
<tr>
<td>二氯氯甲烷</td>
<td>沉积物</td>
<td>3</td>
<td>94.2</td>
<td>6.6</td>
<td>94.2±13.2</td>
</tr>
<tr>
<td>氯苯</td>
<td>土壤</td>
<td>3</td>
<td>95.3</td>
<td>15.3</td>
<td>95.3±25.4</td>
</tr>
<tr>
<td>氯苯</td>
<td>沉积物</td>
<td>3</td>
<td>91.0</td>
<td>9.6</td>
<td>91.0±19.2</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>土壤</td>
<td>3</td>
<td>87.8</td>
<td>10.4</td>
<td>87.8±20.8</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>沉积物</td>
<td>3</td>
<td>92.1</td>
<td>10.6</td>
<td>92.1±11.2</td>
</tr>
<tr>
<td>2-己酮</td>
<td>土壤</td>
<td>3</td>
<td>94.3</td>
<td>19.0</td>
<td>94.3±38.0</td>
</tr>
<tr>
<td>2-己酮</td>
<td>沉积物</td>
<td>3</td>
<td>86.1</td>
<td>15.0</td>
<td>86.1±30.0</td>
</tr>
<tr>
<td>二溴氯甲烷</td>
<td>土壤</td>
<td>3</td>
<td>84.0</td>
<td>2.7</td>
<td>84.0±12.4</td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td>沉积物</td>
<td>3</td>
<td>88.7</td>
<td>14.5</td>
<td>88.7±29.0</td>
</tr>
<tr>
<td>氯苯</td>
<td>土壤</td>
<td>3</td>
<td>80.6</td>
<td>2.7</td>
<td>80.6±12.4</td>
</tr>
<tr>
<td>氯苯</td>
<td>沉积物</td>
<td>3</td>
<td>88.8</td>
<td>14.8</td>
<td>88.8±29.0</td>
</tr>
<tr>
<td>1,1,1,2-四氯乙烷</td>
<td>土壤</td>
<td>3</td>
<td>89.3</td>
<td>17.7</td>
<td>89.3±34.0</td>
</tr>
<tr>
<td>1,1,1,2-四氯乙烷</td>
<td>沉积物</td>
<td>3</td>
<td>94.5</td>
<td>17.0</td>
<td>94.5±34.0</td>
</tr>
<tr>
<td>乙苯</td>
<td>土壤</td>
<td>3</td>
<td>80.9</td>
<td>15.9</td>
<td>80.9±31.8</td>
</tr>
<tr>
<td>乙苯</td>
<td>沉积物</td>
<td>3</td>
<td>88.6</td>
<td>17.8</td>
<td>88.6±35.6</td>
</tr>
<tr>
<td>间,对-二甲苯</td>
<td>土壤</td>
<td>3</td>
<td>90.0</td>
<td>15.9</td>
<td>90.0±31.8</td>
</tr>
<tr>
<td>邻-二甲苯</td>
<td>沉积物</td>
<td>3</td>
<td>94.5</td>
<td>17.0</td>
<td>94.5±34.0</td>
</tr>
<tr>
<td>邻-二甲苯</td>
<td>土壤</td>
<td>3</td>
<td>92.3</td>
<td>15.0</td>
<td>92.3±30.0</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>沉积物</td>
<td>3</td>
<td>88.3</td>
<td>15.0</td>
<td>88.3±30.0</td>
</tr>
<tr>
<td>溴仿</td>
<td>土壤</td>
<td>3</td>
<td>87.6</td>
<td>15.5</td>
<td>87.6±31.0</td>
</tr>
<tr>
<td>溴仿</td>
<td>沉积物</td>
<td>3</td>
<td>92.9</td>
<td>18.6</td>
<td>92.9±31.0</td>
</tr>
<tr>
<td>1,3,5-三甲基苯</td>
<td>土壤</td>
<td>3</td>
<td>80.9</td>
<td>23.8</td>
<td>80.9±38.0</td>
</tr>
<tr>
<td>1,2,3-三甲基苯</td>
<td>沉积物</td>
<td>3</td>
<td>82.9</td>
<td>26.8</td>
<td>82.9±42.8</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>土壤</td>
<td>3</td>
<td>91.9</td>
<td>23.6</td>
<td>91.9±39.2</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>沉积物</td>
<td>3</td>
<td>83.9</td>
<td>21.6</td>
<td>83.9±38.3</td>
</tr>
<tr>
<td>间溴苯</td>
<td>土壤</td>
<td>3</td>
<td>89.8</td>
<td>18.8</td>
<td>89.8±37.0</td>
</tr>
<tr>
<td>间溴苯</td>
<td>沉积物</td>
<td>3</td>
<td>88.7</td>
<td>18.9</td>
<td>88.7±36.0</td>
</tr>
<tr>
<td>1,2,3-三氟氯苯</td>
<td>土壤</td>
<td>3</td>
<td>88.5</td>
<td>18.9</td>
<td>88.5±36.0</td>
</tr>
<tr>
<td>1,2,3-三氟氯苯</td>
<td>沉积物</td>
<td>3</td>
<td>89.8</td>
<td>23.8</td>
<td>89.8±39.2</td>
</tr>
<tr>
<td>2-甲基苯</td>
<td>土壤</td>
<td>3</td>
<td>86.6</td>
<td>28.9</td>
<td>86.6±49.8</td>
</tr>
<tr>
<td>2-甲基苯</td>
<td>沉积物</td>
<td>3</td>
<td>83.5</td>
<td>26.8</td>
<td>83.5±43.0</td>
</tr>
<tr>
<td>4-异丙基苯</td>
<td>土壤</td>
<td>3</td>
<td>94.3</td>
<td>29.0</td>
<td>94.3±48.8</td>
</tr>
</tbody>
</table>
方法特性指标汇总表

<table>
<thead>
<tr>
<th>化合物名称</th>
<th>检出限 (µg/kg)</th>
<th>土壤</th>
<th>沉积物</th>
<th>加标水平</th>
<th>重复性限 r</th>
<th>再现性限 R</th>
<th>土壤加标回收率 $\overline{p} % \pm 2S_p$</th>
<th>沉积物加标回收率 $\overline{p} % \pm 2S_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯二氟甲烷</td>
<td>0.40</td>
<td>1</td>
<td>1.10</td>
<td>5.80</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>24.6</td>
<td>29.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>80.1±52.2</td>
<td>77.9±37.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯甲烷</td>
<td>0.97</td>
<td>1</td>
<td>1.11</td>
<td>5.31</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>20.4</td>
<td>21.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>97.5±11.6</td>
<td>113.8±24.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯乙烯</td>
<td>0.99</td>
<td>1</td>
<td>1.30</td>
<td>5.16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>31.5</td>
<td>36.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>99.3±16.0</td>
<td>104.5±20.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>溴甲烷</td>
<td>1.36</td>
<td>1</td>
<td>1.56</td>
<td>2.34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>26.9</td>
<td>46.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>106.6±34.2</td>
<td>98.3±25.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯乙烷</td>
<td>0.84</td>
<td>1</td>
<td>0.88</td>
<td>3.01</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>34.0</td>
<td>50.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>108.4±4.0</td>
<td>99.8±23.2</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

附录 8. 方法特性指标汇总表

附录 8 为对 5 家实验室方法验证的结果的方法特性指标，其结果如下：

附录 8 方法特性指标汇总表

<table>
<thead>
<tr>
<th>化合物名称</th>
<th>检出限 (µg/kg)</th>
<th>土壤</th>
<th>沉积物</th>
<th>加标水平</th>
<th>重复性限 r</th>
<th>再现性限 R</th>
<th>土壤加标回收率 $\overline{p} % \pm 2S_p$</th>
<th>沉积物加标回收率 $\overline{p} % \pm 2S_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯二氟甲烷</td>
<td>0.40</td>
<td>1</td>
<td>1.10</td>
<td>5.80</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>24.6</td>
<td>29.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>80.1±52.2</td>
<td>77.9±37.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯甲烷</td>
<td>0.97</td>
<td>1</td>
<td>1.11</td>
<td>5.31</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>20.4</td>
<td>21.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>97.5±11.6</td>
<td>113.8±24.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯乙烯</td>
<td>0.99</td>
<td>1</td>
<td>1.30</td>
<td>5.16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>31.5</td>
<td>36.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>99.3±16.0</td>
<td>104.5±20.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>溴甲烷</td>
<td>1.36</td>
<td>1</td>
<td>1.56</td>
<td>2.34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>26.9</td>
<td>46.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>106.6±34.2</td>
<td>98.3±25.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯乙烷</td>
<td>0.84</td>
<td>1</td>
<td>0.88</td>
<td>3.01</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>34.0</td>
<td>50.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>108.4±4.0</td>
<td>99.8±23.2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>化学物</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1, 1-二氯乙烯</td>
<td>0.96</td>
<td>1.52</td>
<td>2.25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>丙酮</td>
<td>1.30</td>
<td>0.92</td>
<td>2.03</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>碘甲烷</td>
<td>1.08</td>
<td>0.61</td>
<td>0.61</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>二硫化碳</td>
<td>1.00</td>
<td>0.83</td>
<td>3.57</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>1.50</td>
<td>0.87</td>
<td>1.26</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>反式-1,2-二氯乙烯</td>
<td>1.40</td>
<td>1.14</td>
<td>1.72</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,1-二氯乙烷</td>
<td>1.17</td>
<td>0.67</td>
<td>1.14</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>顺式-1,2-二氯乙烯</td>
<td>1.40</td>
<td>1.67</td>
<td>1.86</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2-丁酮</td>
<td>3.56</td>
<td>2.63</td>
<td>2.63</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2, 2-二氯丙烷</td>
<td>1.28</td>
<td>0.98</td>
<td>1.49</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>溴氯甲烷</td>
<td>1.05</td>
<td>0.78</td>
<td>1.52</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>氯仿</td>
<td>1.14</td>
<td>0.66</td>
<td>0.98</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>1.34</td>
<td>0.76</td>
<td>1.62</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,1-二氯丙烯</td>
<td>1.22</td>
<td>1.49</td>
<td>1.65</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

65
<table>
<thead>
<tr>
<th>化合物</th>
<th>伯数</th>
<th>二数</th>
<th>三数</th>
<th>四数</th>
<th>五数</th>
</tr>
</thead>
<tbody>
<tr>
<td>四氯化碳</td>
<td>1.30</td>
<td>1.20</td>
<td>1.61</td>
<td>94.0±21.0</td>
<td>91.9±18.0</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>1.33</td>
<td>0.93</td>
<td>1.02</td>
<td>100.3±23.0</td>
<td>97.8±18.6</td>
</tr>
<tr>
<td>苯</td>
<td>1.85</td>
<td>1.10</td>
<td>3.69</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>1.16</td>
<td>1.11</td>
<td>1.87</td>
<td>95.0±28.0</td>
<td>94.9±28.2</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>1.13</td>
<td>0.09</td>
<td>1.34</td>
<td>97.9±14.8</td>
<td>95.6±14.4</td>
</tr>
<tr>
<td>二溴甲烷</td>
<td>1.22</td>
<td>0.87</td>
<td>1.23</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>1.06</td>
<td>1.02</td>
<td>1.31</td>
<td>96.5±18.6</td>
<td>94.2±13.2</td>
</tr>
<tr>
<td>4-甲基-2-戊酮</td>
<td>3.56</td>
<td>2.22</td>
<td>2.22</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>甲苯</td>
<td>1.25</td>
<td>1.04</td>
<td>1.52</td>
<td>97.8±20.0</td>
<td>93.5±12.0</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>1.16</td>
<td>0.81</td>
<td>0.96</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1,3-二氯丙烷</td>
<td>1.08</td>
<td>0.93</td>
<td>1.60</td>
<td>95.3±25.4</td>
<td>91.0±19.2</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>1.36</td>
<td>1.12</td>
<td>1.50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2-己酮</td>
<td>2.33</td>
<td>1.87</td>
<td>1.88</td>
<td>94.3±38.0</td>
<td>86.1±30.0</td>
</tr>
<tr>
<td>二溴氯甲烷</td>
<td>1.07</td>
<td>0.82</td>
<td>1.74</td>
<td>94.0±12.4</td>
<td>88.7±29.0</td>
</tr>
<tr>
<td>Compound</td>
<td>1.13</td>
<td>1</td>
<td>0.88</td>
<td>1.39</td>
<td>—</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10.6</td>
<td>16.4</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>92.0±41.6</td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td></td>
<td>1</td>
<td>0.91</td>
<td>1.29</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.09</td>
<td>11.8</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>90.6±22.6</td>
</tr>
<tr>
<td>氯苯</td>
<td>1.24</td>
<td>1</td>
<td>1.36</td>
<td>1.54</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.91</td>
<td>11.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>97.5±19.4</td>
</tr>
<tr>
<td>1,1,1,2-四氯乙烷</td>
<td>1.23</td>
<td>1</td>
<td>1.47</td>
<td>1.73</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.64</td>
<td>14.2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>90.9±31.8</td>
</tr>
<tr>
<td>乙苯</td>
<td>1.15</td>
<td>1</td>
<td>1.69</td>
<td>5.55</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>21.3</td>
<td>44.3</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>90.0±35.4</td>
</tr>
<tr>
<td>间,对-二甲苯</td>
<td>1.22</td>
<td>1</td>
<td>1.02</td>
<td>1.98</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10.5</td>
<td>24.4</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>92.3±30.0</td>
</tr>
<tr>
<td>邻-二甲苯</td>
<td>1.24</td>
<td>1</td>
<td>1.33</td>
<td>2.00</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10.3</td>
<td>21.4</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>88.3±37.6</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>1.10</td>
<td>1</td>
<td>1.54</td>
<td>1.90</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>16.7</td>
<td>19.8</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>87.6±31.0</td>
</tr>
<tr>
<td>溴仿</td>
<td>1.45</td>
<td>1</td>
<td>1.42</td>
<td>2.12</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.72</td>
<td>22.8</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>94.7±28.2</td>
</tr>
<tr>
<td>异丙苯</td>
<td>1.22</td>
<td>1</td>
<td>1.33</td>
<td>1.90</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>16.7</td>
<td>19.8</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>87.6±31.0</td>
</tr>
<tr>
<td>1,1,2,2-四氯乙烷</td>
<td>1.20</td>
<td>1</td>
<td>1.29</td>
<td>1.33</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>15.9</td>
<td>21.2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>91.7±31.2</td>
</tr>
<tr>
<td>溴苯</td>
<td>1.25</td>
<td>1</td>
<td>1.35</td>
<td>1.54</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>14.9</td>
<td>24.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>89.6±37.2</td>
</tr>
<tr>
<td>1,2,3-三氯丙烷</td>
<td>1.20</td>
<td>1</td>
<td>0.52</td>
<td>1.53</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>13.3</td>
<td>13.6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>103.5±34.4</td>
</tr>
<tr>
<td>正丙苯</td>
<td>1.24</td>
<td>1</td>
<td>1.17</td>
<td>1.65</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>15.2</td>
<td>28.6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>86.6±57.8</td>
</tr>
<tr>
<td>2-氯甲苯</td>
<td>1.28</td>
<td>1</td>
<td>0.79</td>
<td>1.32</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>25.9</td>
<td>35.8</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>93.3±43.8</td>
</tr>
<tr>
<td>1,3,5-三甲基苯</td>
<td>1.36</td>
<td>1</td>
<td>1.01</td>
<td>1.46</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.18</td>
<td>1.44</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.6</td>
<td>28.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>91.9±49.2</td>
<td>83.9±43.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4-氯甲苯</th>
<th>1.28</th>
<th></th>
<th></th>
<th>89.9±47.6</th>
<th>82.9±43.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.18</td>
<td>1.44</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.6</td>
<td>28.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>91.9±49.2</td>
<td>83.9±43.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>叔丁基苯</th>
<th>1.20</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.36</td>
<td>2.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.8</td>
<td>26.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>89.2±37.6</td>
<td>87.3±31.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2,4-三甲基苯</th>
<th>1.28</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.01</td>
<td>1.67</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14.4</td>
<td>26.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>87.2±57.8</td>
<td>84.5±51.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>仲丁基苯</th>
<th>1.10</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.22</td>
<td>1.60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.0</td>
<td>15.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>84.5±58.0</td>
<td>83.5±51.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4-异丙基甲苯</th>
<th>1.28</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.12</td>
<td>1.48</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.8</td>
<td>25.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>79.0±54.8</td>
<td>78.3±51.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,3-二氯苯</th>
<th>1.45</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.26</td>
<td>1.52</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.92</td>
<td>12.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>79.4±58.4</td>
<td>78.6±54.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,4-二氯苯</th>
<th>1.45</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.31</td>
<td>1.58</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.95</td>
<td>13.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>79.4±61.8</td>
<td>77.8±56.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>正丁基苯</th>
<th>1.66</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.01</td>
<td>1.15</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.8</td>
<td>14.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>76.9±54.2</td>
<td>78.7±51.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2-二氯苯</th>
<th>1.46</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2.93</td>
<td>3.73</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.4</td>
<td>22.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>82.9±34.2</td>
<td>78.0±20.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2-二溴-3-氯丙烷</th>
<th>1.87</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.41</td>
<td>1.58</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.0</td>
<td>19.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>71.5±22.3</td>
<td>72.4±46.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2,4-三氯苯</th>
<th>0.20</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.31</td>
<td>1.76</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.4</td>
<td>17.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>73.8±36.2</td>
<td>76.7±40.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>六氯丁二烯</th>
<th>1.95</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2.73</td>
<td>2.73</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23.1</td>
<td>38.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>65.8±42.6</td>
<td>62.6±44.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>萘</th>
<th>0.42</th>
<th></th>
<th></th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1.75</td>
<td>1.81</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.0</td>
<td>21.9</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1,2,3-三氯苯 | 0.20 | | | — | — |
13 9. 方法验证结论

从方法验证结果可以看出，本方法检出限最大值为 3.56µg/kg，而我国土壤环境质量评价标准中涉及到的可用本方法测定的挥发性有机物评价标准限值最小的化合物为 1,1-二氯乙烯，其值为 100µg/kg。所以本方法检出限满足其环保标准的要求。

方法各项特性指标能达到预期要求。